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ABSTRACT As witnessed by a vast corpus of literature, dimensionality reduction is a fundamental step
for biomedical data analysis. Indeed, in this domain, there is often the need for coping with a huge
number of data attributes (or features). By removing irrelevant or redundant attributes, feature selection
techniques can significantly reduce the complexity of the original problem, with important benefits in
terms of domain understanding and knowledge discovery. When learning from biomedical data, however,
the dimensionality issue is often addressed without a joint consideration of other critical aspects that may
compromise the performance of the induced models. The adverse implications of an imbalanced class
distribution, for example, are often neglected in this domain. The aim of this work is to investigate the
effectiveness of hybrid learning strategies that incorporate both methods for dimensionality reduction as well
as methods for alleviating the issue of class imbalance. Specifically, we combine different feature selection
techniques, both univariate and multivariate, with sampling-based class balancing methods and cost-sensitive
classification. The performance of the resulting learning schemes is experimentally evaluated on six high-
dimensional genomic benchmarks, using different classification algorithms, with interesting insight about
the best strategies to use based on the characteristics of the data at hand.

INDEX TERMS Bioinformatics, class imbalance, cost-sensitive classification, feature selection, high-

dimensional data analysis, random forest, random under-sampling, SMOTE over-sampling.

I. INTRODUCTION

Extracting useful knowledge from biomedical datasets is
recognized to be a very demanding task. Modern high-
throughput technologies, such as mass-spectrometry, DNA
micro-arrays and RNA sequencing, have indeed produced an
ever-increasing amount of data in recent years, posing unique
challenges for the machine learning and data mining com-
munities. A special attention has been given to the automatic
classification of cancerous samples based on suitable models
built from these kinds of datasets [1].

In this domain, the first and most critical issue is often the
huge dimensionality, i.e. the presence of a very high number
of attributes (or features) for each of the problem instances
at hand [2], [3]. This may negatively impact on the perfor-
mance of machine learning algorithms, not only in terms of
computational efficiency but also in terms of final predic-
tive accuracy, since the generalization ability of the induced
models may significantly degrade when the size of the search
space is very large (the so-called “curse of dimensionality”
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issue) [4]. A proper reduction of the data dimensionality is
then of paramount importance, as recognized by a great body
of scientific literature in the field [5]-[7].

The available approaches for dimensionality reduction can
be broadly categorized into two main groups: (i) mapping
techniques, that leverage algebraic methods to define new
attributes, as combinations of the original ones, and project
the data into a lower-dimensional space [8], and (ii) feature
selection techniques, that attempt to identify the most infor-
mative attributes for the task at hand (e.g., based on their
correlation with the target class), discarding those that are
either irrelevant or redundant [9]. This last approach, which
is often preferable in terms of domain understanding and
interpretability of the final model, is extensively employed
in biomedical data analysis, with an ever-increasing number
of reported applications [10]-[13].

Based on their interaction with the algorithm used for
inducing the model, feature selection methods are usually
distinguished into [6]:

(i) Filters, that carry out the selection process as a pre-
processing step, without interacting with the classifier; they
rely on the intrinsic characteristics of the training data, e.g.,
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by measuring (through some statistical or entropic criterion)
the degree of correlation between the features and the target
class [14]. This approach is not tied to a specific learning
algorithm and generally has the advantage of a lower com-
putational cost.

(i) Wrappers, that compare different feature subsets and
select the one that optimizes the performance of a given
classifier. This involves using a suitable search strategy (e.g.,
a greedy search or an evolutionary search) to build the can-
didate subsets and evaluating each of them by training and
testing a classification model. Tuned to a specific learner,
this approach may lead to better results, but at an increased
computational cost [5].

(iii) Embedded methods, that rely on the intrinsic capacity
of some learning algorithms to assess the relevance of the
features (Support Vector Machine classifiers, for example,
allow to weight the features based on the contribution they
give to the induced decision function [15]).

Though a lot of research has been devoted to investigat-
ing the strengths and weaknesses of the different selection
approaches in the biomedical field [4], [5], [10], [14], [16],
[17], the choice of the most appropriate method for a given
task is often difficult. Due to their computational efficiency,
filter methods have been the most used so far, but there is
a growing tendency to incorporate them into more sophisti-
cated selection strategies. Indeed, Aybrid methods, that lever-
age different heuristics at different stages of the selection
process (e.g., reducing the data dimensionality by a filter and
then further refining the search by a wrapper) [18], or ensem-
ble approaches, that properly combine the outcome of differ-
ent selectors, are increasingly being explored [19], [20].

However, the high dimensionality is not the only challenge
of biomedical data analysis. Another important issue that may
worsen the performance of machine learning algorithms, but
is often neglected in this domain, is the imbalance in the class
distribution. This occurs when the data contain quite different
numbers of instances for the different classes of interest,
which is a rather common situation, for example, in cancer
prediction tasks. Traditional classification algorithms may
not perform adequately in this scenario, primarily because
they are designed to maximize the overall prediction accu-
racy, with a bias towards the majority class, without regard
to the significance of the different classes. As a result, they
may exhibit poor performance on the minority class, which is
however, in most cases, the class of greatest interest (e.g., due
to the vital importance of correctly diagnosing a rare disease).
Despite its undoubted relevance for practical applications,
the class imbalance problem has not received the attention
it would deserve in this domain [21], with a vast majority of
literature that focuses on the curse of dimensionality alone,
as recently discussed in [22].

Class imbalance, in turn, has been mostly treated in the
literature as an independent problem, especially in applica-
tion fields where the number of features is not so critical.
A number of approaches, such as sampling-based balancing
methods and cost-sensitive classification, have been proposed
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to deal with imbalanced datasets [23], [24], with success-
ful applications in different application contexts, such as
anomaly detection [25], fraud detection [26] and fault pre-
diction [27].

In more detail, sampling-based methods modify the distri-
bution of the instances so that the minority class is adequately
represented in the dataset used to induce the model. Common
sampling-based methods are random under-sampling, where
instances of the majority class(es) are randomly removed
from the dataset, and random over-sampling, where new
instances of the minority class are artificially created from
the existing ones (e.g., by simply duplicating some instances
chosen at random). A popular type of over-sampling, known
as SMOTE(Synthetic Minority Over-sampling Technique),
involves the generation of new minority instances by inter-
polating between existing minority instances that are close
to each other [28]. This approach is now considered as a de
facto standard in the context of learning from imbalanced
datasets [29].

On the other hand, cost-sensitive approaches do not modify
the distribution of the instances but assign different misclassi-
fication costs to the different classes. The underlying ratio is
that not all the errors have the same consequences, and prac-
tical cost, in real-world applications: misclassifying a rare
instance (e.g., a rare disease) is indeed serious. Incorporating
misclassification costs into the learning process implies to
induce the model with the lowest “overall cost”, instead of
the one with the lowest expected error as in the traditional
setting.

While several research efforts have explored the issues of
high dimensionality and class imbalance independently, only
a few studies have addressed both the problems simultane-
ously [30]-[35]. Since several biomedical datasets are both
high-dimensional and class-imbalanced, the aim of this work
is to investigate the effectiveness of learning strategies that are
designed to handle simultaneously both the issues, in order
to effectively deal with real-world problems that involve the
classification of rare pathological conditions (e.g., rare cancer
types).

Specifically, extending our previous research in this
area [22], we explore the combination of sampling-based
balancing methods and cost-sensitive classification with suit-
able feature selection strategies, chosen to be representa-
tives of different selection approaches (both univariate and
multivariate).

Using as benchmarks six challenging genomic datasets,
we experimentally evaluate the extent to which the result-
ing learning schemes are advantageous compared to the
application, as is common practice in this field, of fea-
ture selection alone. The results of the experiments give
interesting insight into the benefits of taking class imbal-
ance into account when analyzing such kind of datasets,
as well as into the best strategies to use in dependence
of the specific characteristics of the data at hand (e.g.,
the number of the available instances and their level of
imbalance).
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The remainder of this paper is organized as follows.
Section II illustrates all the materials and methods involved
in our study, including the considered feature selection tech-
niques and their combination with methods for alleviating
the class imbalance problem. The main experimental results
are summarized in Section III (and additional results are also
given as supplementary material). The findings of the study
are further discussed in section IV, which also provides a
comparison with the literature. Finally, section V outlines the
concluding remarks and some possible directions for future
research.

Il. MATERIALS AND METHODS

A number of learning strategies that incorporate both meth-
ods for dimensionality reduction as well as methods for
alleviating the class imbalance problem are here presented.
Specifically, sub-section II-A introduces the feature selec-
tion techniques, while sub-sections II-B and II-C discuss
how feature selection can be combined with class balancing
methods and cost-sensitive classification respectively. In the
remaining part of the section, we present the datasets and the
settings of the experiments, as well as the metrics used for
performance evaluation.

A. SELECTING A SUBSET OF MEANINGFUL FEATURES

In general, given a dataset with M features, the output of the
feature selection process can be expressed in the form of: (a)
a weighting of the M features, i.e. each feature is weighted
based on a suitable relevance criterion which is usually meant
to capture the strength of the correlation between the feature
and the target class; (b) a ranking of the M features, i.e. the
features are ordered based on their relevance, from the most
important to the least important (obviously, a feature weight-
ing can be easily converted to a feature ranking by sorting
the weights assigned to the features); (c) a subset of the M
features, which can be selected based on a subset evaluation
strategy (as in the wrapper approaches) or simply choosing
the “best” features from a list of previously weighted/ranked
features (in this case a suitable criterion is required to filter
the list).

A very common practice in high-dimensional data anal-
ysis, when a subset of meaningful features is required for
inducing a descriptive/predictive model, is to use a ranking-
based selection approach, coupled with a proper threshold (¢),
i.e. only the first 7 top-ranked features are selected, as schema-
tized in Fig. 1. If needed, the resulting feature subset may be
further refined through more sophisticated search strategies
that — although infeasible in a very large search space —
may be still applied after a first, preliminary, dimensionality
reduction [36].

The feature selection process depicted in Fig. 1, denoted
hereafter as F'S, can be implemented using different ranking
methods. Specifically, we included in our study five tech-
niques that are representative of quite different heuristics.
In particular, we considered three univariate methods (Sym-
metrical Uncertainty, Gain Ratio and Chi Squared), which
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FIGURE 1. Ranking-based feature selection.

assess the relevance of each feature independently from the
others, and two multivariate methods (ReliefF and SVM-AW),
which take into account the inter-dependencies among the
features. A more detailed description of these techniques,
along with a discussion of their pattern of agreement, can be
found in [7]. For all of them, we exploited the implementation
provided by the WEKA library [37].

In brief:

e Symmetrical Uncertainty (SU) and Gain Ratio (GR)
exploit the concept of information gain, which is a measure
of the extent to which the class entropy decreases when the
value of a given feature is known. However, SU and GR differ
for the way they try to compensate for the information gain’s
bias toward features with more values.

e Chi Squared (x?) evaluates each feature by measuring
its chi-squared statistic with respect to the class: the larger
the chi-squared, the higher the relevance of the feature for
the task at hand.

e ReliefF ranks the features based on their ability to differ-
entiate between data instances that are near to each other in
the attribute space.

o SVM-AW exploits a linear Support Vector Machine (SVM)
classifier, which has an embedded capability of assigning
a weight to each feature (based on the induced hyperplane
function [15]); the absolute value of this weight (AW) is used
to rank the features. The iterative variant of this method,
although proposed as a good option for biomedical data anal-
ysis [38], is not employed here due to its poor stability [39].

B. USING FEATURE SELECTION IN CONJUCTION WITH
SAMPLING-BASED CLASS BALANCING STRATEGIES

Data sampling is a popular technique used to alleviate the
class imbalance problem [24], [40]. As previously men-
tioned, the basic idea is to modify the proportion between
majority and minority instances in the training data. Among
the sampling-based approaches, the random under-sampling,
that involves a reduction of the majority instances, has proved
to be effective within different experimental conditions [41].
On the other hand, a duplication of the minority instances (as
in the random over-sampling approach) may involve a higher
risk of overfitting, especially in small sample size settings,
which are quite common in the biomedical field. This led us to
consider an alternative over-sampling technique, the SMOTE
approach [28], that has recently been applied in a variety of
domains, with quite good results [29].
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Specifically, we investigate here the effectiveness of using
both random under-sampling (hereafter RUS) and SMOTE
in conjunction with feature selection (FS). Without loss of
generality, we consider a binary classification setting (indeed,
a multiclass problem can be always decomposed into a set
of binary problems). The evaluation is performed in a two-
fold way:

e Sampling + FS learning schemes : RUS(R:1) + FS
and SMOTE(R:1) + FS. We first resample the original data by
reducing the level of class imbalance to a pre-specified ratio
R:1, i.e. R instances of the majority class for each instance
of the minority class (e.g., R = 1 to obtain a uniform
class distribution). This is achieved by removing instances of
the majority class (RUS) or by adding a proper number of
synthetic instances of the minority class (SMOTE). Feature
selection is then performed on the sampled data and, at the
end, a classifier is built.

e F'S + Sampling learning schemes : FS + RUS(R:1)
and FS + SMOTE(R:1). We first select a subset of meaningful
features from the original dataset and then perform data
sampling (again, with a pre-specified imbalance ratio R:1);
as a final step, the classifier is built.

This two-fold setting allows us to investigate the extent to
which the final performance is affected by the order of the
pre-processing operations performed before constructing the
model. Also, the influence of the R parameter (that deter-
mines the imbalance ratio in the sample) is experimentally
investigated, as detailed in sub-section II-E.

C. USING FEATURE SELECTION IN CONJUCTION WITH
COST-SENSITIVE LEARNING

Differently from traditional classifiers, which try to minimize
the overall number of classification errors, cost-sensitive
learners attempt to induce the least costly model, provided
that different costs are assigned to the different types of
errors [23].

As usual practice, we denote here the minority class as
positive (+) and the majority class as negative (—). With this
notation, the different classification costs can be encoded in a
cost matrix as the one reported in Table 1. This matrix reflects
the fact that we are interested in a model that achieves the best
possible performance on the minority class. Indeed, the cost
of misclassifying a positive instance (i.e. a false negative
error) is C times greater than the cost of misclassifying a
negative instance (i.e. a false positive error).

But it is important to remark that, given the high dimen-
sionality of the data here considered, the model is trained after
reducing the data dimensionality, i.e. after applying a proper

TABLE 1. Cost matrix for a binary classification task.

predicted class
+ -
actual + 0 c
class - 1 0
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feature selection technique, so that the learning process can
jointly exploit the information conveyed by the selected fea-
tures as well as the cost information. The effect of varying
the C parameter, i.e. the cost of misclassifying a minority
instance, is in turn investigated in the experimental study,
as explained in sub-section II-E.

D. METRICS FOR PERFORMANCE EVALUATION

The overall percentage of correct predictions, namely the
accuracy, is the most employed performance measure in the
context of classification tasks. It is not meaningful, how-
ever, when dealing with quite imbalanced class distributions.
In presence of a rare class, indeed, a trivial model that assigns
every object to the majority class will have a high level of
accuracy even if it fails to recognize any of the rare instances.

More appropriate metrics should then be used to capture
the ability of the model to perform well on each single
class. Among the evaluation measures proposed in the litera-
ture [42], we consider those reported in Table 2, which have
proved to be useful in the context of imbalanced classification
problems [43].

In the table, the following standard notation is used: TP
is the number of positive instances correctly classified (true
positives); TN is the number of negative instances correctly
classified (true negatives); FP is the number of negative
instances incorrectly classified as positive (false positives);
FN is the number of positive instances incorrectly classified
as negative (false negatives).

Note that specificity(or TN_rate), sensitivity (or recall or
TP_rate) and precision (or positive predictive value) incorpo-
rate information about only one type of error (false positive
or false negative). Hence, it is useful to combine them into
an overall evaluation criterion, such as the F-measure (har-
monic mean between sensitivity and precision) or the G-mean
(geometric mean between sensitivity and specificity), that
accounts for both false positives and false negatives. As well,
the Matthews Correlation (MC) coefficient takes into account
the balance ratios of the four confusion matrix categories (7P,
TN, FP, FN), and it is considered an informative score to
establish the quality of a binary classifier, even in a class
imbalanced scenario [44], [45].

The use of several metrics allows the polyhedral aspects
of the classification performance to be captured from differ-
ent points of views. Of course, metrics different from those
here considered could also been used [24], [42], and the
best choice of the evaluation framework in the context of
imbalanced learning tasks is still a matter of debate [46].
Nevertheless, recent literature confirms the suitability of the
approach chosen for this study [43].

E. DATASETS AND EXPERIMENTAL SETTINGS

To evaluate the effectiveness of the learning strategies
described in sub-sections II-B and II-C, we performed exten-
sive experiments on six high-dimensional genomic bench-
marks [47]-[50], whose main characteristics are summarized
in Table 3.
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TABLE 2. Performance measures.

classifier has predicted as positive)

Measure Definition
Specificity or TN_rate TN
(fraction of negative instances classified correctly) TN+ FP
Sensitivity or Recall or TP_rate TP
(fraction of positive instances classified correctly) TP+ FN
Precision or Positive Predictive Value TP
(fraction of instances that are actually positive in the group the W

F-measure or Fi score

(harmonic mean between sensitivity and precision)

2 - sensitivity - precision
sensitivity + precision

G-mean

(geometric mean between sensitivity and specificity)

\[sensitivity - specificity

Matthews Correlation (MC) coefficient

(correlation between the observed and predicted classifications)

TP-TN — FP-FN
J(TP + FP)(TP + FN)(TN + FP)(TN + FN)

TABLE 3. Genomic datasets used in the experiments.

o -
Dataset Task No. of ) No. of ) % of mmo'rlty
features instances instances (min_pct)
NO-glioma Discriminating non—classw_ ollquendroglloma (NO) 12625 50 30%
among a group of glioma instances [47]
Discriminating between follicular lymphoma (FL) and o
Lymphoma diffuse large b-cell lymphoma (DLBCL) [48] 7129 7 25%
CO-glioma Discriminating classic o!lgode'ndroglloma (CO) among a 12625 50 14%
group of glioma instances [47]
Uterus Discriminating uterus cancer from other cancer types [49] 10935 1545 8%
Omentum Discriminating omentum c[iréﬁer from other cancer types 10935 1545 5,
Discriminating between small cell lung cancer (SCLC) o
scLe and different lung tumors [50] 12601 203 3%

All the above benchmarks, which derive from DNA micro-
array experiments, contain biological samples described by
the expression level of thousands of genes. For each dataset,
the features were first ranked using different methods (SU,
GR, x?, ReliefF, SVM-AW), as described in sub-section II-A.
Only the first + = 100 top-ranked features, corresponding
to about 1% (or less) of the original dimensionality, were
retained from the resulting ranked lists. Actually, the optimal
value for t+ may depend on the specific dataset as well as on
the applied learning scheme. However, a number of prelim-
inary experiments have shown that a subset size t = 100
is a reasonable option across the different datasets and the
different settings here considered, while further increasing
the number of selected genes does not result in an improved
performance. This is in line with the vast literature on micro-
array data analysis [5] which highlights the importance of
drastically reducing the number of genes to decrease the
risk of overfitting and improve the performance (and the
understandability) of the induced models.
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As regards the classification method, we performed exper-
iments with different learning algorithms: Random For-
est (RF) [51], AdaBoost (AdaB) [52], k-Nearest Neighbors
(k-NN) [53], Support Vector Machines (SVM) [54] and RIP-
PER (RIP) [55], that were chosen as representatives of dif-
ferent classification approaches. For each of them, as for the
feature selection methods, we relied on the implementation
provided by WEKA [37]. In most cases, we maintained
the default parametrization, which has proved to be reliable
across several tasks [56]. In particular, for the RF classifier,
we used 100 trees and log(¢) + 1 random features, which is a
suitable setting for imbalanced problems [57]. For the AdaB
classifier, built using a decision tree as base learner, we per-
formed 10 iterations (indeed, more iterations did not signifi-
cantly improve the performance). For the SVM, a linear kernel
was employed, as common practice in micro-array data anal-
ysis [58]. For k-NN, the k parameter was set to 5, as lower
values may be more sensitive to noise, and the neighbors were
weighted by their distance, as in similar studies [21].
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TABLE 4. NO-glioma dataset (min_pct = 30%): model performance using the RF classifier and the SU selection method.

FS RUS FS + SMOTE FS + FS + FS +
baseline alone (1:1) RUS (1:1) SMOTE Cost Cost

+FS (1:1) +FS (1:1) (c=2) c=3)
Specificity 0.91 0.93 0.79 0.86 0.92 0.92 0.84 0.74
Sensitivity 0.57 0.65 0.90 0.84 0.73 0.71 0.83 0.91
Precision 0.67 0.79 0.71 0.77 0.82 0.80 0.74 0.65
F-measure 0.60 0.68 0.77 0.78 0.74 0.72 0.75 0.73
G-mean 0.65 0.73 0.83 0.84 0.79 0.78 0.82 0.81
MC coeff. 0.51 0.62 0.68 0.70 0.68 0.65 0.66 0.62

TABLE 5. Lymphoma dataset (min_pct = 25%): model performance using the RF classifier and the SU selection method.

Fs RUS FS + SMOTE FS + FS + FS +
baseline alone (1:1) RUS (1:1) SMOTE Cost Cost

+ FS (1:1) +FS (1:1) c=2) (C=3)
Specificity 0.99 0.95 0.85 0.89 0.95 0.94 0.92 0.87
Sensitivity 0.39 0.73 0.94 0.92 0.78 0.79 0.91 0.94
Precision 0.75 0.85 0.73 0.76 0.87 0.85 0.82 0.74
F-measure 0.49 0.76 0.81 0.82 0.80 0.80 0.84 0.81
G-mean 0.54 0.81 0.89 0.90 0.85 0.85 0.91 0.90
MC coeff. 0.48 0.72 0.75 0.77 0.76 0.75 0.80 0.76

As concerns the specific strategies used to alleviate class
imbalance, we explored the following values for the R and C
parameters (see sub-sections II-B and II-C), that were used,
respectively, to control the imbalance ratio and the cost of
misclassifying rare instances: ()R = 1, R = 2, R = 3; (ii)
C =2,C=3,C =4, C =5 (indeed, considering different
values would not be beneficial, as shown by the experimental
results).

As evaluation protocol, we used a stratified 5-fold cross-
validation, which was repeated 10 times, to reduce any bias
due to a specific data partitioning. This means that, for each
learning scheme, we trained and tested the classification
model 50 times, using each time different partitions of data at
training and testing stages. The values of the evaluation met-
rics (specificity, sensitivity, precision, F-measure, G-mean
and MC coefficient) were then averaged across the different
runs. Note that all the pre-processing steps (feature ranking
and sampling) were performed, at each run, only on the
training data, to avoid biasing the testing results.

All the experiments were performed within the WEKA
machine learning workbench [37], which provides all the
necessary pre-processing and data manipulation functions,
besides the classification methods.

Ill. RESULTS
The main results of the experiments are here summarized.
Since the RF classifier has proved to be overall the most
effective, we start by detailing its performance across the dif-
ferent datasets and the different learning schemes presented
in section II; next, a comparative view among the different
classifiers will be provided.

As a first point, it is interesting to consider the baseline
performance of RF on the original datasets, without any form
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of manipulation or dimensionality reduction. The resulting
accuracy values, averaged across the 50 training-testing runs,
are 81.0%, 83.9%, 87.4% 93.2%, 95.0% and 97.1%, for
NO-glioma, Lymphoma, CO-glioma, Uterus, Omentum and
SCLC datasets respectively.

However, as discussed in sub-section II-D, the accuracy
simply gives the overall percentage of correctly classified
instances, without reflecting the ability of the classifier to
discriminate the minority class (which is often the most inter-
esting one, as in this context).

Actually, among the minority (i.e. positive) instances,
the average rate of correct prediction (sensitivity) is quite
low: it ranges from 0.57 in the NO-glioma dataset (min_pct
= 30%), which is only moderately imbalanced, to 0.00 in the
most imbalanced datasets, i.e. Omentum (min_pct = 5%) and
SCLC (min_pct = 3%), where the baseline classifier assigns
all the instances to the majority (i.e. negative) class.

A proper reduction of the data dimensionality improves
this baseline performance to a significant extent, as shown
in Tables 4-9, where the evaluation results for the six datasets
(NO-glioma, Lymphoma, CO-glioma, Uterus, Omentum and
SCLC respectively) are summarized in terms of the dif-
ferent metrics reported in Table 2. Specifically, the results
in Tables 4-9 refer to the model performance achieved with
the SU selection method; the complete results obtained with
the other ranking approaches, i.e. GR, Xz, ReliefF and SVM-
AW, are here omitted (for the sake of space and readability)
but are made available as supplementary material.

When looking at the second column (‘FS alone’) of the
tables, we can observe indeed the effectiveness of feature
selection, as expressed by the values of the F-measure
(that gives a trade-off between sensitivity and precision),
the G-mean (that gives a trade-off between sensitivity and
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TABLE 6. CO-glioma dataset (min_pct = 14%): model performance using the RF classifier and the SU selection method.

FS RUS FS + SMOTE FS + FS+ FS +
baseline alone (1:1) RUS (1:1) SMOTE Cost Cost
+FS (1:1) +FS (1:1) (c=2 c=3)
Specificity 1.00 0.98 0.80 0.93 0.97 0.97 0.93 0.89
Sensitivity 0.10 0.49 0.90 0.75 0.62 0.62 0.78 0.87
Precision 0.14 0.54 0.53 0.65 0.65 0.65 0.66 0.64
F-measure 0.11 0.49 0.63 0.66 0.61 0.61 0.67 0.70
G-mean 0.12 0.52 0.81 0.75 0.66 0.66 0.79 0.84
MC coeff. 0.11 0.48 0.59 0.64 0.59 0.60 0.65 0.68
TABLE 7. Uterus dataset (min_pct = 8%): model performance using the RF classifier and the SU selection method.
FS RUS FS + SMOTE FS+ FS + FS +
baseline alone 2:1) RUS 2:1) SMOTE Cost Cost
+FS (2:1) +FS (2:1) (CcC=3) (C=4)
Specificity 1.00 0.98 0.93 0.93 0.95 0.95 0.94 0.93
Sensitivity 0.17 0.41 0.81 0.79 0.71 0.72 0.77 0.81
Precision 0.87 0.67 0.49 0.50 0.56 0.57 0.53 0.50
F-measure 0.28 0.50 0.61 0.61 0.63 0.64 0.63 0.62
G-mean 0.41 0.63 0.86 0.86 0.82 0.83 0.85 0.87
MC coeff. 0.36 0.49 0.59 0.59 0.60 0.61 0.60 0.60
TABLE 8. Omentum dataset (min_pct = 5%): model performance using the RF classifier and the SU selection method.
FS RUS FS + SMOTE FS + FS + FS +
baseline ) (2:1) RUS (2:1) SMOTE Cost Cost
aione +FS (2:1) +FS 2:1) (c=3 | (C=49)
Specificity 1.00 0.99 0.92 0.93 0.96 0.97 0.96 0.95
Sensitivity 0.00 0.21 0.80 0.80 0.64 0.64 0.66 0.75
Precision 0.00 0.58 0.36 0.37 0.48 0.51 0.50 0.46
F-measure 0.00 0.30 0.49 0.50 0.54 0.56 0.57 0.56
G-mean 0.00 0.45 0.86 0.86 0.78 0.78 0.80 0.84
MC coeff. 0.00 0.32 0.50 0.51 0.52 0.54 0.55 0.55
TABLE 9. SCLC dataset (min_pct = 3%): model performance using the RF classifier and the SU selection method.
FS RUS FS + SMOTE FS + FS + FS +
baseline alone (2:1) RUS (2:1) SMOTE Cost Cost
+FS (2:1) +FS (2:1) (c=3) (C=4)
Specificity 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00
Sensitivity 0.00 0.50 0.77 0.95 0.58 0.58 0.99 1.00
Precision 0.00 0.56 0.47 0.95 0.64 0.64 0.97 0.93
F-measure 0.00 0.52 0.54 0.95 0.60 0.60 0.97 0.96
G-mean 0.00 0.52 0.78 0.95 0.61 0.61 0.99 1.00
MC coeff. 0.00 0.52 0.56 0.95 0.60 0.60 0.98 0.96

specificity) and the MC coefficient (that captures the degree
of correlation between actual classification and model pre-
diction).

Nevertheless, these results are still sub-optimal, and the
main aim of this study is to investigate the extent to which a
further improvement is achievable, in terms of final predictive
performance, by properly combining feature selection with
methods that cope with the class imbalance problem. Specif-
ically, as discussed in sub-sections II-B and II-C, we exper-
imented with hybrid strategies where the feature selection
(FS) process is carried out:
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e after data sampling (RUS + FS and SMOTE + FS
learning schemes)

e before data sampling (FS + RUS and FS + SMOTE
learning schemes)

e in conjunction with cost-sensitive classification
(FS + Cost learning scheme)

All the sampling-based learning schemes have been imple-
mented with different imbalanced ratios R:1 (i.e. R negative
instances for each positive instance); in particular, only the
settings R = 1 and R = 2 have been considered for the
NO-glioma and Lymphoma datasets, which are moderately
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imbalanced, while the setting R = 3 has also been explored
for the other benchmarks. However, for the sake of space,
only the results achieved with R = 1 are reported for the
first three benchmarks (Tables 4-6), while those achieved
with R = 2 are given for the most imbalanced datasets
(Tables 7-9). Indeed, these settings have proved to be suitable.
As well, for the F'S + Cost scheme, different values of the C
parameter (cost of misclassifying a positive instance) have
been considered, as explained in sub-section II-E, but only
the most interesting results are summarized in the Tables 4-9.

As we can see, when compared to the application of fea-
ture selection alone, the sampling-based learning schemes
(RUS + FS, FS + RUS, SMOTE + FS, FS + SMOTE), as well
as the cost-sensitive scheme (FS + Cost), result in a further
increased sensitivity (that reflects the ability of the model to
detect the class of interest, i.e. the minority class). When RUS
sampling and costs are used, the improvement in sensitivity
is more pronounced but, in most cases, at the expenses of
lower values of specificity and precision. On the other hand,
the increase in sensitivity is less pronounced with SMOTE,
which however does not impact negatively on specificity and
precision (with a few exceptions). Despite the above differ-
ences, both the “trade-off’’ measures, i.e. the F'-measure and
the G-mean, show that the hybrid learning strategies, which
cope simultaneously with both high-dimensionality and class
imbalance, are generally better than using feature selection
alone, especially when the percentage of minority instances
is quite low. This is also confirmed by the MC coefficient.

Note that the statistical significance of the observed dif-
ferences has been first evaluated according to a paired 7-test
[56], at a confidence level of 0.05: the performance values
that turned out to be significantly better than ‘FS alone’ are
marked in bold in the tables. A further discussion of the
statistical significance of the findings of our study, using a
more restrictive version of the standard z-test, will be given
in the next section.

To facilitate the comparison among the different learning
schemes and help the reader to assess their effectiveness in
dependence on the level of class imbalance, Figs.2 and 3
show a histogram representation of the last three met-
rics (F-measure, G-mean and MC coefficient) for the six
benchmarks here considered. Specifically, Fig. 2 refers to
the NO-glioma, Lymphoma and CO-glioma datasets, while
Fig. 3 refers to the Uterus, Omentum and SCLC datasets, that
are the most imbalanced ones; in both these figures, as well
as in those shown later, standard error bars are also included.

Noteworthy, the results shown so far (which refer to the
performance achieved with the SU selection method) are in
great part consistent with the results obtained with the other
selection methods (i.e. GR, Xz, ReliefF, SVM-AW), attached
as supplementary material. As a representative example,
a comparative view is given in Fig. 4 for the Omentum
dataset (min_pct = 5%), which has shown to be a particularly
challenging benchmark. As we can see, the univariate selec-
tion methods (SU, GR and x?) lead to very similar results,
both when used alone as well as in conjunction with RUS,
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SMOTE and cost-sensitive learning. Among the multivariate
selection methods, ReliefF performs somewhat better, while
SVM-AW leads to the worst results when used alone but
greatly improves its performance in conjunction with strate-
gies that alleviate the class imbalance problem (leading, in the
hybrid setting, to results comparable with those achieved with
the other selection methods).

Finally, it is interesting to extend the analysis to the other
classification algorithms considered in this study (AdaB,
k-NN, SVM and RIP). As anticipated, the best results have
been achieved with the RF classifier, which is increasingly
being used across several domains [59]-[62]. Specifically,
when both the high-dimensionality and the class imbalance
are properly addressed, RF outperforms the other methods in
terms of F-measure and MC coefficient, as shown in Fig. 5 for
the Omentum benchmark. Nevertheless, it is worth of remark
that all the considered classifiers benefit from the applica-
tion of the hybrid learning strategies here discussed, which
lead to better results compared to the application of feature
selection alone. The only exception is the RIP algorithm,
which is already designed to cope with imbalanced class
distributions [55], thus benefiting to a lesser extent from the
use of strategies that further tackle class imbalance (SMOTE,
however, is still somewhat useful in this case too).

A deeper discussion of the findings of this study and a com-
parison with the literature will be given in the next section.

IV. DISCUSSION

As shown previously, a wide experimental study has been
conducted on six high-dimensional genomic benchmarks
which present different levels of class imbalance, with a
percentage of minority instances that ranges from 30% to
3% (Table 3). The study has encompassed different classi-
fiers, different feature selection methods and different learn-
ing strategies, giving useful insight along the following
dimensions:

(i) Need for handling class imbalance. Despite several
biomedical datasets present imbalanced class distributions,
most of the studies in the field have so far focused on
the dimensionality issue alone. Indeed, a proper reduction
of the data dimensionality is of paramount importance in
terms of domain understanding as well as for obtaining bet-
ter predictive models, as confirmed by the results shown in
section III. However, when feature selection is combined with
methods to tackle class imbalance, such as resampling and
cost-sensitive learning, the classification performance can
be further improved to a significant extent. The superior-
ity of the hybrid learning strategies that address both high
dimensionality and class imbalance has been shown in the
previous section using the widely employed paired 7-test,
at a confidence level of 0.05. The corrected resampled 7-test
[56], recently proposed as a more reliable option for repetitive
random sampling and cross-validation experiments, confirms
that the hybrid strategies are significantly better than feature
selection alone for the most imbalanced datasets (Uterus,
Omentum and SCLC). Hence, in case of highly skewed

VOLUME 8, 2020



B. Pes: Learning From High-Dimensional Biomedical Datasets: Issue of Class Imbalance

IEEE Access

a) F-measure

1.00
0.90

0.80
0.70
0.60
0.50
0.40
0.30
0.20

Lymphoma (25%)

NO-glioma (30%)

FS alone
RUS(1:1) + FS
FS +RUS(1:1)
B SMOTE(1:1) + FS
B FS + SMOTE(1:1)
BFS + Cost (C=2)
B FS + Cost (C=3)

CO-glioma (14%)

b) G-mean

1.00
0.90

NO-glioma (30%)

0.80
0.70
0.60
0.50
0.40
0.30
0.20

Lymphoma (25%)

FS alone
RUS(1:1) + FS
FS +RUS(1:1)
B SMOTE(1:1) + FS
B[S+ SMOTE(1:1)
B[S+ Cost (C=2)
B[S + Cost (C=3)

CO-glioma (14%)

¢) MC coefficient

1.00
0.90

0.80
0.70 AT |

0.60 \ ‘ |
0.50

0.40

0.30

0.20

Lymphoma (25%)

NO-glioma (30%)

FS alone
RUS(1:1) + FS
FS +RUS(I1:1)
SMOTE(1:1) + FS
FS + SMOTE(1:1)
B[S+ Cost (C=2)
B[S+ Cost (C=3)

CO-glioma (14%)

FIGURE 2. Classification performance, in terms of a) F-measure, b) G-mean and c) MC coefficient, for the NO-glioma, Lymphoma and
CO-glioma datasets, using the RF classifier and the SU selection method, in conjunction with different learning strategies.

distributions, the adoption of proper strategies that cope with
class imbalance is a primary need, since feature selection
alone may not be enough to achieve satisfactory results.
On the other hand, handling class imbalance alone, without
reducing the data dimensionality, is not an option in this
domain since the selection of a small number of features
is crucial in terms of knowledge discovery (e.g., to better
understand the genetic basis of cancer). Further, a preliminary
ablation study has shown that sampling-based class balancing
strategies and cost-sensitive learning are overall less effective
when used alone, without feature selection. For example,
in the two datasets with the lowest percentage of minority
instances, i.e. Omentum and SCLC, the RF classifier achieves
an MC coefficient of 0.41 and 0.42 respectively, if used with
a cost C = 3 alone, without any dimensionality reduction,
whereas the corresponding values in conjunction with the
SU selector (FS 4+ Cost scheme) are higher, as shown in the

VOLUME 8, 2020

Tables 8-9. As well, using the SMOTE(2:1) approach alone,
RF gives an MC coefficient of 0.45 and 0.20 for Omentum
and SCLC respectively, while the corresponding values incor-
porating the SU selector (either before or after sampling) are
better (again, see the Tables 8-9). Both the F-measure and the
G-mean values confirm this trend.

(ii) Choice of the hybrid learning scheme. As highlighted
previously, combining feature selection with a proper strategy
to tackle class imbalance turns out to be more effective,
in the specific domain here considered, than using feature
selection alone or class balancing strategies alone. All the
hybrid learning schemes investigated in this study (RUS +
FS, FS + RUS, SMOTE + FS, FS + SMOTE, FS + Cost)
have proved to be somewhat useful, and there is no scheme
that is always better than the others, as shown in section III.
However, using SMOTE seems to be less convenient when
the absolute number of positive instances in the training data

13535



IEEE Access

B. Pes: Learning From High-Dimensional Biomedical Datasets: Issue of Class Imbalance

a) F-measure

1.00
0.90 FS alone
0.80 RUS(2:1) + FS
0.70 FS +RUS2:1)
0.60 uSMOTE(2:1) + FS
0.50 B S+ SMOTE(2:1)
0.40 .FS+COSZ‘(C:3)
030 B S + Cost (C=4)
0.20

Uterus (8%) Omentum (5%) SCLC (3%)

b) G-mean

1.00
0.90 , FS alone
0.80 RUS(2:1) + FS
0.70 FS + RUS(2:1)
0.60 B SMOTE(2:1) + FS
0.50 BFS +SMOTE(2:1)
0.40 B[S+ Cost (C=3)
030 .FS*’COSI(C:4)
0.20

Uterus (8%) Omentum (5%) SCLC (3%)

¢) MC coefficient

1.00

0.90

0.80

0.70

0.60 e B

0.50 |

0.40

0.30 '
0.20

Omentum (5%)

Uterus (8%)

FS alone
RUS(2:1) + FS
FS +RUS(2:1)
SMOTE(2:1) + FS
FS + SMOTE(2:1)
BFES + Cost (C=3)
BES + Cost (C=4)

SCLC (3%)

FIGURE 3. Classification performance, in terms of a) F-measure, b) G-mean and c) MC coefficient, for the Uterus, Omentum and SCLC
datasets, using the RF classifier and the SU selection method, in conjunction with different learning strategies.

is particularly low, as in the CO-glioma and SCLC datasets.
In turn, when using RUS, performing feature selection after
data sampling does not turn out to be advantageous in highly
imbalanced and small sample size settings, as in the SCLC
dataset. For both RUS and SMOTE, the imbalance ratio in
the resampled data should be chosen in dependence on the
original percentage of minority instances. Making the class
distribution uniform has indeed turned out to be a good option
only when the original percentage of minority instances is
higher than 10%; instead, in case of more skewed datasets,
the settings RUS(2:1) and SMOTE(2:1) have proved to be
better. As well, when a cost-sensitive approach is adopted,
the cost of misclassifying a minority instance (expressed by
the C parameter in our methodology) should be increased in
dependence of the level of class imbalance in the original
dataset (anyway, values above C = 4 do not seem to be
beneficial).
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(iii) Choice of the methods for classification and feature
selection. As shown in section III, different classification
algorithms may benefit from the adoption of a hybrid learning
scheme. In particular, among the classifiers here considered,
RF is the one that achieves the best performance when both
the high dimensionality and the class imbalance are prop-
erly addressed (Fig. 5). This confirms that the RF classifier,
already known to be effective both on biomedical data [59]
as well as in different application fields [60]-[62], can be
successfully applied also in presence of imbalanced class dis-
tributions [57], [63]. On the other hand, there is no selection
method that clearly outperforms the others. Indeed, as shown
in Fig. 4 (and, more comprehensively, in the attached supple-
mentary material), the different selection methods often lead
to comparable results, with a few exceptions especially for
the multivariate approaches (SVM-AW, in particular, performs
worse in some cases). But it is worth to remark that, regardless
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FIGURE 4. Omentum dataset (min_pct = 5%): classification performance, in terms of a) F-measure, b) G-mean and c) MC coefficient,
achieved with SU, GR, xz, ReliefF and SVM-AW selection methods, using the RF classifier, in conjunction with different learning strategies.

of the specific selection approach, the benefits of carrying out
feature selection increase when the class imbalance problem
is properly addressed.

The findings of this work are partially consistent with the
results recently discussed in [21], where the effectiveness of
combining RUS and feature selection is evaluated in conjunc-
tion with different classifiers and feature selection methods,
but within less severe imbalance settings (min_pct > 10%).
The beneficial impact of sampling-based approaches on
high-dimensional bioinformatics datasets is also explored
in [30]-[32]. In particular, [30] relies on both RUS and feature
selection, and investigates the extent to which the order of
these pre-processing operations impacts on the classification
results. As well, [31] exploits both RUS and feature selec-
tion and shows that using fully balanced data significantly
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improves the SVM performance in protein function predic-
tion tasks. An evaluation of SMOTE for high-dimensional
class-imbalanced micro-array data is presented in [32], where
only k-NN classifiers are found to take significant advan-
tage of SMOTE over-sampling, provided that the number
of features is properly reduced (differently from our study,
however, all the experiments are conducted on datasets with
min_pct > 14%).

A discussion of the issues associated with class prediction
in high dimensional domains can also be found in [33], where
both simulated and real genomic data are used to inves-
tigate the effectiveness of a RUS-based ensemble strategy
(where different bootstrap samples are built by removing
instances of the majority class), in conjunction with specific
combinations of classifiers and feature selection methods.
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FIGURE 5. Omentum dataset (min_pct = 5%): classification performance, in terms of a) F-measure, b) G-mean and c) MC coefficient,
achieved with RF, AdaB, k-NN, SVM and RIP classifiers, using the SU selection method, in conjunction with different learning strategies.

A different ensemble strategy, which relies on a random
subspace approach, is presented in [34]: though the developed
solution shows good performance on imbalanced data, and
seems also to be robust to dimension increase, it has not
been evaluated on benchmarks with thousands of features,
as the ones here considered. Finally, ad hoc improvements
of existing classification algorithms have been proposed, e.g.
in [35], to cope with problems that are both high-dimensional
and class-imbalanced.

Despite the valuable works mentioned above, many key
research issues remain to be addressed in this domain, with
a lack of comparative studies which may provide insight
on which approach would be most appropriate in a given
scenario. Our analysis, although not exhaustive, is an attempt
to provide a contribution in this direction. In particular, com-
pared to other studies that address similar tasks, this work pro-

13538

vides a comparative evaluation which encompasses a wider
range of techniques (RUS + FS, FS + RUS, SMOTE + FS,
FS 4+ SMOTE, FS + Cost) and a wider range of class imbal-
ance levels (from 30% to 3% of minority instances).

V. CONCLUDING REMARKS
Using six challenging genomic benchmarks, this study has
evaluated the effectiveness of hybrid learning strategies that
try to cope with high-dimensional and class-imbalanced data.
Specifically, we have explored different ways of combin-
ing feature selection with sampling-based balancing meth-
ods (random under-sampling and SMOTE) and cost-sensitive
learning.

Encompassing different levels of class imbalance, as well
as different classification algorithms (RF, AdaB, k-NN, SVM
and RIP) and selection methods (SU, GR, x2, ReliefF and
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SVM-AW), our study has shown that the explored hybrid
strategies are overall more effective than using feature selec-
tion alone, especially when the class distribution is highly
skewed. Some insight has also been gained on which strate-
gies, and parameter settings, may be more convenient based
on the characteristics of the data at hand.

To further strengthen the conclusions of the study and
better understand the combined effects of class imbalance
and high-dimensionality in the biomedical domain, we plan
to extend our experiments along multiple directions. First,
a larger number of datasets with different characteristics will
be analyzed. As well, other feature selection approaches,
besides the ranking-based methods so far considered, will
be evaluated in conjunction with methods for handling class
imbalance. In particular, it could be interesting to explore the
extent to which emerging feature selection paradigms, such as
ensemble feature selection and deep learning feature selec-
tion, may be beneficial in this type of application. Finally,
a multi-faceted evaluation will be performed using different
evaluation metrics, in order to comprehensively characterize
the impact of the considered learning strategies.
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