
SPECIAL SECTION ON EMERGING APPROACHES TO CYBER SECURITY

Received December 14, 2019, accepted January 6, 2020, date of publication January 13, 2020, date of current version January 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2966321

MACoMal: A Multi-Agent Based Collaborative
Mechanism for Anti-Malware Assistance
MOHAMED BELAOUED 1, ABDELOUAHID DERHAB 2, SMAINE MAZOUZI 3, AND FARRUKH
ASLAM KHAN 2, (Senior Member, IEEE)
1LIRE Laboratory, Software Technologies and Information Systems Department, University of Constantine 2, Constantine 25001, Algeria
2Center of Excellence in Information Assurance (COEIA), King Saud University, Riyadh 11451, Saudi Arabia
3Department of Computer Science, Université 20 Août 1955-Skikda, Skikda 21000, Algeria

Corresponding author: Mohamed Belaoued (belaoued.mohamed@gmail.com)

This work was supported by the Deanship of Scientific Research at King Saud University, through Research Group no. RG-1439-021.

ABSTRACT Anti-malware tools remain the primary line of defense against malicious software. There is a
wide variety of commercial anti-malware tools in the IT security market. However, no single tool is able to
provide a full protection against the overwhelming number of daily released malware. Hence, collaboration
among malware detection tools is of paramount importance. In this paper, we propose MACoMal, a multi-
agent based decision mechanism, which assists heterogeneous anti-malware tools to collaborate with each
other in order to reach a consensual decision about the maliciousness of a suspicious file. MACoMal consists
of two main elements: (1) an executable file identification model, and (2) a collaborative decision-making
scheme. MACoMal is analyzed with respect to network connectivity and global decision correctness.
By leveraging a multi-agent simulation tool and a set of real malware samples, we present a simulation
methodology to assess its effectiveness and efficiency. Experimental results show that MACoMal is able to
immunize a network against a malware threat within a time that ranges from a few seconds to a few minutes
after the threat detection.

INDEX TERMS Malware, anti-malware assistance, multi-agent systems, modelling, analysis, simulation,
collaboration.

I. INTRODUCTION
The term Malware refers to a group of software designed to
penetrate or damage a computer system without the owner’s
knowledge [1]. Malware have various forms (i.e., viruses, tro-
jans, worms, etc.), and still account for the majority of cyber
attacks [2]–[6]. According to a report from Symantec [7],
more than 246million newmalware were discovered in 2018,
which represents approximately 674 thousand new malware
per day. In order to defend against this overwhelming threat,
a wide variety of anti-malware tools are provided by the IT
security vendors. However, no single tool can provide a full
protection against malware threats [8]–[11]. This is mainly
due to the following challenges:

1) The average time required for an anti-malware tool
to detect new threats (zero-day malware) can range
from few hours to several weeks [8]–[10] during which
the system remains vulnerable to the overwhelming
number of malware released everyday.

The associate editor coordinating the review of this manuscript and

approving it for publication was Luis Javier Garcia Villalba .

2) Each anti-malware tool uses a different method for
malware detection, and generates signatures based on
its own collected malware samples. Therefore, a tool
might be able to detect some malware that are not
detected by others.

3) Sophisticated obfuscation techniques make detecting
malicious codes a difficult task, and generating mal-
ware signatures a labor-intensive process.

To tackle the above-mentioned challenges, the computer
security researchers have shifted to collaborative approaches
[8], [12]–[14], whose main goal is to make different
Anti-Virus (AV) tools collaborate and federate their efforts
in order to increase the overall detection accuracy, and
decrease the required time to feed the viral database with
malware signatures. Indeed, collaboration allows, on one
hand, to reduce the false positives that are produced when
AV tools are not assisted by other sources confirming the
alerts about a specific file. On the other hand, the nodes
(i.e., machines) whose detection tools are performing poorly
will be empowered by correlating the security alerts coming
from the well-performing ones in the network. However,

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 14329

https://orcid.org/0000-0002-9412-1959
https://orcid.org/0000-0002-6498-1528
https://orcid.org/0000-0003-3587-7657
https://orcid.org/0000-0002-7023-7172
https://orcid.org/0000-0001-7573-6272

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

to make the collaboration among a large number of detection
systems feasible, the following two major issues need to be
overcome.
• The collaborators need to agree on the names or iden-
tifiers that have to be given to the malware. Indeed,
sharing the malware sample is not feasible from a secu-
rity point of view, in addition to the incurred high
network bandwidth consumption, especially in case of
large-sized files. Thus, it negatively impacts the scal-
ability of the collaborative mechanism. Unfortunately,
AV vendors often report different names for the same
malware, which shows the ineffectiveness of the exist-
ing naming conventions such as CARO, CME, and
MAEC [15]–[17], as discussed in Section II. In addi-
tion, they rely on hash functions as the main identi-
fication (fingerprinting) technique, which is unable to
recognize malware variants. Therefore, there must be
coherent mechanisms for integrating information and
knowledge, which come from different AV vendors and
have different formats, in order to produce a unified
identification or naming convention for malware and
enable different entities to communicate using a com-
mon language.

• The collaborators should agree on which information to
share among them and how it is shared. For instance,
in addition to the analyzed file identifier, we need to
determine other information that are necessary to allow
collaboration and achieve a consensual decision on file
maliciousness, and how it should be represented. Fur-
thermore, we need to provide an appropriate communi-
cation scheme that ensures scalability.

In this paper, we propose MACoMal, a collaborative and
fully-distributed decision-making mechanism for enhancing
the detection accuracy of anti-malware tools deployed on a
network. In order to deal with the malware identification
issue, we propose a content-based malware identification
approach, i.e., instead of giving a name to the malware by
an AV vendor, an identifier is automatically derived from the
malware content. In this way, different AV vendors can gener-
ate the same identifier for each malware. To this end, we use
n-gram opcode-sequence-based signature of the executable
file, which is lightweight, harmless, and can also be used to
identify malware of the same family. As for the second issue,
we present a collaborative decision making scheme based on
Multi-Agent Systems (MAS). Our choice is motivated by the
fact that MAS can provide the cooperation and collaboration
mechanisms that are necessary to reach a consensual deci-
sion about the maliciousness of a suspicious file [18]. Thus,
we provide a detailed description of the agents’ roles and their
communication mechanisms, which enable collaborators to
reach a consensual decision about malware threats. Indeed,
a set of agents are implemented on each host of a network,
and each agent has a set of roles, and reacts to a set of events.
When the local anti-malware of an agent reports an analyzed
executable file as malicious, its identifier (signature) is gen-
erated. The signature is then propagated as an alert in the

network. When an agent receives an alert, it decides on the
maliciousness of the file based on information collected from
its neighbors.

The overall architecture of MACoMal consists of the fol-
lowing two main elements:
• Executable file identification model: We use the vector
spacemodel to represent the opcode sequence of the exe-
cutable file as an M -dimensional vector. The produced
vector can serve to identify the malware and variants of
the same malware as well.

• Collaborative decision-making scheme: It is composed
of two main elements:
– Network topology model: We propose a weighted

directed graph model that uses the round-trip time
metric to determine which agent interacts with
whom.

– Agent architecture: We use the component-level
architectural model to describe the components of
the agents and the interaction between them.

MACoMal provides the following characteristics:
• It is fully distributed, and does not require any cen-
tralized entity. This is a key advantage compared to
the existing centralized solutions, such as cloud-based
scanning services (e.g., VirusTotal).

• It provides a lightweight file identification and scalable
exchange mechanism, as only fixed-size vectors are
shared among agents.

• All the components of the architecture can work
autonomously without the need for human intervention.

• It is generic and can be adapted at various levels: hosts
or vendors, which allows the collaboration between dif-
ferent entities in order to identify the newly collected
malware samples.

• It does not require any additional analysis or detection
tools. The files are analyzed using the already deployed
AV tools at the host machines level. Thus, the architec-
ture can be integrated with local AV tools of heteroge-
neous nature (from different vendors), allowing them to
collaborate in order to reach a consensual decision on a
suspicious file.

We formally analyze MACoMal with respect to the
following:
• Network connectivity: We determine analytically the
minimum round-trip time to ensure, with probability p,
that the network is connected.

• Global decision correctness: We use Linear Temporal
Logic (LTL) as a formal tool to prove that all agents will
eventually decide on the maliciousness of a file.

In order to evaluate the effectiveness and efficiency of
MACoMal, we use a multi-agent simulation tool and a set
of real malware samples to measure different metrics, such
as the number of nodes reaching global decision over time,
the required time and message overhead to reach the global
decision, and the precision and recall of the proposed file
identification scheme.

14330 VOLUME 8, 2020

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

The remainder of the paper is organized as follows:
Section II presents the related work. Background on
Multi-agent systems is given in Section III. In section IV,
we present MACoMal’s architecture. Section V describes the
operations of MACoMal. Formal analysis of MACoMal is
provided in Section VI. In section VII, we present the simu-
lation methodology and the results, which are then discussed
in section VIII. Finally, Section IX concludes the paper.

II. RELATED WORK
In this section, we present existing research on malware
naming and identification, as well as an overview on collab-
orative architectures for malware detection. This will allow
us later to point out the novelty of our work with respect to
malware naming and identification, as well as collaborative
architectures.

A. MALWARE NAMING
In the past, there have been some attempts to adopt an
industry-wide malware naming convention. CARO (Com-
puter Antivirus Research Organization) [15] is one of the
naming conventions that dates back to the 1990’s, and uses the
following format to name malware, as depicted in Figure 1:

FIGURE 1. CARO malware naming convention [15].

• Type: describes what themalware does on the computer.
It can be: worm, virus, trojan, backdoor, ransomware,
. . ., etc.

• Platform: indicates the targeted operating system, such
as Windows, Mac OS, and Android.

• Family: indicates the group of malware that are based
on common characteristics.

• Variant: it is a letter that is used sequentially for every
different version of a malware family.

• Additional information: gives extra details about the
malware. For example, ‘‘!lnk’’ indicates that the threat
component is a shortcut file.

However, CARO was not widely adopted as it was not con-
vincing for anti-malware vendors due to some practical issues
to maintain consistency. CME (Common Malware Enumera-
tion) initiative [16] was another effort for assigning identifiers
to malware, but it is no longer active. MAEC (Malware
Attribute Enumeration and Characterization) [17] is a stan-
dard, which extracts attributes from the malware using static
and dynamic analysis techniques. The extracted attributes are
used to characterize the malware. In this way, malware with
the same attributes can be grouped together. However, it is not
clear how we can derive malware families from the similar

groups. In addition, each of the current dynamic analysis
tools generates different attributes, and hence it is unfeasible
to update these tools to meet the MAEC standard. So far,
the best available tools are services like VirusTotal [19],
which cross-references the different names given to malware
by Anti-virus vendors.

B. MALWARE FINGERPRINTING
Document fingerprinting consists of mapping data such as
documents and files to shorter and unique text strings called
fingerprints [20]. There are several methods to generate the
fingerprint (or digital signature) of a file. The hash func-
tion [21] is one of them. However, it is not resilient against
code obfuscation techniques. Indeed, malware variants could
have a negative impact on the performance of the anti-virus
tools by overloading the analysis table. To deal with the draw-
back of the traditional hashing algorithms, fuzzy hashing has
been proposed to identify two files that are near copies of one
another [22]. For instance, SSDeep algorithm [23] has been
used by VirusTotal since 2012. Fuzzy hashing techniques still
have some limitations due to their fixed-sized fingerprints.
This means that if the files are too large or too small, they
cannot be meaningfully compared. Also, the existing fuzzy
hashing algorithms have been found unsuitable for similarity
analysis [24]. In order to verify this claim, we apply the
MD5 [25], and SSDEEP hashing algorithms on two variants
of the Zbot malware namely: Zbot.aacl and Zbot.aacm. The
obtained hash signatures are presented in Table 1.

TABLE 1. Comparison of MD5 signatures of two variants of Zbot malware
family.

Results presented in the above table show that the
MD5 algorithm generates two completely different hashes,
and two with a low similarity (48%) by the SSDeep algo-
rithm. These results justify the need for a more efficient
malware files identification scheme.

C. COLLABORATIVE ARCHITECTURES
Some collaborative architectures have been proposed for
malware detection. They can be divided into three different
categories namely: centralized, hierarchical, and distributed.

1) CENTRALIZED ARCHITECTURES
Oberheide et al. [8] introduced a centralized approach for
collaborative malware detection based on the Cloud Com-
puting technology. The proposed approach allows analyzing

VOLUME 8, 2020 14331

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

a suspicious file using several antivirus tools installed on
the cloud. Local agents operating on mobile devices act as
anti-virus programs by checking the activity of the files on
the system. If a suspected file is identified, it will be sent to
the network service at the cloud level. The network service is
responsible for analyzing files, and checking whether a file
is malicious or not. The use of multiple anti-virus engines
simultaneously has improved the detection accuracy.

RAVE (Replicated Antivirus for Email Infrastructure) [12]
is a centralized system for collaborative malware detection
that is deployed at a local network between the Internet and
e-mail infrastructure. RAVE is composed of a set of replicas
that include two elements: the Payload and the Wormhole.
The first one is used to analyze the files using an antivirus
tool. The second one is used to collect the results of the
Payloads and send them via email to other replicas. The
system also has a central entity, which collects the analysis
results from the different replicas, and make decision on the
maliciousness of the files based on a voting mechanism.

The main drawback of the above centralized architectures
is their reliance on a central entity to collect and analyze the
suspicious files, and hence they suffer from the single point of
failure, which limits their deployment in large-scale networks
such as Internet.

2) HIERARCHICAL ARCHITECTURES
Colajanni et al. [26] presented a hierarchical (or semi-
centralized) collaborative malware detection system based on
dynamic analysis, i.e., the suspicious file is run in a con-
trolled environment. In this system, the endpoint machines
are considered as sensors. Each sensor acts as a honeypot,
which aims at collecting malware samples that attempted an
infection. Each group of sensors is connected to a manager,
which acts as a ‘‘collection point’’ of the malware sam-
ples. Managers are themselves connected to a central unit
called ‘‘collector’’, which analyzes the collected malware
samples using sandboxes (i.e., controlled environment). Once
an infection is confirmed by the collector, the information is
spread to all the subnetworks.

ENDMal [13] is another hierarchical collaborative mal-
ware detection system based on dynamic analysis. ENDMaL
has a set of lightweight analyzer programs that are imple-
mented at each node of the network, whose role is to analyze
the files by extracting their respective sequences of system
calls, in order to use them as features for malware detection.
ENDMaL is also composed of several monitors, each of
which controls a portion of the network and receives the
system calls that are extracted by the analyzer programs.
Each monitor is composed of an anti-obfuscation mecha-
nism, which is based on a system call alignment method
as well as on a probabilistic method for the representation
of program behaviors. All monitors collaboratively identify
malware families by sharing malware behavior information
via a distributed hash table (DHT).

The proposed hierarchical architectures [13], [26] reduce
the dependency of the entire network on a central entity.

However, the intermediate entities (e.g., monitors) remain the
weak points in this type of approach.

3) DISTRIBUTED ARCHITECTURES
Fung et al. [14] proposed a distributed system for collabo-
rative malware detection. The purpose is to make different
antivirus tools collaborate, which are installed on different
machines across a network, in order to improve the detection
accuracy. The analysis is carried out by transmitting the
suspicious file to the neighboring machines, which in turn,
analyze and transmit the file to their neighbors, and so on.
The decision regarding the maliciousness of the file is made
based on the entire history of results, which are provided by
the various anti-virus tools.

The distributed architecture proposed by Fung et al. [14] is
inadequate for large-scale deployment, since it does not con-
sider a mechanism to identify the files, and merely transfers
the entire file from one node to another, which is not feasi-
ble in case of a network with limited bandwidth resources.
Moreover, it is not convenient from an ethical point of view
to transmit a file that is suspected of being malicious.

D. COMPARISON WITH RELATED WORK
Our work differs from the related work in the following
points:

• The proposed architecture does not require any addi-
tional analysis or detection tools and leverages the
already installed malware detection tool. Moreover,
these tools can be heterogeneous (i.e., from different
vendors).

• We propose a content-based identification scheme,
which generates the signature/fingerprint of the program
based on its opcode sequences. This signature represents
the semantic-level behavior of the program instead of
the syntax-level (i.e., hashing), and is more resilient to
obfuscation techniques.

• The semantic-based signature serves two purposes:
(1) identify the malware, and (2) group variants of the
same malware family.

• We propose a lightweight, fully distributed, and collab-
orative decision making mechanism based on MAS.

• The proposed architecture is generic and can be adopted
at various levels (hosts and vendors).

Table 2 provides a qualitative comparison of MACoMal
with the previously discussed related work.

III. BACKGROUND ON MULTI-AGENTS SYSTEMS (MAS)
In recent years, multi-agent systems (MAS) have increas-
ingly occupied an important place among the panoply of
computer paradigms. MAS have various applications, such
as the study of social phenomena, engineering, networks,
distributed systems, etc. An agent can be defined as a physical
or virtual entity that can act, perceive its environment (in a
partial way) and communicate with others. It is autonomous
and has skills to achieve its goals and tendencies [18].

14332 VOLUME 8, 2020

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

TABLE 2. Comparison with existing approaches.

Hence, amulti-agent system is composed of intelligent agents
that interact to solve problems that may be beyond the capa-
bilities of each individual agent [27].

A. TYPES OF AGENTS
An agent may belong to different categories according to
different classification types. Indeed, based on their ability to
move within their environment, the agents can be either static
or mobile [28]. Moreover, according to the decision-making
process, an agent can be either cognitive or reactive [28], [29]:
• Cognitive agents have the ability to reason and negoti-
ate as well as exchange knowledge.

• Reactive Agents, on the other hand, respond to stimuli
coming from their environment.

Some agents may integrate both cognitive and reactive
aspects in order to improve action and decision times [30].

B. INTERACTIONS BETWEEN AGENTS
Interaction between agents can take the following forms [18]:
• Communication: Agents use two types of communica-
tion processes, which are communication by informa-
tion sharing, and communication by message sending.
The first one consists of using a shared workspace,
in which each agent drops some information intended
to one or several agents. In the second type, the agents
use common languages called Agent Communication
Languages (ACLs) and communicate by directly send-
ing messages to the recipients. There are three types of
messages: questions, answers, and information. There
are different types of ACLs as well, however, the FIPA
ACL [31], which has been used in our work, is the most
used one.

• Collaboration: It explains how to distribute work
among several agents, whether using centralized or dis-
tributed techniques [18].

• Coordination: It analyses how the actions of the differ-
ent agents should be organized in time and space in order
to achieve the objectives [18].

• Cooperation: It is the most general as well as the most
important type of interaction in multi-agent systems.
Indeed, cooperation is necessary for the distributed reso-
lution of a problem. This is characterized by the activity
of a group of agents converging towards a global goal
by achieving their own local goals [32]. There are sev-
eral models of agents’ cooperation, i.e., cooperation by
sharing tasks, intermediate results, etc.

IV. MACOMAL’S ARCHITECTURE
In this section, we present MACoMal’s architecture, which is
composed of the following two elements:
• A collaborative decision-making scheme.
• An executable file identification model.

A. COLLABORATIVE DECISION-MAKING SCHEME
1) NETWORK TOPOLOGY MODEL
We model the network of the collaborative community as a
weighted directed graph G = (V ,E, ω), where V represents
the set of agents and E represents the set of links. ω :
E → R is a function that maps each link (i, j) to a real
value, which is the round-trip time from i to j, denoted by
RTTij, and is defined as the duration it takes for a network
request to go from node i to node j and back again to node i.
A user/agent can determine theRTTij by using the known ping
command.

The above model establishes an All-to-All communication
scheme, i.e., all agents communicate with each other, which
is not scalable with respect to the number of agents. To make
the communication scheme scalable, we define RTTmin as
a threshold that distinguishes between long-delayed and
short-delayed links. A link (i, j) is called long-delayed (resp.,
short-delayed) if RTTij > RTTmin (resp., RTTij ≤ RTTmin).
We also define G′ = (V ,E ′), an induced subgraph of G that
excludes the long-delayed links. Formally, E ′ = E − {e :
ω(e) > RTTmin}. A link (i, j) ∈ E ′ is established between
two neighboring agents i and j if it is short-delayed, i.e.,
the round-trip time from i to j is upper-bounded by RTTmin.
The following assumptions are made about the nodes and the
network:

1) Communication links are bidirectional: for two neigh-
boring nodes i and j, we have RTTij and RTTji, which
are both less than or equal to RTTmin.

2) Each node has a sufficiently large receive buffer to
avoid buffer overflow.

3) The nodes composing the static network are trustwor-
thy, and they are initially approved. Therefore, there is
no compromised node in the network.

2) AGENT ARCHITECTURE
In our collaborative model, we have several agents, each of
which is deployed on a node (i.e., a machine) in the network.
The agents communicate with each other in order to achieve
the objectives for which this system is designed, namely
to assist the already deployed anti-malware tools to detect
the existence of a malicious file within a machine or set

VOLUME 8, 2020 14333

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

FIGURE 2. MACoMal’s architecture (agent-level).

of machines on a network. The overall architecture of the
proposed system at the Agent-level is presented in Figure 2.

As shown in Figure 2, each node of the network consists
of an agent that plays three roles: (1) files analysis, (2) alerts
propagation, and (3) decision on the alert. Each agent calcu-
lates its global decision (g), based on three kinds of infor-
mation received from agent n: (a) agent’s id, (b) confidence
degree (cn) of agent n, and the signature of the analyzed file
(sf). All this information together allows to uniquely identify
the file being analyzed.

Upon receiving sf , the agent computes a degree of similar-
ity (dsn) between the received signature and the stored ones.
The agent also stores nbt , which is the number of agents that
have triggered an alert on the file (f) or one of its variants.
Each node stores the above-mentioned information in a table,
called the analysis table, as depicted in Table 3.

TABLE 3. Example of an agent’s analysis table.

The agents that are deployed at each node are static as well
as hybrid. They are considered reactive because they react
when a local threat is detected or when an alert is received
from a neighboring node. Moreover, they are also cognitive
because they store a certain amount of information enabling
them to calculate their global decision (g).
The agent responds to two types of events: (1) receiving an

alert from one of its neighbors, or (2) receiving locally a file to
be analyzed. The first event triggers the Alert-reception and
decision stage, and the second one triggers the Analysis stage
that is followed by the Alert-reception and decision stage.

B. EXECUTABLE FILE IDENTIFICATION MODEL
Each binary program contains a sequence of opcodes to be
executed. Let

∑
= {op1, op1, op2, · · · , opM } be the set of

opcodes where M = |
∑
| is the number of opcodes.

We formally define the opcode sequence of the program i
having K opcodes as: Seqi = (op1, op2, · · · , opK), such that
opl is the l th opcode in the sequence.

Let S be the set ofMn distinct n-grams that can be formed
from

∑
. n-grams are all substrings of a larger string with a

length of n [33]. For instance the word ‘‘MALWARE’’ can be
divided into four 4-grams, which are: ‘‘MALW’’, ‘‘ALWA’’,
‘‘LWAR’’, and WARE. In our case, the string is composed
of the sequence of extracted opcodes. Such techniques have
been widely investigated for detecting unknown malware or
variants of known ones [34], [35].

We use the vector space model to represent the opcode
sequence of the executable file as an |S|-dimensional vector.
To this end, we define Zi = ai1, · · · , ai|S| as the profile (or
opcode-sequence-based signature) of program i where aij is
the number of occurrence of n-gram opcode j in program i.

We define the function ϕ that maps each Seqi to a Zi vector.
Formally:

ϕ :
∑∗

→ N|S|

Seqi → Zi
We define the similarity measure, denoted by Sim, as a

function: N|S| × N|S| → R. According to this definition,
we define the malware family of Seqi as follows: {Seqj :
Sim(Zi,Zj) > α}, where α is a predefined value.

V. MACOMAL’S OPERATIONS
In this section, we describe the the following operations that
are performed by each agent:
• Network topology building phase: It builds the network
topology that allows neighboring agents to communicate
with each other.

• Analysis phase: An agent scans an executable file and
checks its maliciousness using a local anti-malware tool.

• File identification phase: It generates the n-gram
opcode-sequence-based signature of the file
(i.e., M -dimensional vector).

• Agent’s confidence degree: It reflects the performance
of the available malware tool determined based on the
evaluation proposed by AV-Test.

• Alert propagation phase: When an executable file is
detected as malicious, its signature is propagated as an
alert in the network.

• Alert-reception and decision phase: When an agent
receives an alert, it decides on the maliciousness of the
file based on collected information from its neighbors.

A. NETWORK TOPOLOGY BUILDING PHASE
Initially, each agent i sends a ping packet to each anti-malware
agent j in the collaborative community; this allows measuring
the round-trip time among agents. If the obtained RTTij ≤
RTTmin, j is added to the set of i’s neighbors, denoted by Ni.

14334 VOLUME 8, 2020

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

B. ANALYSIS PHASE
This stage consists of scanning the suspicious file using the
local anti-malware tool installed on the node (or machine).
The analysis result (R) is said to be local and is a Boolean type
encoded in binary. In caseR = 1 (i.e., malicious file is found),
the agent propagates this result as an alert to its neighboring
nodes, which triggers the Alert-reception and decision stage
at the level of the receiving nodes. To this end, the agent
must first generate the opcode-sequence-based signature of
the file (sf), which allows its identification by other agents of
the network.

C. FILE IDENTIFICATION PHASE
Based on the executable file identification model, we extract
the operation code (Opcode) sequences from the machine
code (X86) of the analyzed file. This is done automati-
cally by a static analysis [36], [37] of the Portable Exe-
cutable (PE) file [38]. After that, the extracted sequence is
represented as n-grams. In Table 4, we compute the 1-gram
and 2-grams opcode-sequence-based signatures of Zbot.aacl
and Zbot.aacm respectevily, which were already presented
in Table 1.

TABLE 4. n-grams Opcode-sequence-based signatures of Zbot.aacl et
Zbot.aacm malware.

The signature is composed of the names of the operands as
well as their number of occurrences in the code. For example,
add (19)means that theadd operand appeared 19 times in
the Zbot.aacl malware code, and add add(12)means that
the bi-gram add add appeared 12 times in the sequence of
the same malware.

D. AGENT’S CONFIDENCE DEGREE (CN)
The confidence degree of a node (cn) reflects the perfor-
mance (accuracy) of the available anti-malware tool, which
is determined periodically based on the evaluation proposed
by AV-Test.1 This evaluation is carried out according to three
different criteria which are: protection, performance, and
usability. In our case, and in order to determine the confidence
degree of a node (cn), we consider protection as the main
evaluation criterion, since it reflects the detection accuracy of
an anti-malware tool, and its value ranges between 0.5 and 1.
This range has been chosen according to the values provided
by AV-Test. Indeed, no AV tool has a protection score less
than 3 on a scale of 6 (3/6).

E. ALERT PROPAGATION PHASE
Once a file is detected by the local anti-malware tool as
malicious, the confidence degree (cn) is computed, and the
file’s signature (sf) is generated. The agent triggers the

1https://www.av-test.org/en/antivirus/home-windows/

alert-reception and decision stage, which is responsible for
the decision-making and the propagation of the alert to the
neighboring nodes. The alert is represented by a triplet (agent
id, sf , cn). The analysis stage is summarized in Algorithm 1.

Algorithm 1 Local_Analysis(f)
1: R← analyze(f)
2: if (R = 1) then
3: Sf ← signature(f)
4: block(f)
5: Recieve_Alert_Decision(id, Sf , cn)
6: end if

In case the file is analyzed locally by agent idn,
the Recieve_Alert_Decision() is invoked, and takes as param-
eters: the id of the agent, and the confidence degree (idn,sf ,
cn). However, in case the alert is received from another node,
the same method will be invoked using the received id and
confidence degree (idt ,sf ,ct), which are related to the node
that triggered the alert.

F. ALERT-RECEPTION AND DECISION PHASE
When an agent receives an alert that is triggered by a locally
analyzed file, or an alert that comes from a neighboring node,
the agent will look up the signature of the file in its analysis
table. It computes the pairwise comparison, i.e., degree of
similarity (dsn), which varies between 0.0 and 1.0. The cosine
similarity is calculated using Equation 1.

ds(Sf , Sf ′) = cos(v, u) =
v.u
‖v‖‖u‖

=

∑n
i=1 viui√∑n

i=1 (vi)2
√∑n

i=1 (ui)2
(1)

After computing the degree of similarity (dsn), and if there
is similarity between the received signature and one of the
signatures that are stored in the analysis table (dsn > α), then
the agent counts the number (nbt) of nodes that have triggered
an alert about that file or one of its variants. If (nbt) is greater
than a certain threshold δ, then the agent computes a global
decision (g), using Equation 2.

g =

∑
cn × dsn∑

cn
(2)

Then, g is compared to a threshold β. If g is greater than
β, then the agent concludes that the file is malicious, and
sets the value of g to 1 in order to influence the decisions
of its neighboring nodes. The agent, then, communicates its
decision using the Send_Alert() method (see Algorithm 2)
along with the triplet (agent id, sf , 1). The Send_Alert()
method invokes the Recieve_Alert_Decision() method of the
neighboring agents (Ni) and uses as parameters the same
triplet (agent id, sf , 1).

In case there is no similarity between the signature of
the analyzed file and the signatures stored at the analysis
table (ds ≤ α), the agent adds the received signature to
the table along with the received (cn) and propagates the

VOLUME 8, 2020 14335

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

Algorithm 2 Send_Alert(id, sf , cn,Ni)
1: @Ni.Recieve_Alert_Decision(id, Sf , cn)

Algorithm 3 Recieve_Alert_Decision(idn, sf , cn)
1: for i = 1, SizeOF(Analyses_Table) do
2: if match(Analysis_Table[i].Signature,sf ,&dsn) then
3: match← true
4: Analysis_Table[i].nbt++
5: Analysis_Table[i].cn← cn
6: Analysis_Table[i].dsn← dsn
7: if (Analysis_Table[i].nbt > δ) then
8: Calculate(g)
9: if (g > β) then
10: Analysis_Table[i].g← 1
11: remove(f)
12: for all agents(N) neighboring(A) do
13: Send_Alert(idA, Sf , 1,NA)
14: end for
15: break()
16: else
17: Analysis_Table[i].g← 0
18: unblock(f)
19: break()
20: end if
21: end if
22: end if
23: end for
24: if match = false then
25: Analysis_Table[i+1].Signature← Sf
26: Analysis_Table[i+1].cn← cn
27: Analysis_Table[i+1].nbt++
28: for all agents (N) neighboring (A) do
29: Send_Alert(idn, Sf , cn,NA)
30: end for
31: end if

alert to its neighbors using the Send_alert() method. In this
case, the latter method takes as parameters the same received
triplet composed of the id of the node that triggered the
alert, the received (cn), and the file’s signature (sf). The
alert-reception and decision stage is presented by a method
named Recieve_Alert_Decision() in Algorithm 3.

VI. FORMAL ANALYSIS
A. GRAPH CONNECTIVITY ANALYSIS
In this section, we investigate the graph connectivity problem,
i.e., we want to determine analytically the value of RTTmin to
ensure that the network is connected.

Based on the defined link model, two nodes are neighbors
if RTTij ≤ RTTmin and RTTji ≤ RTTmin. The Round trip
time (RTT) can be developed as follows:

RTT = 2 PDT + PT

= 2(PTT + PD)+ PT

= 2(PTT +
D
PS

)+ PT

such that: PDT , PT , PTT , PD, D, and PS denote the
packet delivery time, processing time, packet transmission
time, propagation delay, distance, and propagation speed
respectively. For the sake of simplicity, we consider that
PT � PDT . We assume that PS ranges between 2 × 108

meters/sec for copper wires and 3× 108 meters/sec for wire-
less communication. By considering an ultra-conservative
estimate of RTTij, we set PS to 2 × 108, and PTT to
max(PTT), which is the upper-bound of PTT .
As PS and PTT are constant, RTTij can be mapped to the

equivalent distance Dij between nodes i and j.
Therefore, our problem is converted to the following:
What is the minimum distance Dmin required to ensure that

the network is connected? This problem is solved using the
nearest neighbor method [39].

In the network, a set of n nodes are randomly distributed in
a region of area A. Node density λ = n

A . For a homogeneous
Poisson point process in R2 with constant λ, the probability
density function of the nearest neighbor distance x is written
as:

f (x) = 2πλDe−λπx
2

(3)
The probability that the distance between a randomly cho-

sen node to its nearest neighboring node is less than or equal
to D, is given by

P(x ≤ D) =
∫ D

x=0
f (x)dx = 1− e−λπD

2
(4)

The degree of node u, denoted as 1(u), is the number of
its neighbors. A network is connected if all the nodes are
not isolated, i.e., ∀u ∈ G : 1(u) > 0. If we consider
Dmin as the minimum distance required to ensure the network
connectivity, we have:

P(1(u) > 0) = P(x ≤ Dmin) (5)
The probability that a node is isolated, i.e., has no

neighbor, is

P(1(u) = 0) = P(x > Dmin)

= 1− P(x ≤ Dmin)

= e−λπD
2
min (6)

The minimum node degree of G is denoted as

1min = min
∀u∈G
{1(u)} (7)

The probability that no node is isolated in G is equivalent
to the event that 1min > 0

P(1min > 0) = (1− e−λπD
2
min)n (8)

From Equation 8, we derive Dmin, the minimum distance
to ensure with probability P(1min > 0) that the network is
connected

Dmin =

√
− ln(1− P(1min > 0)

1
n)

λπ
(9)

From Dmin, we derive RTTmin as follows:

RTTmin = 2(max(PTT)+
Dmin

2× 108
) (10)

14336 VOLUME 8, 2020

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

B. GLOBAL DECISION CORRECTNESS
In this section, we use the Linear Temporal Logic (LTL) [40]
as a formal tool to verify the correctness of MACoMal.
A temporal formula consists of predicates, and temporal
operators like ♦ (’eventually’), and � (’at every moment
in the future’), quantification operators (∀, ∃), and boolean
operators (∧,∨,¬,⇒,⇔). In the proof, we are going to use
propositions:
• Invariance: �ϕ means that ϕ is true at every moment in
the future.

• Guarantee: ♦ϕ means that ϕ will eventually be true at
some moment in the future.

• Stability: ♦�ϕ means that ϕ will eventually be true
forever.

• Response: ϕ ⇒ ♦ψ , means that when ϕ is true, ψ will
be true at some moment in the future.

The various states assigned to an agent with respect to a
given alert are depicted by a Finite State Machine (FSM),
as shown in Figure 3. The transitions between states are
labeled with triggering conditions, which need to hold true.
The states of the FSM are described below:

FIGURE 3. Finite state machine of MACoMal.

• Init: In this state, the agent has no knowledge of the alert.
• RU_Alert: The agent enters this state when it receives an
unknown alert. This state corresponds to lines 19-24 of
Algorithm 3.

• RK_Alert: The agent enters this state when it receives
a known alert less than (δ + 1) times. This state corre-
sponds to lines 2-6 of Algorithm 3.

• RK_nb_Alert: The agent enters this state when it
receives a known alert more than δ times. This state
corresponds to lines 7-8 and lines 15-18 of Algorithm 3.

• RK_nb_g_Alert: The agent enters this state when it
receives a known alert more than δ times and g > β.
This state corresponds to lines 9-14 of Algorithm 3.

Before verifying the security properties, we formally
define other predicates and variables employed by our proof.

• Predicates In, RUn, RKn,RK_nbn, and RN_nb_gn hold
true if agent n is in the Init, RU_Alert, RK_Alert,
RK_nb_Alert, and RK_nb_g_Alert respectively.

• Send: a predicate that holds true at the instant when the
agent sends an alert.

• Recv: a predicate that holds true at the instant when the
agent receives an alert.

• Nb_Alert: The number of agents that trigger the same
alert i.

Assuming that the network is connected, and each agent n
starts execution in a state satisfying predicate In, we prove the
following theorem:
Theorem 1 (Global Decision Theorem): Whenever δ

agents trigger the same alert, all agents will eventually con-
clude that the alert is a malware.

Formally:

P ≡ �(∀n ∈ V : In ∧ (Nb_Alert ≥ δ)⇒ ♦RN_nb_gn)

(11)

Lemma 1: When an alert is generated by a node s, each
node n ∈ V will eventually converge to a state satisfying the
predicate RUn.
Formally,

Q ≡ ∀n ∈ V : In∧Recv⇒♦(RUn ∧ Send) (12)

Proof:
Definition 1: The set of nodes that are within l− hops

away from s is denoted by H l
s .

Let Ls be the longest path in terms of number of hops
between s and any node in the network. Hence. HLs

s = V .
Let r be the number of time units after node s has generated

an alert. We will show by induction on the number of rounds
0 ≤ r < Ls that:

Qr ≡ ∀n ∈ H r
s : (In ∧ Recv)⇒ ♦(RUn ∧ Send) (13)

Basic case: r = 0. Using the definition of H r
s , we have

H0
s = {s}. Agent s locally receives the alert, executes the

code related to RU_Alert state, and propagates the alert to its
neighbors. Hence, Q0 holds true.
Inductive hypothesis: Let us assume that Qr holds true for

all r < Ls. We will now prove that:

Qr+1 ≡ ∀n ∈ H r+1
s : (In ∧ Recv)⇒ ♦(RUn ∧ Send) (14)

Qr ⇒ ∀n ∈ H r
s : Recv ∧ RUn ∧ Send (15)

Statement 15 means that when node n at r-hop away from s
receives the alert, it enters RU_Alert state, and propagates
the alert to its neighbors including (r + 1)-hop away from s.
Hence, From 15, it follows that:

∀n ∈ H r+1
s : (In ∧ Recv)⇒ ♦(RUn ∧ Send) (16)

When r = (Ls − 1), we have HLs
s = V , and hence Q holds

trues, and Lemma 1 is proved. �
Lemma 2: When at least δ agents trigger the same alert,

each node n ∈ V will eventually converge to a state satisfying
the predicate RK_nb_Alert.

VOLUME 8, 2020 14337

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

Proof: By lemma 1, all the triggering agents of the same
alert will reach all the agents n ∈ V . We will now consider
two cases:

• δ = 1, each agent will eventually enter the RK_nb_Alert
state.

• δ > 1, each agent will eventually enter the RK_Alert
state. As Nb_Alert is an increasing variable, when
Nb_Alert ≥ δ, each node n ∈ V will eventually enter
the RK_nb_Alert state.

Formally, we have:

∀n ∈ V : RUn ∧ (Nb_Alert ≥ δ)⇒ ♦RN_nbn

and hence Lemma 2 is proved. �
Lemma 3: When node n is in the RK_nb_Alert state and

its global decision value g is higher than β, it will eventually
converge to a state satisfying the predicate RN_nb_gn.

Proof: Upon receipt of an alert in theRK_nb_Alert state,
we consider two cases:

• g < β, node n remains in RK_nb_Alert state.
• g ≥ β, node n transits to RK_nb_g_Alert state, sets g to
1 and sends an alert with cn = 1 to its neighbors. The
receiving nodes will recompute g with a new value (i.e,
cn = 1), and hence they will get a higher value of g.

We can notice that g is not a decreasing function. When
a node n receives an alert, g can take two values; remains
unchanged or is set to 1.

• g is set to 1.
• It remains unchanged. If we consider the case of highly
similar variants and trustworthy antivirus vendors, then
all nodes will have g ≥ β, and hence g is set to 1.

As g is not a decreasing function, once it is set to 1, it will
remain unchanged forever. Formally, ♦�(g = 1) holds true,
which also means that once an agent enters RK_nb_g_Alert
state, it will stay there forever. Formally, we have

∀n ∈ V : ♦�RN_nb_gn (17)

Therefore, the previous three lemmas prove Theorem 1. �

VII. SIMULATION
In this section, we present the tools, parameters, and the
methodology that are used to simulate the proposed collabo-
rative mechanism for anti-malware assistance. We also assess
its effectiveness and efficiency using real malware samples as
well as simulation-based experiments. We measure the per-
formance of the collaborative system in terms of the following
four metrics:

• The precision and recall of the proposed opcode-based
file identification scheme.

• The number of nodes that succeed in reaching a global
decision about a suspicious file (deciding nodes).

• The required time to reach a global decision.
• The required number of messages to reach a global
decision.

FIGURE 4. Obtained malware identification results (precision) using
n-gram opcode-sequences signatures and cosine similarity metric.

A. EFFECTIVENESS OF THE PROPOSED FILE
IDENTIFICATION MECHANISM
In order to show the ability of the proposed n-gram
opcode-sequence-based signature to identify malware vari-
ants, we compute the degree of similarity (ds), using Cosine
similarity metric [41], between the n-gram opcode-sequence-
based signatures of 395malware divided into 26 families2 and
that for different values of n, and different similarity thresh-
olds (α). We used both precision (P) and recall (R) as the
main metrics to evaluate the correctness of the identification
scheme. Precision (see Equation 18) allows to evaluate how
well unknown malware are assigned to the different families.
Recall (see Equation 19) determines how well malware from
the same family are grouped together.

P =
No. of malware correctly assigned to family i
Total no. of malware assigned to family i

(18)

R =
No. of malware correctly assigned to family i
Total no. of malware belonging to family i

(19)

We remind that our objective is to reduce the size of the
analysis table by assigning newly analyzed malware samples
to existing malware families. The experimental results are
presented in Figure 4, and Figure 5.

From the above results, we can observe that the highest
accuracy (74%) is obtained using 3-grams (n = 3) opcode
signature with a similarity threshold (α) greater than 0.8, and
the recall value is equal to 47%. We believe that the obtained
results are satisfactory and the proposed n-gram opcode-
sequence-based identification can provide more efficient way
to uniquely identify malware samples and their variants com-
pared to hashing techniques, which generate a signature for
each malware sample.

2Malware samples used in this experiment were obtained from:
https://github.com/opsxcq/mirror-vxheaven.org

14338 VOLUME 8, 2020

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

FIGURE 5. Obtained malware identification results (recall) using n-gram
opcode-sequences signatures and cosine similarity metric.

B. EFFECTIVENESS OF THE DECISION MAKING PROCESS
1) SIMULATION TOOL
In order to evaluate the performance of the proposed col-
laborative decision-making scheme, we conduct a set of
simulation-based experiments. We use, for that purpose,
a well-known simulation environment namely NetLogo [42].
For the visualization part, our simulation is inspired by the
Netlogo model ‘‘Virus on Network’’ [43]. In this model, a set
of nodes is randomly deployed in the network. A node is
randomly chosen and connected to the nearest node in terms
of Euclidean distance. This operation is repeated until the
average node degree, which is an input parameter of the
model, is reached. In addition, to simulate the collaboration
model, we follow the FIPA ACL (Agent Communication
Language Specification) [31]. For that purpose, we use a third
party Netlogo library that is provided by [44]. In Figure 6,
we present the simulation program control window.

Note that the simulations are conducted on the following
hardware and software configurations:

• Operating system: 18.04.3 LTS 64 bits
• Netlogo: v. 5.3.1
• Processor: Intel Core i5-4300U CPU 1.90GHz × 4
• Memory: 8 Gb

2) SIMULATION PROCESS
By using the simulation tool, the simulation process consists
of running the collaborative system under different execu-
tion scenarios. For every scenario, we use a different set of
parameters. Table 5 provides a description as well as the
possible values of the different parameters, which are used
by the collaborative system during the execution scenarios.
The parameter nbt represents the number of nodes that trig-
gered an alert regarding a suspicious file. The value of nbt
needs to exceed a certain threshold (δ), which represents the

minimal number of triggers required to compute the global
decision (g). We set this value to 1

2nbt , which means that we
need to get alerts coming from at least more than half of the
triggers. This is required to make sure that the agent collected
enough information coming from different sources about a
file (or one of its variants) to compute the global decision (g).
Regarding the threshold β, the choice of the range 0.6-1.0 is
made to avoid high false alarms (when the threshold is too
low) and low detection rate (when the threshold is too high).

TABLE 5. Collaborative system parameters.

For every simulation scenario, we compute the required
time for all nodes to reach a global decision, as well as
the average number of messages exchanged per node and
per second. The main aim is to show that our proposed col-
laborative system is able to make a decision about a malware
in a reasonable time. Moreover, we generate a plot for each
simulation scenario representing the number of nodes that
reached a global decision over time (in seconds).

3) EXAMPLE OF SIMULATION SCENARIO
In this illustrative example, we assume that our network is
composed of four nodes 1, 2, 3, 4. The parameters, which are
used in the simulation scenario, are presented in Table 6

In this scenario, and as shown in Figure 7, agent 1 triggers
the analysis by generating an alert message and propagates it
to its neighboring agents (Figure 7-a). The message contains
information about the sender, a list of receivers (in our case
nodes 2, 3, and 4), the id of the initiator agent, the signature of
the analyzed file (referred to as Sf), and finally the confidence
level of the initiator (in case of node 1, c= 0.9). The generated
message is presented below.
[inform sender: 1 receiver 2 receiver

3 receiver 4 content [1, sf , 0.9]]
For the sake of clarity, in the scenario (Figure 7), we only

display the content part of the message, which contains the
ID of the initiator agent, the signature of the analyzed file
(referred to as sf), and the confidence level of the initiator
agent.

Once the neighboring nodes receive the alert message,
they will automatically store it into their respective incoming
message queue. Every node that receives the alert message
will extract different information from it, such as the sender’s
ID, the list of receivers, Cn, and the file’s signature (Sf).
The agent then triggers theRecieve_Alert_Decision() method
presented in Algorithm 3.

VOLUME 8, 2020 14339

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

FIGURE 6. Overview of the simulation program control window.

TABLE 6. Parameter values of the example scenario.

Based on our scenario, agents 2, 3, and 4 will store the
content of the received message in the analysis table (since
the analysis table is empty, the signature is directly added
and and its similarity degree is set to 1). At t = 2, and
t = 3 (Figure 7-b), node 2 also triggers an alert and propa-
gates it to its neighbors (agent 1), which in turn propagates
it to its neighbors (agents 3 and 4). Once they receive the
agent’s 2 alert, they will proceed to the computation of their
corresponding similarity degree (ds) between the previously
received signature (agent 1 alert) and the current signature.
In our scenario, the two signatures will match (ds ≥ 0.8),
and therefore, the record in the analysis table corresponding
to that signature will be updated. Moreover, both nodes will
calculate their global decision (g). In the case of agent 3,
g = (0, 9 × 0, 9) + (0, 7 × 0, 8)/(0, 7 + 0, 9) = 0.9,
which is greater than 0.7. Therefore, it will propagate its alert
(Figure 7-c), which will be followed by the propagation of
other alerts: agent 4 with g = 0.8, then agent 2 with g = 0.8,
and finally, agent 1 with g = 0.9. At t = 9 (Figure 7-f), all
the agents calculated their global decision and had g > 0.7,
which means that all the agents are able to detect the malware
and its similar variants.

4) SIMULATION RESULTS
The obtained simulation results for the different simula-
tion scenarios are presented in Table 7, Figure 8, Figure 9,
Figure 10, and Figure 11.

FIGURE 7. Example of collaboration scenario composed of 4 nodes.

By analyzing the results presented in Figures 8, 9, 10,
and 11, we can see that in all scenarios, all the nodes can reach
a global decision in limited time period, which ranges from

14340 VOLUME 8, 2020

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

TABLE 7. Experimental results using the simulation tool.

FIGURE 8. Obtained results of the first simulation scenario (nbn = 500,
nbt = 2 (0.5%), δ = 1).

FIGURE 9. Obtained results of the second simulation scenario (nbn =

500, nbt = 5 (1%), δ = 2).

26s to 425s. These results support what has been previously
stated, and formally proved. Moreover, we notice that our
system converges more quickly when we use small number
of triggering nodes (nbt equals to 0.5% of the total nodes
number, see Figure 8, Figure 10).

FIGURE 10. Obtained results of the third simulation scenario (nbn =

1000, nbt = 5 (0.5%), δ = 2).

FIGURE 11. Obtained results of the fourth simulation scenario (nbn =

1000, nbt = 10 (1%), δ = 5).

From Table 7, we can notice that in case of the first
simulation scenario (nbn = 500, nbt = 2 (0.5%), δ = 1)
15182 messages are generated. If the analysis is made based
on the number of nodes, each node generates on average ≈
30 messages. If we divide this number by the time required

VOLUME 8, 2020 14341

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

for g to reach the first threshold (β ≥ 0.6), we obtain ≈
1 message generated per node per second. The latter value
is almost the same for the second threshold (β ≥ 0.7), and it
goes down by half in case of the third threshold (β ≥ 0.8).
Moreover, it also decreases when the number of triggering
nodes is increasing (nbt = 5). In case of the fourth scenario
(nbn = 1000, nbt = 10 (1%), δ = 5), the average number
of messages /node /second ranges between 0.15 and ≈ 0.23,
which can be 80% less compared with the first scenario.

VIII. DISCUSSION
As mentioned previously, the consensual decision within the
network is achieved by calculating and spreading the global
decision (g). The latter allows to reduce the false positives that
are produced in the case of isolated AV, which are not assisted
by others that can confirm the malware alert. Moreover,
the detection rate is also increased, since all the nodes are
able to decide about the presence of a malicious file. In this
case, the agents whose detection tools are poorly performing
will be empowered by correlating the security alerts coming
from the well-performing agents of the network. It should
be noted here that the collaboration within the community of
agents is indirect. The influence of agents on others is done
by spreading the global decision (g), which emerges within a
subset of agents that can influence others. As a result, and
contrary to other approaches where collaboration requires
direct negotiation between agents, in our case, it involves a
sort of vote, weighted by the degree of performance of the
detection tools.

The use of an adequate file identification scheme is impor-
tant to our collaborative system. Indeed, it is necessary that
the collaborative agents within the system agree on the iden-
tity of the code being analyzed. If this characteristic does
not exist, we will be forced to analyze any code within the
network, which incurs a heavy bandwidth load, overloading
the analysis table, and harming the users. From the experi-
mental results, the proposed n-gram opcode-sequence-based
signature model has shown good performance compared to
the hash function ones.

The obtained simulation results show that after a short
period of time (fewminutes at most), a networkwhich is com-
posed of a thousand of nodes, will be completely immunized
against a malicious threat that has been detected by a rela-
tively small number of nodes (0.5% - 1% of total number of
nodes). These results are highly satisfactory compared to the
time required by the conventional signature-based malware
detection schemes. By analyzing the number of messages that
are generated and exchanged among nodes, we can conclude
that our collaborative system is scalable and does not incur
any network traffic overhead while increasing the number of
nodes. Indeed, the number of generated messages per node
and per second decreases by 80%whenwe double the number
of nodes in the network.

IX. CONCLUSION
In this paper, we have proposed a methodology, named
MACoMal, to model, analyze, and simulate a multi-agent

based collaborative mechanism that assists anti-malware
tools. It relies on a collaborative model that considers three
elements: network topology model, agent architecture, and
executable file identification model. MACoMal defines the
agents’ roles and their communication mechanisms, which
allow to build the network topology and their collaboration in
order to reach a consensual decision about the maliciousness
of a suspicious file. It also proposes an opcode-sequence-
based signature model that allows identifying the malware
and its variants of the same family.

MACoMal is formally analyzed with respect to network
connectivity and global decision correctness. The simulation
results show the effectiveness and efficiency of MACoMal in
terms of precision, recall, number of nodes reaching global
decision over time, and the required time and message over-
head to reach the global decision. The results demonstrate that
a network composed of a thousand of agents can be immu-
nized within a time that ranges from few seconds to few min-
utes, which is far better than the conventional signature-based
malware detection schemes.

REFERENCES
[1] Z. Salehi, A. Sami, and M. Ghiasi, ‘‘Using feature generation from API

calls for malware detection,’’ Comput. Fraud Secur., vol. 2014, no. 9,
pp. 9–18, Sep. 2014.

[2] J. Jang-Jaccard and S. Nepal, ‘‘A survey of emerging threats in cybersecu-
rity,’’ J. Comput. Syst. Sci., vol. 80, no. 5, pp. 973–993, Aug. 2014.

[3] J. M. Kizza, Guide to Computer Network Security. London, U.K.:
Springer-Verlag, 2015.

[4] C. Easttom, ‘‘The role of weaponized malware in cyber conflict and
espionage,’’ in Proc. 13th Int. Conf. Cyber Warfare Secur. (ICCWS), 2018,
p. 191.

[5] H. Kettani and P. Wainwright, ‘‘On the top threats to cyber systems,’’
in Proc. IEEE 2nd Int. Conf. Inf. Comput. Technol. (ICICT), Mar. 2019,
pp. 175–179.

[6] M. Belaoued, A. Boukellal, M. A. Koalal, A. Derhab, S. Mazouzi, and
F. A. Khan, ‘‘Combined dynamic multi-feature and rule-based behavior for
accurate malware detection,’’ Int. J. Distrib. Sensor Netw., vol. 15, no. 11,
Nov. 2019, Art. no. 155014771988990.

[7] Internet Security Threat Report, Symantec, Mountain View, CA, USA,
Feb. 2019, vol. 24.

[8] J. Oberheide, E. Cooke, and F. Jahanian, ‘‘Cloudav: N-version antivirus in
the network cloud,’’ in Proc. USENIX Secur. Symp., 2008, pp. 91–106.

[9] B. Potter and G. Day, ‘‘The effectiveness of anti-malware tools,’’ Comput.
Fraud Secur., vol. 2009, no. 3, pp. 12–13, Mar. 2009.

[10] D. Carlin, A. Cowan, P. O’kane, and S. Sezer, ‘‘The effects of traditional
anti-virus labels on malware detection using dynamic runtime opcodes,’’
IEEE Access, vol. 5, pp. 17742–17752, 2017.

[11] A. Acar, L. Lu, A. S. Uluagac, and E. Kirda, ‘‘An analysis of malware
trends in enterprise networks,’’ in Proc. Int. Conf. Inf. Secur. Cham,
Switzerland: Springer, 2019, pp. 360–380.

[12] C. Silva, P. Sousa, and P. Veríssimo, ‘‘Rave: Replicated antivirus engine,’’
in Proc. Int. Conf. Dependable Syst. Netw. Workshops (DSN-W), Jun. 2010,
pp. 170–175.

[13] H. Lu, X. Wang, B. Zhao, F. Wang, and J. Su, ‘‘ENDMal: An anti-
obfuscation and collaborative malware detection system using syscall
sequences,’’ Math. Comput. Model., vol. 58, nos. 5–6, pp. 1140–1154,
Sep. 2013.

[14] C. J. Fung, D. Y. Lam, and R. Boutaba, ‘‘Revmatch: An efficient and robust
decision model for collaborative malware detection,’’ in Proc. IEEE Netw.
Oper. Manage. Symp. (NOMS). IEEE, May 2014, pp. 1–9.

[15] L. Zeltser. (2011). How Security Companies Assign Names to Mal-
ware Specimens. [Online]. Available: https://zeltser.com/malware-naming-
approaches/

[16] (2006). Common Malware Enumeration (CME). [Online]. Available:
http://cme.mitre.org/index.html

14342 VOLUME 8, 2020

M. Belaoued et al.: MACoMal: Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance

[17] Malware Attribute Enumeration and Characterization (MAEC).
Accessed: Dec. 10, 2019. [Online]. Available: http://maecproject.github.io

[18] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence, vol. 1. Reading, MA, USA: Addison-Wesley, 1999.

[19] Virus Total. Accessed: Oct. 11, 2019. [Online]. Available:
https://www.virustotal.com/

[20] N. Lord. (2018). What is File Fingerprinting? [Online]. Available:
https://digitalguardian.com/blog/what-file-fingerprinting

[21] E. Filiol, Computer Viruses: From Theory to Applications. Paris, France:
Springer, 2006.

[22] K. Dunham, ‘‘A fuzzy future in malware research,’’ ISSA J., vol. 11, no. 8,
pp. 17–18, 2013.

[23] V. Roussev, ‘‘Data fingerprinting with similarity digests,’’ in Proc. IFIP
Int. Conf. Digit. Forensics. Berlin, Germany: Springer, 2010, pp. 207–226.

[24] Y. Li, S. C. Sundaramurthy, A. G. Bardas, X. Ou, D. Caragea, X. Hu, and
J. Jang, ‘‘Experimental study of fuzzy hashing in malware clustering anal-
ysis,’’ in Proc. 8th Workshop Cyber Secur. Experimentation Test (CSET),
2015.

[25] R. Rivest, The MD5 Message-Digest Algorithm, document RFC 1321,
1992.

[26] M. Colajanni, D. Gozzi, and M. Marchetti, ‘‘Collaborative architecture
for malware detection and analysis,’’ in Proc. IFIP Int. Inf. Secur. Conf.
Boston, MA, USA: Springer, 2008, pp. 79–93.

[27] G. Weiss, Multiagent Systems: A Modern Approach to Distributed Artifi-
cial Intelligence. Cambridge, MA, USA: MIT Press, 1999.

[28] H. S. Nwana, ‘‘Software agents: An overview,’’ Knowl. Eng. Rev., vol. 11,
no. 3, pp. 205–244, Sep. 1996.

[29] A. Kantamneni, L. E. Brown, G. Parker, and W. W. Weaver, ‘‘Survey
of multi-agent systems for microgrid control,’’ Eng. Appl. Artif. Intell.,
vol. 45, pp. 192–203, Oct. 2015.

[30] Z. Guessoum, ‘‘A hybrid agent model: A reactive and cognitive behavior,’’
in Proc. 3rd Int. Symp. Auto. Decentralized Syst. (ISADS), Nov. 1997,
pp. 25–32.

[31] FIPA. (2002). FIPA ACL Message Structure Specification, Foundation for
Intelligent Physical Agents. Accessed: Jun. 30, 2004. [Online]. Available:
http://www.fipa.org/specs/fipa00061/SC00061G.html

[32] A. H. Bond, ‘‘Distributed decisionmaking in organizations,’’ inProc. IEEE
Int. Conf. Syst., Man Cybern., Dec. 1990, pp. 896–901.

[33] E. Raff and C. Nicholas, ‘‘Hash-grams: Faster N-gram features for clas-
sification and malware detection,’’ in Proc. ACM Symp. Document Eng.,
2018, p. 22.

[34] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘‘Cypider: Build-
ing community-based cyber-defense infrastructure for Android malware
detection,’’ in Proc. ACM 32nd Annu. Conf. Comput. Secur. Appl., 2016,
pp. 348–362.

[35] S. K. Sahay and A. Sharma, ‘‘A survey on the detection of windows
desktops malware,’’ in Ambient Communications and Computer Systems.
Singapore: Springer, 2019, pp. 149–159.

[36] M. Belaoued and S. Mazouzi, ‘‘A chi-square-based decision for real-time
malware detection using pe-file features,’’ J. Inf. Process. Syst., vol. 12,
no. 4, pp. 644–660, 2016.

[37] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘‘MalDozer: Auto-
matic framework for Android malware detection using deep learning,’’
Digit. Invest., vol. 24, pp. S48–S59, Mar. 2018.

[38] M. Pietrek, ‘‘Peering inside the PE: A tour of the Win32 (R) portable
executable file format,’’ Microsoft Syst. J.-US Ed., vol. 9, no. 3,
pp. 15–38, 1994.

[39] N. Cressie, ‘‘Statistics for spatial data,’’ Terra Nova, vol. 4, no. 5,
pp. 613–617, 1992.

[40] A. Galton, Temporal Logics and Their Applications, vol. 10. London, U.K.:
Academic, 1987.

[41] M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala,
‘‘Malware detection using assembly and API call sequences,’’ J. Comput.
Virol., vol. 7, no. 2, pp. 107–119, May 2011.

[42] S. Tisue and U. Wilensky, ‘‘Netlogo: A simple environment for modeling
complexity,’’ in Proc. Int. Conf. Complex Syst., Boston, MA, USA, vol. 21,
2004, pp. 16–21.

[43] F. Stonedahl and U. Wilensky, ‘‘NetLogo virus on a network model,’’ in
Proc. Center Connected Learn. Comput.-Based Modeling. Evanston, IL,
USA: Northwestern Univ., 2008.

[44] I. Sakellariou, P. Kefalas, and I. Stamatopoulou, ‘‘Enhancing NetLogo to
simulate BDI communicating agents,’’ inProc. 5th Hellenic Conf. AI, Artif.
Intell., Theories, Models Appl. Syros, Greece: Springer, Oct. 2008, p. 263.

MOHAMED BELAOUED received the master’s
and Ph.D. degrees in computer science from the
University of Skikda, in 2011 and 2016, respec-
tively. He is currently an Associate Professor with
the University of Constantine 1, Algeria, and also a
Researcher with LIRE Laboratory, Software Tech-
nologies and Information Systems Department,
University of Constantine 2. His research interests
include malware analysis and detection, intrusion
detection, network security, and the Internet of
Things (IoT) security.

ABDELOUAHID DERHAB received the Engi-
neering, master’s, and Ph.D. degrees in com-
puter science from the University of Science
and Technology Houari Boumediene, Algiers,
in 2001, 2003, and 2007, respectively. He was a
Full-Time Researcher with the CERIST Research
Center, Algeria, from 2002 to 2012. He is cur-
rently an Associate Professor with the Center of
Excellence in Information Assurance, King Saud
University, Riyadh, Saudi Arabia. His research

interests include network security, intrusion detection systems, malware
analysis, mobile security, and mobile networks.

SMAINE MAZOUZI received the M.S. and Ph.D.
degrees in computer science from the University
of Constantine, in 1996 and 2008, respectively.
He is currently an Associate Professor with Uni-
versité 20 Août 1955-Skikda. His fields of inter-
est are pattern recognitions, machine vision, and
computer security. His current research concerns
using distributed and complex systems modeled
as multiagent systems in image understanding and
intrusion detection.

FARRUKH ASLAM KHAN (Senior Member,
IEEE) received the M.S. degree in computer sys-
tem engineering from the GIK Institute of Engi-
neering Sciences and Technology, Pakistan, and
the Ph.D. degree in computer engineering from
Jeju National University, South Korea, in 2003 and
2007, respectively. He also received professional
training from the Massachusetts Institute of Tech-
nology, New York University, IBM, and other pro-
fessional institutions. He is currently a Profes-

sor with the Center of Excellence in Information Assurance, King Saud
University, Riyadh, Saudi Arabia. He is also a Founding Director of the
Wireless Net-working and Security Research Group, National University
of Computer and Emerging Sciences, Islamabad, Pakistan. He has over
80 publications in refereed international journals and at conferences. He has
co-organized several international conferences and workshops. He has suc-
cessfully supervised four Ph.D. students and 16M.S. thesis students. Several
M.S. and Ph.D. students are currently working under his supervision. His
research interests include cybersecurity, body sensor networks and e-health,
bio-inspired and evolutionary computation, and the Internet of Things. He is
on the panel of reviewers of over 30 reputed international journals and
numerous international conferences. He serves as an Associate Editor for
prestigious international journals, including the IEEE ACCESS, PLOS One,
Neurocomputing (Elsevier), Ad Hoc and Sensor Wireless Networks, KSII
Transactions on Internet and Information Systems, Human-Centric Com-
puting and Information Sciences (Springer), and Complex and Intelligent
Systems (Springer).

VOLUME 8, 2020 14343

	INTRODUCTION
	RELATED WORK
	MALWARE NAMING
	MALWARE FINGERPRINTING
	COLLABORATIVE ARCHITECTURES
	CENTRALIZED ARCHITECTURES
	HIERARCHICAL ARCHITECTURES
	DISTRIBUTED ARCHITECTURES

	COMPARISON WITH RELATED WORK

	BACKGROUND ON MULTI-AGENTS SYSTEMS (MAS)
	TYPES OF AGENTS
	INTERACTIONS BETWEEN AGENTS

	MACOMAL'S ARCHITECTURE
	COLLABORATIVE DECISION-MAKING SCHEME
	NETWORK TOPOLOGY MODEL
	AGENT ARCHITECTURE

	EXECUTABLE FILE IDENTIFICATION MODEL

	MACOMAL'S OPERATIONS
	NETWORK TOPOLOGY BUILDING PHASE
	ANALYSIS PHASE
	FILE IDENTIFICATION PHASE
	AGENT'S CONFIDENCE DEGREE (CN)
	ALERT PROPAGATION PHASE
	ALERT-RECEPTION AND DECISION PHASE

	FORMAL ANALYSIS
	GRAPH CONNECTIVITY ANALYSIS
	GLOBAL DECISION CORRECTNESS

	SIMULATION
	EFFECTIVENESS OF THE PROPOSED FILE IDENTIFICATION MECHANISM
	EFFECTIVENESS OF THE DECISION MAKING PROCESS
	SIMULATION TOOL
	SIMULATION PROCESS
	EXAMPLE OF SIMULATION SCENARIO
	SIMULATION RESULTS

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	MOHAMED BELAOUED
	ABDELOUAHID DERHAB
	SMAINE MAZOUZI
	FARRUKH ASLAM KHAN

