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ABSTRACT This paper focuses on the design of modular Robotic Mobile Fulfillment Systems. A Robotic
Mobile Fulfillment System is an automated storage and retrieval system, in which mobile robots are
deployed to deliver storage shelves for picking operation. This paper proposes a modular robotic systemwith
aisle-captive robots for small and medium-sized logistics warehouses. Then analytical models, including a
bottleneck-based model and an open queueing network model, are developed to estimate system throughput
and average order flow time. Last, a two-stage design framework is proposed to rapidly identify an optimal
system configuration. The main contributions are that: first, the proposed modular robotic system is free of
traffic congestion and blocking; second, the comprehensive framework highlights some significant guide-
lines for warehouse developers during the ‘‘conceptualization’’ phase of system development. Simulation
experiments indicate that the open queueing network model can provide accurate system performance
estimation. The effectiveness of the proposed design framework is validated through practical application in
real cases.

INDEX TERMS Robotic mobile fulfillment system, material handling, open queueing network, logistics
warehouses.

I. INTRODUCTION
Robotic mobile fulfillment system (RMFS) is a new type
of automated storage and retrieval system, which consists
of picking workstations, pickers, mobile robots and movable
storage shelves, namely pods. In an RMFS, pods are trans-
ported by mobile robots for picking operation, eliminating
unnecessary traveling time of pickers. Therefore, pickers can
concentrate more on picking operation, improving picking
efficiency and decreasing the probability of misoperation.

As a typical RMFS, Kiva system is a revolution in ware-
houses and has been successfully deployed in some of Ama-
zon’s distribution centers [1]. Practical application suggests
that RMFS has higher order throughput capacity than tra-
ditional picking system. However, the investment of RMFS
is extremely high due to huge device costs. Seeking for an
effective system configuration in the initial design phase is
an effective way to decrease investment cost [2].

There may be hundreds of mobile robots in a large robotic
system. An ideal scheduling scheme is essential to help such
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a complicated system run smoothly, otherwise there might be
severe traffic blocking, even deadlock [3]. However, there are
different scales of logistics warehouses. It is extremely hard
and time-consuming to design proper scheduling schemes
to suit all robotic systems. Therefore, this paper presents
a modular RMFS which is free of blocking, to solve this
problem. The overview of system layout is shown as Fig. 1.
The system consists of two main parts: the picking area and
the storage area. The picking area comprises workstations
and pod stations, and the storage area consists of pod storage
units.

The proposed RMFS is partitioned into independent mod-
ules. Each module consists of a workstation, a picker, and
pod stations in picking area and several independent aisles in
storage area. Robots are aisle-captive, that means each robot
is dedicated to a designated aisle. Similarly, each pod station
is available for a specific aisle. A picker is responsible for
order retrieval transactions occurred in the whole module.
The proposed modular system has three advantages: First,
traffic blocking and deadlock would never happen. Second,
it is much easier for pickers to get familiar with product
distribution on pods in one module, which results in higher
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FIGURE 1. Top view of the modular RMFS.

FIGURE 2. Top view of the picking area in a module.

operational proficiency. Third, the pod stations separate pick-
ing operation of pickers from robot transportation, enabling
parallel operation and improving picking efficiency.

Fig. 2 provides a top view of the picking area in the
highlighted module in Fig. 1. There are three pod stations in
the module, corresponding to three aisles. Each pod station
has three buffers. With this design, pickers are required to
walk among pod buffers when conducting picking operation.
This design provides several benefits: first, proper exercise
may contribute to human health; second, pickers can move
in a more efficient and flexible way than robots within such a
small area; third, robot can be released once it has transported
the required pod to a pod buffer, without waiting. Moreover,
robot can bring a previously handled pod to storage area at
the beginning of a new order retrieval task.

Fig. 3 illustrates the whole picking process for an order
retrieval task. Note that robots always start new transportation
tasks from pod stations, the picking process can be described
in detail as follows:

¬ Once an order retrieval task is generated in RMFS,
the required pod is determined, and it enters the queue
of the corresponding robot.

 If there is at least one pod buffer available for the cur-
rently required pod, then the robot can go directly to
retrieve the pod.

® If all pod buffers at the pod station are occupied,
the robot has to take the earliest handled pod to storage
area, to provide an available buffer for the upcoming
pod. Sometimes the robot has to wait for the earliest
arrived pod to be handled, though this seldomly happens.

¯ The robot transports the previously handled pod.
° The robot unloads the pod at a random storage unit.
± The robot runs to the currently required pod.
² The robot loads the required pod.
³ The robot takes the required pod to pod station.
´ The robot unloads the required pod at an available buffer,

then it runs to the earliest arrived pod in the pod station.
µ The required pod waits until the picker picks required

product, then the order is released.

This paper contributes by presenting a modular RMFS
with aisle-captive configuration and developing an effec-
tive two-stage design framework. The design framework
considers trade-off between system performance and costs,
to help warehouse developers identify the most suitable sys-
tem design. Two analytical models are developed to provide
system performance estimation, where the key performance
indicators (KPIs) consist of system throughput (Th) and aver-
age order flow time (FT ). Through the design framework,
the following design related variables for the proposed RMFS
can be rapidly addressed: the number of modules, the total
number of aisles and columns, and the layout of each module.

The remainder of the paper is organized as follows.
Section 2 reviews the literature. Section 3 describes the KPIs
and main assumptions in detail. The analytical models to
evaluate RMFS performance and the simulation results for
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FIGURE 3. The whole picking process of an order retrieval task.

validation are presented in Section 4. Section 5 defines the
two-stage design framework, and presents experiment results
and discussions. Section 6 draws conclusions and provides
insights for future research.

II. LITERATURE REVIEW
In logistics warehouses, order picking is originally conducted
in a manual way (i.e. picker-to-picker system), which works
best when orders comprise numerous SKUs [4], [5]. How-
ever, the traveling of picker is thought to be time-consuming
and unproductive. Therefore, RMFS is developed and has
attracted much attention and technological innovation as a
pioneer of parts-to-picker systems [6], [7].

Automated parts-to-picker systems have several advan-
tages over picker-to-parts systems [8], such as higher oper-
ational proficiency and lower long-term costs. Accompa-
nied with technological innovation in industrial automation
(e.g., Internet) [9], various automated picking systems have
been developed, such as AS/RS [10], automated vehicle
storage and retrieval system (AVS/RS) [11], and RMFSs.
Kaveh Azadeh et al. have made an overview of all these
technologies [12]. An open queueing network is proposed
to analyze the performance of the AS/RS and AVS/RS [13],
and the comparison results indicate that AVS/RS outperforms
AS/RS in terms of flexibility and modularization. Kiva sys-
tem is pointed out to have poor cube utilization but higher
flexibility and scalability over mini-load system in [14].
Therefore, RMFS is thought to be suitable for contemporary
E-commerce warehouses which have fluctuated customer
demands and large assortments of products [15].

Studies on robotic systems mainly focus on two research
areas: system design [16] and operational decisions. As for
operation related problems, research about path plan-
ning [17], [18], task scheduling strategy, and storage
assignment [19], [20] etc. have been developed for a long
time. Besides, operational cost is also investigated by

researchers [21]. Reference [22] proposes a collision free
path planning algorithm, to generate feasible paths for mobile
robots. In [8], a nested semi-open queueing network (SOQN)
is developed to evaluate performance of different battery
recovery strategies, and a decomposition method is pre-
sented to solve the SOQN models. A handling-speeds-based
assignment rule is proposed by Bipan Zou to motivate the
picking process in [15], where a neighborhood searching
algorithm is developed to speed up searching process. In [23],
a resource allocation scheme for cloud robotics is obtained
through reinforcement learning, which realizes autonomous
task allocation and improves overall system utility. Nils Boy-
sen proposes optimized decomposition procedures to formu-
late order scheduling and rack sequencing [6], which halves
the fleet of robots. In [24] a fluid model is developed to
analyze the performance of velocity-based storage policies,
and class-based storage policies are deployed to enhance
system robustness. In order to promote storage assignment,
Marius Merschformann proposes both passive and active
repositioning methods [25], whereas the latter technique
boosts throughput performance. References [26], [27] inves-
tigate the importance of incorporating real-life features into
order picking strategies, and provide robust policies for orga-
nizing operations efficiently.

With regard to system design, many researchers have
devoted themselves to study how warehouse layout and
device configuration influence system performance. Some
significant guidelines have been highlighted for ware-
house developers to optimize system configuration during
initial system design phase. Several challenging allo-
cation and design related problems are highlighted by
Peter R Wurman [28]. Similarly, the storage allocation strat-
egy and the replenishment allocation problems are pro-
posed in [29]. Reference [11] develops analytical models
for AVS/RS to evaluate system performance, in which an
approximate method is presented to solve the open queueing
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network (OQN) model. A SOQN is proposed in [30] to
evaluate performance for Kiva system, where both single-line
and multi-line orders are considered, and the impact of work-
stations and length-to-width ratio of storage area on sys-
tem performance are investigated. Robin Hanson et al. have
identified the performance characteristics of RMFS in [31],
which provides insights into how system performance relates
to system design. Resource allocation problems like where
to store the buckets are presented and a java-based model is
designed to assist research on these problems in [32]. In [4],
the number of robots, workstations and SKUs in RMFS are
varied and how these decision variables affect seven perfor-
mance measures, are investigated. Reference [33] improves
system throughput by identifying appropriate number and
velocity of mobile robots in RMFS.

Based on previous research about RMFS, this study
presents a modular robotic system which is free of conges-
tion and blocking. The modular RMFS can be deployed in
different scales of automated warehouses quickly with no
additional scheduling scheme required. To further shorten the
set-up time of RMFS, a comprehensive design framework is
first time proposed in this paper. With the support of analyt-
ical models, the design framework provides design insights
for warehouse developers, which assists them to identify the
optimal system configuration rapidly.

III. RMFS DESCRIPTION
This paper only considers order retrieval transaction since
it is the most decisive activity which represents system ser-
vice level. This section provides description about KPIs,
main notations and assumptions for order retrieval process
in RMFS.

A. KEY PERFORMANCE INDICATORS
Analytical models are developed to evaluate performance
of the proposed RMFS, considering only single-line orders,
which contributes a large majority to E-commerce orders.
Referring to the highlighted components of the whole picking
process in Fig. 3, Th and FT can be described in detail as
follows.

The FT means the interval time between order arriving at
and leaving the system, which can be expressed as (1):

FT = τr +Wt1 +Wt2 + τp, (1)

where:
τr represents the time related to robot movements, includ-

ing movement elements ¯ -± (or ), and ²-³;
Wt1 represents the waiting time for robot, corresponding to

process ¬ and ®;
Wt2 represents the waiting time for the picker in

procedure µ;
τp represents picking time of pickers.
The system throughput Th is denoted as the number of

order retrieval tasks handled per time unit (an hour in this
paper). In RMFS, since multiple resources are applied, Th is

up to the operational bottleneck. The system bottleneck can
be either robots or pickers. Therefore, Th is closely related
to the system configuration, such as the number of aisles and
modules.

B. MAIN NOTATIONS
In order to simplify the description of analytical models, main
notations used in the remainder of the paper are listed as
follows.
L : the system length.

Wp : the width of picking area.
Ws : the width of storage area.
λ : order arrival rate for whole system (retrievals/hour).
A : the number of aisles.
M : the number of modules.
ai : the number of aisles in module i, where i ∈ [1,M ].
C : the number of columns.
N : the total number of storage positions, N = 2 ∗ A ∗ C .
w : width of a single storage position (m).
l : length of a single storage position (m).

wa : width of each path in aisle (m).
Vr : average velocity of robots (m/s).
τl,u : mean time that robots need to load/unload pods (s).
τp : average time that a picker needs to pick up the requested

item, including the traveling time (s).

C. MAIN ASSUMPTIONS
The research is based on some assumptions which are in
accordance with real situations in RMFS, and the main
assumptions are listed as follows:

1) A storage pod can be repositioned stochastically within
one aisle.

2) The location of the required pod is random according to
assumption 1. Therefore, the probability that an order
retrieval task occurs in a specific aisle is equal to 1/A,
similarly, the probability that it occurs in a specific
column equals to 1/C .

3) A picker is only responsible for order retrieval tasks
occurred in one module.

4) There is no robot downtime since there are spare robots
which can take place of out-of-order robots. The time
for replacing is negligible.

5) The number of spare robots is closely related to the
battery capacity and robots failure rate, which is not
discussed in this study.

6) The order arrival process follows a Poisson distribution
with mean rate λ

7) The picking time follows a Uniform distribution
U [a, b], therefore the mean τp is denoted as

τp = (a+ b)/2, (2)

8) The time that robots need to load or unload pods τl,u is
identical

9) Assume that the robot moving time within a pod station
is constant, since the travel distance is comparatively
short.
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TABLE 1. Basic parameters in experiments.

TABLE 2. Throughput capacity analysis for a single module.

IV. ANALYTICAL MODELS TO EVALUATE
SYSTEM PERFORMANCE
In this section, Th is analyzed by a bottle-neck based model,
and an OQN is presented to estimate FT . The values of some
basic parameters are shown in Table 1:

A. ANALYZE THROUGHPUT CAPACITY
In the proposed modular RMFS, the throughput capacity Th
can be derived as the sum of expected throughput capacity
of each module THm. According to previous studies [2],
THm depends on the expected throughput of the picker THp
and the expected throughput of all robots THr within a mod-
ule. THp can be computed as

THp =
3600
τp

. (3)

whereas THr can be calculated as (4):

THr =
ai ∗ 3600

τr
. (4)

In a module, when THp < THr , the bottleneck is the picker,
since the picker’s service rate is lower than that of robots.
On the contrary, when THp > THr , robots turn to be the
bottleneck. Therefore, THm can be denoted as

THm = min(THr ,THp). (5)

Then Th can be calculated by (6),

Th =
M∑
i=1

THm,i. (6)

Experiments are performed over a module with an approx-
imate storage capacity of 200, to show how the analytical
model works. The results are shown in Table 2, where two
retrieval demand levels combined with three types of system
layouts are examined.

The results in Table 2 indicate that the configuration of
the module has a significant impact on throughput capacity.

FIGURE 4. An open queueing network for a single module.

With fewer number of long aisles, there are fewer robots,
and the average traveling distance is longer. Therefore, robots
are the bottleneck, and the expected throughput capacity of
the module THm is determined by that of all robots THr
(e.g., scenarios 1,2,4,and 5). Conversely, THm is consistent
with THp when THp < THr (e.g., scenarios 3,6). As for
two target throughput levels, the retrieval demand can be
satisfied when THm is higher than the target throughput
(e.g., scenarios 2,3, and 6), otherwise it can not be fulfilled
(e.g., scenario 1,4,and 5). Therefore, it is essential to evaluate
the throughput performance of the proposed robotic system
during the design phase, to find an available system configu-
ration which can satisfy customer demand.

B. ANALYZE AVERAGE ORDER FLOW TIME
In order to obtain FT , the waiting time for robotsWt1 and the
waiting time for pickersWt2 should be estimated. In the pro-
posed RMFS, robots are released once they have transported
requested pods to pod stations. Therefore, a computationally
efficient OQN is presented to provide accurate estimation
of Wt1 and Wt2, given system configuration. The OQN is
illustrated in Fig. 4.

In the proposed OQN, robots and pickers are regarded as
servers, and order retrieval transactions are customers. The
customer type is recognized by aisle in which the required
pod locates. In this section, an OQN model is implemented
over module i, which has ai aisles. The OQN is analyzed
based on the approximate method in [34], through whichWt1
andWt2 are obtained. The method can be briefly described as
follows:

Step1: Calculate service rate and utilization of each server.
Based on the assumptions 1, 2, and 3, the customer arrival

rate of each robot is equal to λ/A, while the customer arrival
rate of the picker is obtained as (7),

λp =
ai ∗ λ
A

. (7)

The service rate of robot εr can be derived as inverse of
average time that robot needs to handle order retrieval tasks
occurred at each column in the aisle,

εr =
C∑C
j=1 tj

, (8)
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TABLE 3. Comparison between analytical model and simulation results with respect to FT , Wt1 and Wt2.

where tj represents the time for transporting pod at column j.
Similarly, the service rate of the picker is equal to the inverse
of the average picking time,

εp =
1
τp
. (9)

Therefore, the utilization of each robot and the picker can be
calculated respectively as follows,

µr =
λ

A ∗ εr
, (10)

µp =
λp

εp
. (11)

Step2: Calculate the mean waiting time and queue length
of robots.

Since the customer arrival of a robot follows Poisson dis-
tribution with mean rate λâĄ"A, and the service time fol-
lows a General distribution, the service of each robot can be
described as a M/G/1 queue. Then the queue length Lq1 and
waiting timeWt1 for robot can be computed as (12) and (13),

Lq1 =
C2
a,r + C

2
e,r

2
∗

µ2
r

1− µr
, (12)

Wt1 =
Lq1 ∗ λ
A

. (13)

where Ca,r and Ce,r represent the variation coefficients of
the order inter-arrival time and robot service time, which are
calculated referring to the method in [11].

Step3: Calculate the mean waiting time and queue length
for picker.

Similarly, the picker can also be described as a
M/G/1 queue and the average queue length Lq2 and waiting
time Wt2 can be derived as (14) and (15) respectively.

Lq2 =
C2
a,p + C

2
e,p

2
∗

µ2
p

1− µp
(14)

Wt2 =
Lq2 ∗ λ
A

(15)

The validation experiments for the proposed OQN model
are performed through simulation using Arena. The simula-
tion is implemented based on the workflow of picking process
in Fig. 3. However, procedure ® may be entered only several
times in the beginning, which is not necessary to consider in
simulation. The simulation results are obtained as an average
of ten independent simulation runs, with each run simulating

TABLE 4. Comparison between analytical model and simulation results
with respect to µr and µp.

real operation for 100 hours. The data collected during the
two-hour warm up stage is discarded.

The analysis is performed over an individual module,
which has a storage capacity of 180 more or less. In the
experiment, three order retrieval demand levels are consid-
ered, with three different layouts in each case examined.
Table 3 shows the comparison between OQN model and
simulation in terms of FT , Wt1 and Wt2. Table 4 presents
utilization comparison.

The results in Table 3 indicate that the OQNmodel can pro-
vide precise performance estimation for the modular robotic
system. Even though the percentage deviation for estimation
of Wt2 is a little high, the estimation deviation of FT is
relatively low in most scenarios, within 5%. From the results
in Table 3, the FT increases with order arrival rate (λ),
therefore, it is necessary to optimize system configuration
to satisfy customer demands. Table 4 further validates the
effectiveness of the OQN through comparison of µr and µp.
The results also indicate that when the resource utilization
increases, the queue increases correspondingly, as well as
the waiting time. Therefore, resource utilization should be
maintained within a reasonable level to achieve desirable
system performance.

In Fig. 5, how the FT affected byWt1 andWt2 with respect
to different levels of arrival rate is illustrated. First, the mod-
ule with higher number of short aisles always outperforms
the one with fewer number of long aisles, since more robots
are deployed as servers and the average traveling distance in
shorter aisles is much shorter. Therefore, the performance can
be promoted by optimizing the layout of the module, and this
can be extended to the whole system. Second, as Fig. 5-b and
Fig. 5-c show, when λp remains the same, Wt1 decreases but
Wt2 increases with the number of robots increasing, thus the
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FIGURE 5. (a) FT varies with λp; (b) Wt1 varies with λp; (c) Wt2 varies
with λp, with regard to different configurations for module i .

picker turns to be the bottleneck. Then, with λp growing,Wt2
increases faster, as well as FT . In particular, when the ratio
of λp to THp is beyond 0.8, Wt2 increases considerably and
contributes much more to FT . This provides an important
guideline for the design of RMFS.

V. DESIGN FRAMEWORK FOR MODULAR RMFS
During system design phase, it is extremely time-consuming
to compare performance of all potential system configura-
tions, even though the analytical models are computation-
ally efficient. Therefore, a comprehensive two-stage design

TABLE 5. Basic parameters in experiments.

framework is proposed to highlight some intelligent rules
for warehouse designers, to guide them to examine system
configurations in a sensible order. With the assistance of the
design framework, warehouse designers can rapidly identify
themost suitable system configuration for themodular RMFS
during the initial design phase.

A. MAIN IDEA OF THE DESIGN FRAMEWORK
In practical application during the system design phase,
the following basic parameters should be determined before
implementing the design framework, in Table 5.

The main purpose of the design framework is to find the
trade-off between system performance and investment cost.
Since the investment cost is positively related to the number
of robots and pickers, the main idea for our design framework
is to initialize the system layout with minimum number of
robots where only physical restrictions are considered. Then
we change system configuration, increasing the number of
robots and using shorter aisles, to improve system perfor-
mance until customer demands are satisfied.

The design framework consists of two stages: first, rough
calculating stage, in which the target throughput is roughly
fulfilled by optimizing system configuration in a faster way;
second, fine tuning stage, in which a reasonable FT is
obtained by gradually varying the system layout, with the
help of the OQN model. The flow chart of the design frame-
work is shown as Fig. 6.

Step 1: N can be determined according to the parameters
given. Based on the analysis in section 4.2, the ratio rp should
be limited and a threshold of 0.8 is suggested. Then Mmin
can be computed by (16). As for the cost that originates
from robots, the longer aisle should be deployed in priority
to decrease the number of robots. Therefore, the maximum
number of columns Cmax should be set with respect to the
maximum widthWmax of the storage area, thus the minimum
number of aisles Amin can be obtained correspondingly.

Mmin = d
λ ∗ τp

0.8 ∗ 3600
e (16)

Cmax = b
Lmax
Wr
c (17)

Amin = d
N

2 ∗ Cmax
e (18)

where the symbol de and bc represent the higher and lower
integer bound respectively.
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FIGURE 6. Two-stage design framework for the modular RMFS.

Step 2: In the rough calculating stage, expected system
throughput Th should be estimated. If Th meets the require-
ment, (i.e, Th > Ttar ), the procedure moves to step 5 in fine
tuning stage, where the current solution is modified gradually
to obtain a reasonable FT . On the contrary, if Th < Ttar ,
the procedure enters step 3.

Step 3: The number of modules is determined reasonably
according to previous analysis, and the pickers are assumed
capable to work all the time. Therefore, robots are the only
potential bottleneck. In this step, the layout of the system is
modified with two aisle and two robots added, in order to
improve system performance. As a consequence, the number
of columns should be derived from N and A.
Step 4: Once the total number of aisles and modules are

determined, the layout of each module, i.e., the number of
aisles in each module, should be decided. In RMFS, aisles
should be evenly allocated to each module. Therefore, there
are two kinds of modules: big modules and small modules.
The allocation strategy is explained as follows. First, the quo-
tient Q and remainder R of A divided by P− 1 are computed.
Then there should be Q-R small modules, which consists of
Q − 1 aisles. On the other hand, the number of big modules
equals to A− Q+ R. In each big module there are Q aisles.

Step 2, step 3, step 4 are repeatedly implemented until the
Th reaches the target throughput. Then the process moves into
step 5, entering the fine-tuning stage.

Step 5: Though target throughput is satisfied, the FT
should also be taken into consideration to prevent long queues
in the system. The waiting time should be maintained in a low
level to guarantee real-time picking operation. The FT for
current system configuration should be estimated using the
analytical model. If FT is less than threshold τFT , the cur-
rent solution is regarded as an effective solution. Otherwise,
the procedure moves to step 6, to find a better system config-
uration.

Step 6: In this step, system layout is optimized in a similar
way to step 3,but the number of aisles is increased only by 1,
in order to find a more appropriate solution.

Step 7: This step is the same as step 4, to figure out the
layout of each module.

B. NUMERICAL EXPERIMENT
Two numerical experiments are performed to validate the
effectiveness of the proposed design framework. In these
experiments, the basic parameters remain the same as those
in Table 1. The experiments are implemented based on real
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TABLE 6. 19 System configurations examined for practical application of the two-stage design framework in a large E-commerce distribution center.

cases in the VIPS’s automated warehouses, which is the third
biggest E-commerce company in China.

In the first case, the basic user requirements are obtained
from customers as follows: Lmax is 150 m; Wmax is 65 m;
Wp is set as 10 m; the number of SKUs is around 167500; the
total capacity Nitem is about 1350000; Np is set around 150;
ρs is set as 90%; rp is set as 0.8; Ttar is set as 3360 retrievals
per hour; τFT is 180 s.

In practical application, some more variables should be
determined to initiate the design framework. First of all,
N can be derived as 10000 based on above mentioned storage
requirements. According the maximum width of the storage
area, the corresponding Cmax is derived as 108, thus Amin
equals to 46. Then through the proposed design framework,
the optimal system configuration is found efficiently. The
experiment results are shown in Table 6.

As the results show, the most suitable system configuration
is identified after 19 configurations examined. From scenario
1 to 19, each system configuration is presented and system
performance is evaluated. For the first 8 scenarios, only
the rough calculating stage is executed. During this stage,
only Th is estimated, and the number of aisles is increased
by 2 at one time to speed up the searching process. Then
in scenario 9, Th exceeds target throughput, thus the fine
tuning stage is entered. Note that from scenario 9 to 19,
the system configuration varies gradually, and both Th and
FT are estimated for each system configuration. When both
Th and FT satisfy user requirements (scenario 19), the current
configuration is regarded as the most suitable design solution.
In this case, the optimal system configuration has 72 aisles
and 70 columns, and it is partitioned into 10 independent
modules. There are 9 small modules and 1 big module,
whereas each small module contains 7 aisles and big module
consists of 8 aisles.

TABLE 7. Experiment results for the application of two-stage design
framework in smaller systems.

In the second case, the proposed design framework is
deployed in a smaller warehouse for daily-life products. Sim-
ilarly, the basic user requirements should be collected first:
Lmax is 60 m; Wmax is 50 m; Wp is set as 10 m; the Ns is
around 2500; the total capacity Nitem is about 243000; Np
is set as 150; ρs is set as 90%. In this case, three design
solutions are required with respect to three different levels
of customer demands: level 1 requires a target throughput
of 680 retrievals/hour, during weekdays; level 2 requires
the Ttar no less than 1020 retrievals/hour, during weekends;
for level 3, Ttar is 1740 retrievals/hour, during ‘‘Promotion
days’’P. For all cases, FT is set as 120 s. Then N is derived
as 1800, and Cmax is obtained as 75.
The designed framework is deployed to identify the most

suitable design solutions for these three user demands.
Table 7 shows the experiment results. For each demand
level, the optimal system configuration and the corresponding
system performance are presented. The results indicate that
different levels of user requirement can be satisfied by the
corresponding optimal system configuration. The number of
system configurations that being examined for each demand
level are also provided. From the data we can see that, through
the proposed design framework, the optimal system configu-
ration can be found with a minority of configurations exam-
ined. Besides, more potential system configurations have to
be examined for a higher user demand.
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VI. CONCLUSION
This paper mainly studies the design of RMFS. A congestion-
free modular RMFS is presented for small and medium-sized
logistics warehouses. The modular RMFS can be deployed
uniformly for automated warehouses in different scenarios.
Furthermore, this paper proposes a comprehensive two-stage
design framework to speed up the design process of the
modular RMFS. A bottleneck-based model and an OQN
model are developed to provide efficient and accurate system
performance assessment for the design framework, to rapidly
identify the optimal system configuration for an RMFS.
Experiment results indicate that the design framework helps
reduce the set-up time for the proposed modular RMFS, and
supports warehouse designers to find the most appropriate
system design whichmeets customer demands while decreas-
ing the overall system cost.

In summary, the main implication of the design framework
is to provide a valuable tool in the ‘‘conceptualisation’’ phase
of system design. Through this framework, economy and
performance comparison of the modular and non-modular
system may be investigated in further research.

REFERENCES
[1] R. D’Andrea, ‘‘Guest editorial: A revolution in the warehouse: A retro-

spective on kiva systems and the grand challenges ahead,’’ IEEE Trans.
Autom. Sci. Eng., vol. 9, no. 4, pp. 638–639, Oct. 2012.

[2] G. Marchet, M. Melacini, S. Perotti, and E. Tappia, ‘‘Development of
a framework for the design of autonomous vehicle storage and retrieval
systems,’’ Int. J. Prod. Res., vol. 51, no. 14, pp. 4365–4387, Jul. 2013,
doi: 10.1080/00207543.2013.778430.

[3] T. Lienert, T. Staab, C. Ludwig, and J. Fottner, ‘‘Simulation-based perfor-
mance analysis in robotic mobile fulfilment systems,’’ in Proc. SIMUL-
TECH, Porto, Portugal, 2018, pp. 383–390.

[4] M. Merschformann, T. Lamballais, M. B. M. D. Koster, and L. Suhl,
‘‘Decision rules for robotic mobile fulfillment systems,’’ Oper. Res.
Perspect., vol. 6, Nov. 2019, doi: 10.1016/j.orp.2019.100128.

[5] N. Zaerpour, R. Volbeda, and A. Gharehgozli, ‘‘Automated or manual
storage systems: Do throughput and storage capacity matter?’’ INFOR,
Inf. Syst. Oper. Res., vol. 57, no. 1, pp. 99–120, Jan. 2019, doi: 10.1080/
03155986.2018.1532765.

[6] N. Boysen, D. Briskorn, and S. Emde, ‘‘Parts-to-picker based order pro-
cessing in a rack-moving mobile robots environment,’’ Eur. J. Oper. Res.,
vol. 262, no. 2, pp. 550–562, Oct. 2017, doi: 10.1016/j.ejor.2017.03.053.

[7] J. Bačík, F. Ďurovský, M. Biroš, K. Kyslan, D. Perduková, and
S. Padmanaban, ‘‘Pathfinder–development of automated guided vehi-
cle for hospital logistics,’’ IEEE Access, vol. 5, pp. 26892–26900,
2017.

[8] B. Zou, X. Xu, Y. Gong, and R. De Koster, ‘‘Evaluating battery charging
and swapping strategies in a robotic mobile fulfillment system,’’ Eur.
J. Oper. Res., vol. 267, no. 2, pp. 733–753, Jun. 2018, doi: 10.1016/
j.ejor.2017.12.008.

[9] P. P. Ray, ‘‘Internet of robotic things: Concept, technologies, and chal-
lenges,’’ IEEE Access, vol. 4, pp. 9489–9500, 2016.

[10] J. Ashayeri, R. M. Heuts, M. Valkenburg, H. Veraart, and M. Wilhelm,
‘‘A geometrical approach to computing expected cycle times for zonebased
storage layouts in AS/RS,’’ Int. J. Prod. Res., vol. 40, no. 17,
pp. 4467–4483, Jan. 2002, doi: 10.1080/00207540210153901.

[11] G. Marchet, M. Melacini, S. Perotti, and E. Tappia, ‘‘Analytical model to
estimate performances of autonomous vehicle storage and retrieval systems
for product totes,’’ Int. J. Prod. Res., vol. 50, no. 24, pp. 7134–7148,
Dec. 2012, doi: 10.1080/00207543.2011.639815.

[12] K. Azadeh, R. De Koster, and D. Roy, ‘‘Robotized and automated ware-
house systems: Review and recent developments,’’ Transp. Sci., vol. 53,
no. 4, pp. 917–945, Jul. 2019. [Online]. Available: https://pubsonline.
informs.org/doi/abs/10.1287/trsc.2018.0873

[13] S. S. Heragu, X. Cai, A. Krishnamurthy, and C. J. Malmborg, ‘‘Ana-
lytical models for analysis of automated warehouse material handling
systems,’’ Int. J. Prod. Res., vol. 49, no. 22, pp. 6833–6861, Nov. 2011,
doi: 10.1080/00207543.2010.518994.

[14] Y. A. Bozer and F. J. Aldarondo, ‘‘A simulation-based comparison of two
goods-to-person order picking systems in an online retail setting,’’ Int.
J. Prod. Res., vol. 56, no. 11, pp. 3838–3858, Jun. 2018.

[15] B. Zou, Y. Gong, X. Xu, and Z. Yuan, ‘‘Assignment rules in robotic mobile
fulfilment systems for online retailers,’’ Int. J. Prod. Res., vol. 55, no. 20,
pp. 6175–6192, Oct. 2017, doi: 10.1080/00207543.2017.1331050.

[16] C. Llopis-Albert, F. Rubio, and F. Valero, ‘‘Designing efficient material
handling systems via automated guided vehicles (AGVs),’’ Multidisci-
plinary J. Educ., Social Technol. Sci., vol. 5, no. 2, p. 97, Oct. 2018.

[17] N. V. Kumar and C. S. Kumar, ‘‘Development of collision free path
planning algorithm for warehouse mobile robot,’’ Procedia Comput.
Sci., vol. 133, pp. 456–463, Jul. 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1877050918310019

[18] W. Zhang, X. Gong, G. Han, and Y. Zhao, ‘‘An improved ant colony
algorithm for path planning in one scenic area with many spots,’’ IEEE
Access, vol. 5, pp. 13260–13269, 2017.

[19] X. Xiang, C. Liu, and L. Miao, ‘‘Storage assignment and order batching
problem in Kiva mobile fulfilment system,’’ Eng. Optim., vol. 50, no. 11,
pp. 1941–1962, Nov. 2018, doi: 10.1080/0305215x.2017.1419346.

[20] R. Yuan, T. Cezik, and S. C. Graves, ‘‘Stowage decisions in multi-zone
storage systems,’’ Int. J. Prod. Res., vol. 56, nos. 1–2, pp. 333–343,
Jan. 2018, doi: 10.1080/00207543.2017.1398428.

[21] K. Ramaekers, A. Caris, S. Moons, and T. Van Gils, ‘‘Using an integrated
order picking-vehicle routing problem to study the impact of delivery time
windows in e-commerce,’’ Eur. Transp. Res. Rev., vol. 10, no. 2, p. 56,
Dec. 2018.

[22] Z. Zhang, Q. Guo, J. Chen, and P. Yuan, ‘‘Collision-free route planning for
multiple AGVs in an automated warehouse based on collision classifica-
tion,’’ IEEE Access, vol. 6, pp. 26022–26035, 2018.

[23] H. Liu, S. Liu, and K. Zheng, ‘‘A reinforcement learning-based
resource allocation scheme for cloud robotics,’’ IEEE Access, vol. 6,
pp. 17215–17222, 2018.

[24] R. Yuan, S. C. Graves, and T. Cezik, ‘‘Velocity-based storage assign-
ment in semi-automated storage systems,’’ Prod. Oper. Manage., vol. 28,
no. 2, pp. 354–373, Feb. 2019. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1111/poms.12925

[25] M. Merschformann, ‘‘Active repositioning of storage units in robotic
mobile fulfillment systems,’’ in Operations Research Proceedings 2017,
N. Kliewer, J. F. Ehmke, and R. Borndörfer, Eds. Berlin, Germany:
Springer, May 2018, pp. 379–385.

[26] T. Van Gils, A. Caris, K. Ramaekers, K. Braekers, and R. B. De Koster,
‘‘Designing efficient order picking systems: The effect of real-life features
on the relationship among planning problems,’’ Transp. Res. E, Logistics
Transp. Rev., vol. 125, pp. 47–73, May 2019.

[27] T. Van Gils, A. Caris, and K. Ramaekers, ‘‘Reducing picker blocking in a
high-level narrow-aisle order picking system,’’ in Proc. Winter Simulation
Conf., Gothenburg, Sweden, Dec. 2018, pp. 2953–2965.

[28] P. R. Wurman, R. D’Andrea, and M. Mountz, ‘‘Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,’’ AI Mag., vol. 29, no. 1,
p. 9, 2008.

[29] J. J. Enright and P. R. Wurman, ‘‘Optimization and coordinated autonomy
in mobile fulfillment systems,’’ in Proc. 9th AAAI Conf. Automated Action
Planning Auton. Mobile Robots, San Francisco, CA, USA, Aug. 2011,
pp. 33–38.

[30] T. Lamballais, D. Roy, and M. De Koster, ‘‘Estimating performance in
a robotic mobile fulfillment system,’’ Eur. J. Oper. Res., vol. 256, no. 3,
pp. 976–990, Feb. 2017, doi: 10.1016/j.ejor.2016.06.063.

[31] R. Hanson, L. Medbo, and M. I. Johansson, ‘‘Performance characteristics
of robotic mobile fulfilment systems in order picking applications,’’ IFAC-
PapersOnLine, vol. 51, no. 11, pp. 1493–1498, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2405896318314149

[32] C. J. Hazard, P. R. Wurman, and R. D’Andrea, ‘‘Alphabet soup: A testbed
for studying resource allocation in multi-vehicle systems,’’ in Proc.
AAAI Workshop Auction Mech. Robot Coordination, Boston, MA, USA,
Jun. 2006, pp. 23–30.

[33] Z. Yuan and Y. Y. Gong, ‘‘Bot-in-time delivery for robotic mobile ful-
fillment systems,’’ IEEE Trans. Eng. Manag., vol. 64, no. 1, pp. 83–93,
Feb. 2017.

[34] W. Whitt, ‘‘The queueing network analyzer,’’ Bell Syst. Tech. J., vol. 62,
no. 9, pp. 2779–2815, Nov. 1983.

13268 VOLUME 8, 2020

http://dx.doi.org/10.1080/00207543.2013.778430
http://dx.doi.org/10.1016/j.orp.2019.100128
http://dx.doi.org/10.1080/03155986.2018.1532765
http://dx.doi.org/10.1080/03155986.2018.1532765
http://dx.doi.org/10.1016/j.ejor.2017.03.053
http://dx.doi.org/10.1016/j.ejor.2017.12.008
http://dx.doi.org/10.1016/j.ejor.2017.12.008
http://dx.doi.org/10.1080/00207540210153901
http://dx.doi.org/10.1080/00207543.2011.639815
http://dx.doi.org/10.1080/00207543.2010.518994
http://dx.doi.org/10.1080/00207543.2017.1331050
http://dx.doi.org/10.1080/0305215x.2017.1419346
http://dx.doi.org/10.1080/00207543.2017.1398428
http://dx.doi.org/10.1016/j.ejor.2016.06.063


W. Wang et al.: Comprehensive Framework for the Design of Modular RMFSs

WEI WANG was born in Anqing, China, in 1993.
He received the B.E. degree in logistics engi-
neering from Shandong University, Jinan, China,
in 2015. He is currently pursuing the Ph.D. degree
with the School of Control Science and Engi-
neering, Shandong University, and has spent one
year studying in the School of Industrial Systems
and Engineering, Georgia Institute of Technol-
ogy. His research interests are mainly focused on
mobile robots and robotics systems.

YAOHUA WU received the M.E. degree from
ShandongUniversity, Jinan, in 1991, and the Ph.D.
degree in mechanical engineering from Tsinghua
University, Beijing, China, in 1996. He is cur-
rently a Professor with the School of Control Sci-
ence and Engineering and the Head of Modern
Logistics Research Center, Shandong University.
His research interests include automated logistics
system, autonomous logistics devices, and logis-
tics software design.

JUN ZHENG was born in Zhejiang, China,
in 1981. He received the Ph.D. degree in
mechanical engineering from Zhejiang University,
Hangzhou, China, in 2014. He is currently an
Associate Professor and a Master Instructor with
the School ofMechanical and Energy Engineering,
Zhejiang University of Science and Technology.
His research interests focus on sustainable design
and manufacturing, manufacturing system opti-
mization, and processing methods in low-carbon
optimization.

CHENG CHI was born in Jinan, China, in 1989.
He received the B.E. degree from the Harbin Uni-
versity of Science and Technology. He is currently
pursuing the Ph.D. degree with the School of Con-
trol Science and Engineering, Shandong Univer-
sity. His fields of research interests are motion
control of mobile robot and robot localization.

VOLUME 8, 2020 13269


