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ABSTRACT The present study investigates the problem of set-membership filtering for nonlinear dynamic
systems with general nonconvex inhomogeneous quadratic inequality constraints. The investigators propose
an ellipsoidal state bounding estimation in the setting of unknown but bounded noise. In order to guarantee
the on-line usage, the nonlinear function is linearized by Taylor expansion at each time step, where the
bounding ellipsoid of the remainder is updated on-line based on the current state bounding ellipsoid.
Furthermore, based on the remainder bounds and the constraints, both the state prediction and measurement
update of the filtering can be transformed into a semidefinite programming problem that can be efficiently
solved. In order to further reduce the computational complexity, a part-analytical formula of the shape matrix
and the center of the bounding ellipsoid is derived using a decoupled technique, which is also helpful to
clarify how these constraints affect the state estimation. Finally, typical numerical examples demonstrate the
effectiveness of this filtering.

INDEX TERMS Set-membership filter, quadratic inequality constraints, nonlinear dynamic systems,
ellipsoidal estimation.

I. INTRODUCTION
Filtering techniques are widely used in target tracking, signal
processing, system identification, fault diagnosis, robotics,
navigation, etc [1]–[5]. For linear dynamic systems, Kalman
filter (KF) [6] is the minimum-variance linear state estimator
for both Gaussian and non-Gaussian noise [7]. However,
this is not possible for general nonlinear dynamic systems.
Furthermore, estimation for nonlinear systems is quite exten-
sive in practice. Nonlinearities are widely included in vehi-
cle navigation, dialysis machines, and many other areas [8].
In the present case, a few modifications of KF, including
the extended Kalman filter (EKF) [9], the unscented Kalman
filter (UKF) [10], and the particle filter (PF) [11], were used
to estimate the state.

Constrained dynamic systems frequently occur in practi-
cal applications [12]–[14]. The constraints may arise from
physical laws or mathematical properties. For instance, civil
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aircrafts and land-based vehicles are constrained within a
preset flight channel and a known road (straight line or curve)
[15], [16], respectively. These constraints, which are deter-
mined by the state physical properties, can provide valu-
able information for the estimator designers. By taking full
advantage of the constraint, the state estimation error can be
effectively reduced. Constraints of dynamic systems come
in many forms, including set constraint, equality constraint,
inequality constraint, probability constraint, etc [12]. Various
point estimation methods for the constrained state estima-
tion have been proposed in literature [17]. For instance,
Simon and Simon [3], [18] focused on equality and inequality
constrained Kalman filtering. Julier and LaViola [2] pre-
sented a nonlinear equality constrained Kalman filtering.
Ko and Bitmead [19] proposed the state estimation for state
equality constrained linear systems. Teixeira et al. [20] dis-
cussed the unscented filtering for nonlinear systems with
interval-constraints. Lan and Li [21] provided the state
estimation for nonlinear inequality constrained systems via
unscented transformation, etc.
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Point estimation filtering techniques require the probabil-
ity information of the state and measurement noises, and
provide a probabilistic state estimation [22]. In some appli-
cations, the probabilistic assumption of noises is not suitable
(for example, the main perturbation can be deterministic).
Hence, the assumptions that the state perturbations and mea-
surement noise are unknown but bounded appears to be more
natural [23]. This has motivated the set-membership filtering
[24]–[26]. Different from point estimation, set-membership
filtering can provide a state estimation based on unknown
but bounded noises. The problem of set-membership filtering
was first considered by Witsenhausen [27] in the late 1960s.
The ideas of set-membership filtering have been extensively
investigated [23]–[26], [28]–[33], and the references therein.
The present studies do not consider set-membership filtering
with constraints.

Set-membership filtering for nonlinear equality con-
strained linear dynamic systems was addressed in a study
[34], and linear dynamic systems with state linear equal-
ity constraints and a specific positive semidefinite quadratic
inequality constraint were also given concerned in a study [5].
Both of these focused on linear dynamic systems. Neverthe-
less, the filtering problem for nonlinear dynamic systemswith
general nonconvex inhomogeneous quadratic inequality con-
straints has not been considered under the set-membership
filter framework. In real world applications, many phys-
ical systems can be described as nonlinear dynamic sys-
tems with state quadratic inequality constraints. For instance,
in a vehicle tracking problem, when the vehicle is traveling
on a known curve road, the geometric structure of some
roads can be approximately formed as quadratic inequality
constraints on the kinematic variables of the target vehicle
[35], [36]. The kinematic constraint can be utilized when the
target’s trajectory satisfies a kinematic constraint, such as
the quadratic parabolic inequality constraint [17], [37]–[39].
For real-time space applications, the quaternion-of-rotation
is the preferred attitude representation. In order to represent
a rotation, the quaternion obeys a unit-norm (i.e., quadratic)
constraint [40], [41]. In addition, in order to guarantee the
on-line usage, when the nonlinear function is linearized on
the current estimate, consideration should be given on how
to update the bound of the remainder on-line, but not give it
before filtering.

In the present study, focus was given on the set-
membership filtering problem for nonlinear dynamic systems
with general nonconvex inhomogeneous quadratic inequality
constraints. The main contributions of the present study are
as follows:
• A constrained set-membership filtering method via the
constraint information and the remainder bounding tech-
niques is proposed, which can guarantee the on-line
usage. In the set-membership prediction step, based on
the remainder bounds, S-procedure and Schur comple-
ments, the state estimation problem with the quadratic
constraints can be transformed into a semidefinite
programming (SDP) problem. Through path-following

interior point methods in convex programming, the
set-membership filtering prediction step can be effi-
ciently solved. The optimization problem of the mea-
surement update step can be similarly derived.

• In order to further reduce the computational complexity,
a part-analytical formula of the predicted state bounding
ellipsoid and the state bounding ellipsoid is derived
through a decoupled technique, and this is helpful to
clarify how the constraints affect the state estimation.

• Set-membership filtering for special cases of the
quadratic inequality constraint, including the unilateral
quadratic inequality constraint and linear inequality con-
straint, is derived.

Consistent with the discussion about the role of constraints in
the state estimation, the numerical example illustrates that the
new method has better performance than the set-membership
filtering without using constraints.

The present study is structured as follows. Section II
describes the set-membership filtering problem for non-
linear dynamic systems with quadratic inequality con-
straints. The prediction step, the measurement update step,
the part-analytical formula of the predicted and updated state
bounding ellipsoid, and the summarized algorithm of the set-
membership filter with quadratic inequality constraints reside
in Section III. In Section IV, a typical numerical example
is used to illustrate the effectiveness of this method. The
conclusion is provided in the last section.

II. PROBLEM FORMULATION
Consider the following dynamic system:

xk+1 = fk (xk )+ wk , (1)

yk = hk (xk )+ vk , (2)

d1k ≤ xTk Ĝkxk + β̂
T
k xk + α̂k ≤ d

2
k , (3)

where k is the time step, xk ∈ Rn is the system state, fk (xk )
and hk (xk ) are the nonlinear functions of xk , and yk ∈ Rm is
the measurement output; Ĝk ∈ Rn×n is a symmetric matrix,
β̂k ∈ Rn is a vector, α̂k ∈ R is a scalar, and these are all
known; d1k ∈ R and d2k ∈ R are the known scalars that
satisfy d2k ≥ d1k . The constraint (3) is the general nonconvex
inhomogeneous quadratic inequality constraint. If Ĝk is a
positive semidefinite matrix, it is a convex constraint. If β̂k =
0 and α̂k = 0, it is a homogeneous constraint. wk ∈ Rn is the
process noise and vk ∈ Rm is the measurement noise, and
these are assumed in ellipsoidal sets:

Wk = {wk : wTk Q
−1
k wk ≤ 1}, (4)

Vk = {vk : vTk R
−1
k vk ≤ 1}, (5)

whereQk andRk are known shapematrices ofWk andVk with
compatible dimensions, respectively. These are symmetric
positive-definite matrices.

When nonlinear functions fk (xk ) and hk (xk ) are linearized
about the center of the given state bounding ellipsoid,
the remainder terms can be restricted in an ellipsoid via the
remainder bounding techniques in [33]. Specifically, assume
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that the system state at time k is bounded in an ellipsoid,
that is:

xk ∈ Ek (x̂k ,Pk )
= {x ∈ Rn

: (x − x̂k )TP
−1
k (x − x̂k ) ≤ 1}

= {x ∈ Rn
: x= x̂k + Ekuk ,Pk=EkETk , ‖uk‖≤1}. (6)

By Taylor’s Theorem, the nonlinear function hk (xk ) can be
linearized to:

hk (x̂k + Ehkuk ) = hk (x̂k )+ JhkEhkuk +1hk (uk ), (7)

where Jhk is the Jacobian matrix of hk (xk ), 1hk (uk ) is the
high-order remainder, and for all ‖uk‖ ≤ 1, 1hk (uk ) can be
restricted in an ellipsoid, that is:

1hk (uk ) ∈ Ehk (ehk ,Phk )
= {x ∈ Rn

: (x − ehk )
TP−1hk (x − ehk ) ≤ 1}

= {x ∈ Rn
: x = ehk + Bhk1hk ,Phk = Bhk

BThk , ‖1hk‖ ≤ 1}, (8)

wherePhk and ehk are the shapematrix of Ehk and the center of
it, respectively. Similarly, the bounding ellipsoid Efk (efk ,Pfk )
of the high-order remainder of fk (xk ) can be obtained on-line.
Suppose that x0 is the initial state, and x0 is bounded in a

given bounding ellipsoid:

E0(x̂0,P0) = {x ∈ Rn
: (x − x̂0)TP

−1
0 (x − x̂0) ≤ 1}, (9)

where P0 and x̂0 are known shape matrix and center of E0,
respectively.

The goal, at time k + 1, is to determine Pk+1 and x̂k+1 that
satisfying:

(xk+1 − x̂k+1)TP
−1
k+1(xk+1 − x̂k+1) ≤ 1. (10)

The filtering problem mentioned above aims to determine
the center and shape matrix of the state bounding ellipsoid
in the setting of bounded noises, which is called the set-
membership filtering problem for nonlinear dynamic systems
with quadratic inequality constraints. The prediction step
and update step of set-membership filtering has been exten-
sively investigated [23], [29], [32], [33], [42]. In the present
study, focus was given on the prediction step and update
step of the filtering with quadratic inequality constraints,
as follows.

• Prediction step: Determining a predicted bounding
ellipsoid, such that xk+1 ∈ Ek+1|k (x̂k+1|k ,Pk+1|k ) in
the conditions of (i) xk ∈ Ek (x̂k ,Pk ); (ii) wk and vk
are bounded in Wk and Vk , respectively; (iii) 1fk (uk ) ∈
Efk (efk ,Pfk ) and 1hk (uk ) ∈ Ehk (ehk ,Phk ); (iv) the state
satisfies the quadratic inequality constraint at time k .

• Update step: Determining an ellipsoid, such that xk+1 ∈
Ek+1(x̂k+1,Pk+1) in the conditions of (i) xk+1 ∈

Ek+1|k (x̂k+1|k ,Pk+1|k ); (ii) vk+1 is bounded in Vk+1;
(iii) 1hk+1(uk+1) ∈ Ehk+1 (ehk+1 ,Phk+1 ); (iv) the state
satisfies the quadratic inequality constraint at time k+1.

III. SET-MEMBERSHIP FILTER WITH QUADRATIC
INEQUALITY CONSTRAINTS
The constraint (3) of the dynamic system is equivalent to:

−1 ≤ xTk Gkxk + β
T
k xk + αk ≤ 1, (11)

where Gk = 1
dk
Ĝk , βTk =

1
dk
β̂Tk , αk =

1
dk
(α̂k −

d1k+d
2
k

2 ), and

dk =
d2k−d

1
k

2 .
The constraint (11) is equivalent to:

xTk Gkxk + β
T
k xk + αk +1 = 0, (12)

where 1 ∈ R and ‖1‖ ≤ 1.
Next, the prediction and measurement update steps of the

new method are introduced. The following propositions pro-
vide a method for designing the set-membership filtering for
quadratic inequality constrained nonlinear dynamic systems.

A. PREDICTION STEP
Proposition 1: A predicted state bounding ellipsoid
Ek+1|k (x̂k+1|k ,Pk+1|k ) can be obtained by solving the follow-
ing optimization problem:

min f (Pk+1|k ) (13)

subject to λg2 ∈ R, λu ≥ 0, λw ≥ 0, λg1 ≥ 0, (14)

λv ≥ 0, λf ≥ 0, λh ≥ 0, (15)

− Pk+1|k ≺ 0, (16)[
−Pk+1|k

(Φk+1|k (x̂k+1|k )(Ψk+1|k (yk ))⊥)T

Φk+1|k (x̂k+1|k )(Ψk+1|k (yk ))⊥

−((Ψk+1|k (yk ))⊥)TΞ (Ψk+1|k (yk ))⊥

]
� 0,

(17)

where

Φk+1|k (x̂k+1|k )

= [fk (x̂k )− x̂k+1|k + efk , JfkEk , I , 0,Bfk , 0, 0], (18)

Ψk+1|k (yk )

= [hk (x̂k )+ ehk − yk , JhkEk , 0, I , 0,Bhk , 0], (19)

01 =

[
x̂Tk Gk x̂k + β

T
k x̂k + αk x̂

T
k GkEk +

1
2β

T
k Ek

(x̂Tk GkEk +
1
2β

T
k Ek )

T ETk GkEk

]
, (20)

02 =

[
0 0 0 0 1

2
0 0 0 0 0

]
, (21)

0 =

[
01 02
0T2 0

]
, (22)

Pk = Ek (Ek )T , (23)

Ξ = diag(1− λu − λw − λg1 − λ
v
− λf − λh, λuI ,

λwQ−1k , λvR−1k , λf I , λhI , λg1I )+ λ
g
20, (24)

where zero matrices and identity matrices have compati-
ble dimensions among the optimization problem, and (·)⊥

denotes the orthogonal complement.
Proof: Refer to Appendix A.

Remark 1: The optimization problem in Proposition 1 is
an SDP problem if trace function is chosen as the objective
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function, and if logdet function is chosen, the optimization
problem becomes a MAXDET problem. Both of these opti-
mization problems can be solved via path-following interior
point methods in the convex programming [30], [43].

In order to further reduce the computation complexity of
the SDP problem in Proposition 1, the part-analytical formula
of the optimization problem can be derived using a decoupled
technique. Note that the appropriate orthogonal complement
of Ψk+1|k (yk ) can be chosen as:

(Ψk+1|k (yk ))⊥ =
[
−1 0
Ψ1 Ψ2

]
, (25)

where

Ψ1= [0, 0, (hk (x̂k )−yk )T , (B
−1
fk efk )

T , (B−1hk ehk )
T , 0]T , (26)

Ψ2 =



E−1k 0 0
−Jfk I 0
−Jhk 0 I
B−1fk −B−1fk 0
0 0 −B−1hk
0 0 I


. (27)

Denote

Ξ =

[
Ξ11 Ξ12
ΞT

12 Ξ22

]
, (28)

where

Ξ11 = 1− λu − λw − λg1 − λ
v
− λf − λh

+ λ
g
2(x̂

T
k Gk x̂k + β

T
k x̂k + αk ), (29)

Ξ12 = [λg2(x̂
T
k GkEk +

1
2
βTk Ek ), 0, 0, 0, 0,

1
2
λ
g
2], (30)

Ξ22 = diag(λuI + λg2(E
T
k GkEk ), λ

wQ−1k ,

λvR−1k , λf I , λhI , λg1I ). (31)

Proposition 2: Let all symbols be defined as those in
Proposition 1, and if f (Pk+1|k ) is either trace, or the logdet
function of Pk+1|k , then the shape matrix and center of the
optimal predicted ellipsoid in Proposition 1 can be decoupled.
Specifically, the part-analytical formula of the optimization
problem is given by:

P−1k+1|k = λ
uP−1k + λ

g
2Gk + (Jfk − I )

T (
Qk
λw
+
Pfk
λf

)−1

× (Jfk − I )+ J
T
hk (

Rk
λv
+ (λhP−1hk + λ

g
1I )
−1)−1Jhk ,

(32)

x̂k+1|k = fk (x̂k )+ Pk+1|kX1 + Pk+1|kC1X2
+Pk+1|kC2X3, (33)

where

X1 = λf P
−1
fk efk − λ

vJThkR
−1
k (hk (x̂k )− yk )

− λ
g
2(Gk x̂k +

1
2
βk ), (34)

X2 = −λf P
−1
fk efk , (35)

X3 = λvR
−1
k (hk (x̂k )− yk )− λhP

−1
hk ehk −

1
2
λ
g
2I , (36)

C1 = (λwJTfkQ
−1
k + λ

f P−1fk )(λwQ−1k + λ
f P−1fk )−1, (37)

C2 = λ
vJThkR

−1
k (λvR−1k + λ

hP−1hk + λ
g
1I )
−1. (38)

The optimal values λg2, λ
u, λw, λ

g
1, λ

v, λf , λh of the problem
variables can be obtained by solving the optimization prob-
lem:

min
λ
g
2,λ

u,λw,λ
g
1,λ

v,λf ,λh
f (B(Ψ T

2 Ξ22Ψ2)−1BT ) (39)

subject to λg2 ∈ R, λu ≥ 0, λw ≥ 0, λg1 ≥ 0,

λv ≥ 0, λf ≥ 0, λh ≥ 0, (40)[
Ξ11+Ψ

T
1 Ξ22Ψ1 Ψ T

1 Ξ22Ψ2−Ξ12Ψ2
Ψ T
2 Ξ22Ψ1−Ψ

T
2 Ξ

T
12 Ψ T

2 Ξ22Ψ2

]
� 0, (41)

where B = [I , 0, 0].
Proof: Refer to Appendix A.

Remark 2: The part-analytical formula (32) and (33) intu-
itively shows the role of constraints in the state estimation.
Pk+1|k in (32) indicates that when the variables λg1 and λg2
take 0, the shape matrix and center of the optimal predicted
ellipsoid derived by Proposition 2 degenerate to that of the
nonlinear filtering without the constraints [33]. This means
that the feasible set of the algorithm without the constraints
is included in the feasible set of the quadratic inequality con-
strained set-membership filter. Thus, the size of the predicted
ellipsoid derived by the quadratic inequality constrained set-
membership filter is smaller than that of the algorithm with-
out the constraints. If Ĝk is positive definite, then this also
shows that the larger λg1 and λ

g
2 are, the smaller the predicted

ellipsoid size is. In addition, it can be proven that the com-
putational complexity of Proposition 2 is significantly lower
than that of Proposition 1 [30].

B. MEASUREMENT UPDATE STEP
Proposition 3: The state bounding ellipsoid Ek+1(x̂k+1,
Pk+1) at time k + 1 can be obtained by solving the following
optimization problem:

min f (Pk+1) (42)

subject to λg2 ∈ R, λu ≥ 0, λv ≥ 0, λg1 ≥ 0, λh ≥ 0,

(43)

− Pk+1 ≺ 0, (44)[
−Pk+1

(Φk+1(x̂k+1)(Ψk+1(yk+1))⊥)T

Φk+1(x̂k+1)(Ψk+1(yk+1))⊥

−((Ψk+1(yk+1))⊥)TΞ (Ψk+1(yk+1))⊥

]
� 0,

(45)

where

Φk+1(x̂k+1) = [x̂k+1|k − x̂k+1,Ek+1|k , 0, 0, 0], (46)

Ψk+1(yk+1) = [hk+1(x̂k+1|k )− yk+1 + ehk+1 ,

Jhk+1Ek+1|k , I ,Bhk+1 , 0], (47)
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01 =

[
x̂Tk+1|kGk+1x̂k+1|k + β

T
k+1x̂k+1|k + αk+1

(x̂Tk+1|kGk+1Ek+1|k +
1
2β

T
k+1Ek+1|k )

T

x̂Tk+1|kGk+1Ek+1|k +
1
2β

T
k+1Ek+1|k

ETk+1|kGk+1Ek+1|k

]
, (48)

02 =

[
0 0 1

2

0 0 0

]
, (49)

0 =

[
01 02

0T2 0

]
, (50)

Pk+1|k = Ek+1|k (Ek+1|k )T , (51)

Ξ = diag(1− λu − λv − λg1 − λ
h, λuI ,

λvR−1k+1, λ
hI , λg1I )+ λ

g
20, (52)

where zero matrices and identity matrices have compati-
ble dimensions among the optimization problem, and (·)⊥

denotes the orthogonal complement.
Proof: Refer to Appendix B.

Similar to Proposition 1, in order to further reduce the
computation complexity, the part-analytical formula of the
optimization problem in Proposition 3 can be derived by
the decoupled technique, and an appropriate form of the
orthogonal complement of Ψk+1(yk+1) can be chosen as:

(Ψk+1(yk+1))⊥ =
[
−1 0
Ψ1 Ψ2

]
, (53)

where

Ψ1 = [0, (hk+1(x̂k+1|k )− yk+1)T , (B
−1
hk+1

ehk+1 )
T , 0]T , (54)

Ψ2 =


E−1k+1|k 0
−Jhk+1 I

0 −B−1hk+1
0 I

 . (55)

Denote

Ξ =

[
Ξ11 Ξ12
ΞT

12 Ξ22

]
, (56)

where

Ξ11= 1− λu − λv − λg1 − λ
h

+ λ
g
2(x̂

T
k+1|kGk+1x̂k+1|k+β

T
k+1x̂k+1|k+αk+1), (57)

Ξ12 = [λg2(x̂
T
k+1|kGk+1Ek+1|k +

1
2
βTk+1Ek+1|k ), 0, 0,

1
2
λ
g
2],

(58)

Ξ22 = diag(λuI + λg2(E
T
k+1|kGk+1Ek+1|k ),

λvR−1k+1, λ
hI , λg1I ). (59)

Proposition 4: Let all symbols be defined as in Propo-
sition 3. If f (Pk+1) is either trace, or the logdet function
of Pk+1, then the shape matrix and center of the updated
ellipsoid in Proposition 3 can be decoupled. Specifically,

the part-analytical formula of the optimization problem is
given by:

P−1k+1 = λ
uP−1k+1|k + λ

g
2Gk+1

+ JThk+1 (
Rk+1
λv
+ (λhP−1hk+1+λ

g
1I )
−1)−1Jhk+1 , (60)

x̂k+1 = x̂k+1|k + Pk+1X1 + Pk+1CX2, (61)

where

X1 = −λvJThk+1R
−1
k+1(hk+1(x̂k+1|k )− yk+1)

− λ
g
2(Gk+1x̂k+1|k +

1
2
βk+1), (62)

X2 = λvR
−1
k+1(hk+1(x̂k+1|k )− yk+1)

− λhP−1hk+1ehk+1 −
1
2
λ
g
2I , (63)

C = λvJThk+1R
−1
k+1(λ

vR−1k+1 + λ
hP−1hk+1 + λ

g
1I )
−1. (64)

The optimal values λg2, λ
u, λv, λ

g
1, λ

h of the problem variables
can be obtained by solving the optimization problem:

min
λ
g
2,λ

u,λv,λ
g
1,λ

h
f (B(Ψ T

2 Ξ22Ψ2)−1BT ) (65)

subject to λg2 ∈ R, λu ≥ 0, λv ≥ 0, λg1≥0, λ
h
≥0,
(66)[

Ξ11+Ψ
T
1 Ξ12Ψ1 Ψ T

1 Ξ22Ψ2−Ξ12Ψ2
Ψ T
2 Ξ22Ψ1−Ψ

T
2 Ξ

T
12 Ψ T

2 Ξ22Ψ2

]
� 0, (67)

where B = [I , 0].
Proof: Refer to Appendix B.

Remark 3: Similar to Proposition 1 and Proposition 2,
Proposition 4 has a lower computational complexity than
Proposition 3, and the part-analytical formula (60)-(61)
in Proposition 4 clarifies how the constraints affect the state
estimation.
Corollary 1: If d1k or d2k in the state bilateral constraint (3)

takes infinity, it becomes a unilateral constraint. Then, in the
prediction step, the state bounding ellipsoid can be obtained
by removing the constraint λg2 ∈ R of the optimization
problem (13) and let

Φk+1|k (x̂k+1|k )
= [fk (x̂k )− x̂k+1|k + efk ,
JfkEk , I , 0,Bfk , 0], (68)

Ψk+1|k (yk ) = [hk (x̂k )+ ehk − yk , JhkEk , 0, I , 0,Bhk ], (69)
0 = diag(01, 0, 0, 0, 0), (70)
Ξ = diag(1− λu − λw − λg1 − λ

v
− λf − λh, λuI ,

λwQ−1k , λvR−1k , λf I , λhI )+ λg10. (71)

Similarly, in the measurement update step, the state bounding
ellipsoid can be obtained by removing constraint λg2 ∈ R of
the optimization problem (42) and let

Φk+1(x̂k+1) = [x̂k+1|k − x̂k+1,Ek+1|k , 0, 0], (72)

Ψk+1(yk+1) = [hk+1(x̂k+1|k )+ ehk+1 − yk+1,

Jhk+1Ek+1|k , I ,Bhk+1 ], (73)
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0 = diag(01, 0, 0), (74)

Ξ = diag(1− λu − λv − λg1 − λ
h, λuI ,

λvR−1k+1, λ
hI )+ λg10. (75)

Proof: Refer to Appendix C.
Corollary 2: If Ĝk in (3) takes the zero matrix, it becomes

a linear inequality constraint. Then, in the prediction step,
the state bounding ellipsoid can be obtained by removing the
constraint λg2 ∈ R of the optimization problem (13) and let

Φk+1|k (x̂k+1|k )

= [fk (x̂k )− x̂k+1|k + efk , JfkEk , I , 0,Bfk , 0], (76)

Ψk+1|k (yk )

= [hk (x̂k )+ ehk − yk , JhkEk , 0, I , 0,Bhk ], (77)

0 = [βTk x̂k + αk , β
T
k Ek , 0, 0, 0, 0], (78)

Ξ = diag(1− λu − λw − λg1 − λ
v
− λf − λh, λuI ,

λwQ−1k , λvR−1k , λf I , λhI )+ λg10
T0. (79)

Similarly, in the measurement update step, the state bounding
ellipsoid can be obtained by removing constraint λg2 ∈ R of
the optimization problem (42) and let

Φk+1(x̂k+1) = [x̂k+1|k − x̂k+1,Ek+1|k , 0, 0], (80)

Ψk+1(yk+1) = [hk+1(x̂k+1|k )+ ehk+1 − yk+1,

Jhk+1Ek+1|k , I ,Bhk+1 ], (81)

0 = [βTk+1x̂k+1|k+αk+1, β
T
k+1Ek+1|k , 0, 0], (82)

Ξ = diag(1− λu − λv − λg1 − λ
h,

λuI , λvR−1k , λhI )+ λg10
T0. (83)

Proof: Refer to Appendix C.

C. SET-MEMBERSHIP FILTER WITH QUADRATIC
INEQUALITY CONSTRAINTS
Based on Propositions 1-4, the algorithm of the set-
membership filtering with quadratic inequality constraints
can be summarized, as follows:

IV. NUMERICAL EXAMPLES IN TARGET TRACKING
In this section, the performance between the set-membership
filter without constraints and the proposed quadratic
inequality constrained set-membership filter is compared.
The following simulation results are based onMatlab R2017b
with YALMIP.

Algorithm 1 The Set-Membership Filtering Recursive Algo-
rithm
Step 1: Set k = 0. Given the initial value (x̂0,P0).
Step 2: Determine the bounding ellipsoids of the remainders

1fk and 1hk on-line [33], respectively.
Step 3: Compute the predicted state bounding ellipsoid

Ek+1|k (x̂k+1|k ,Pk+1|k ) by (13)-(17) or (39)-(41).
Step 4: Determine the bounding ellipsoid of the remainder

1hk+1 on-line [33].
Step 5: Compute the updated state bounding ellipsoid

Ek+1(x̂k+1,Pk+1) by (42)-(45) or (65)-(67).
Step 6: Set k = k + 1 and go to Step 2.

Considering a two-dimensional dynamic system, a mov-
ing target is tracked using the range and bearing measure-
ments [44]:

xk+1 =


1 0

sinwT
w

−
1−coswT

w
0 1

1−coswT
w

sinwT
w

0 0 coswT − sinwT
0 0 sinwT coswT

 xk + wk , (84)

yk =

 √(xk (1)− a)2 + (xk (2)− b)2

arctan(
xk (2)− b
xk (1)− a

)

+ vk , (85)

where x is (x, y, ẋ, ẏ), including position and velocity, a and b
are the sensor position of location, and T is the sampling
time. wk and vk are assumed to be restricted in the following
ellipsoidal sets:

Wk = {wk : wTk Q
−1
k wk ≤ 1}, (86)

Vk = {vk : vTk R
−1
k vk ≤ 1}, (87)

where (88) and (89), as shown at the bottom of this page.
In this example, assume T = 0.2, Sw = 50, w =

0.1, a = −750, b = 500, and the initial state is (0,
25, 20, 20), which belongs to the ellipsoid E(x̂0,P0), where
x̂0 =

[
−10 10 25 25

]T and

P0 = 402


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

Qk = Sw ·



2(wT − sinwT )
w3 0

1− coswT
w2

wT − sinwT
w2

0
2(wT − sinwT )

w3 −
wT − sinwT

w2

1− coswT
w2

1− coswT
w2 −

wT − sinwT
w2 T 0

wT − sinwT
w2

1− coswT
w2 0 T


, (88)

Rk =
[
252 0
0 0.52

]
(89)
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respectively. Assume that the state and measurement noises
are truncated Gaussian with a mean

[
0 0 0 0

]
and

[
0 0

]
,

and a covariance Qk/32 and Rk/32 on the ellipsoidal sets,
respectively.

The true trajectories in this example is generated by
the state transform equation with satisfying the constraint.
Specifically, given the true state at time k , the state at time
k + 1 is computed by the state transform function fk (xk ) and
the process noise wk ∈ Wk , which is selected to guarantee
that the generated true state satisfies the quadratic inequality
constraint at time k + 1. The quadratic inequality constraint
is as follows:

0 ≤ xTk


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 xk +

−30
50
0
0


T

xk − 1250 ≤ 200.

(90)

From the above description, it can be concluded that
the conditions of the set-membership filtering are satisfied.
Hence, set-membership filtering without constraints and the
new method can be used to determine the bounding ellip-
soid of the true state. The simulation results are based on
100 Monte Carlo runs of measurements.

FIGURE 1. The true trajectory and the quadratic constraint.

Fig. 1 presents the true trajectory with the quadratic con-
straint. Fig. 2 demonstrates a comparison of the size of the
state bounding ellipsoids between the new method and set-
membership filtering without the constraints, where the size
is the sum of the ellipsoid semi-axis lengths defined in [45].
Fig. 2 indicates that the size of the state bounding ellipsoids
estimated by the new method is smaller than the size of the
state bounding ellipsoids estimated by the set-membership
filtering without the constraints, which means that the per-
formance of the new method is better. Fig. 3 presents the
root mean square error (RMSE) of the new method and set-
membership filtering without the constraints, respectively.
Fig. 3 shows that the new method can offer a smaller RMSE
than the RMSE of set-membership filtering without the con-
straints, and the reason is that the constraint information is

FIGURE 2. Comparison of the size of the state bounding ellipsoids.

FIGURE 3. Comparison of RMSE of the trajectory estimate.

considered in the new method, which is also consistent with
the discussion in Remark 2.

V. CONCLUSION
The present study investigated the problem of set-
membership filtering for nonlinear dynamic systems with
general nonconvex inhomogeneous quadratic inequality con-
straints. The bounding ellipsoid for the remainder can be
derived via the current state bounding ellipsoid on-line.
Based on the S-procedure and Schur complements, both the
prediction step and measurement update step of the quadratic
inequality constrained set-membership filtering problem can
be transformed into an SDP problem. In order to further
reduce the computational complexity, the part-analytical for-
mula of the state bounding ellipsoid shape matrix and center
was derived, and this would be helpful in clarifying how the
constraints affect the state estimation. Consistent with the
discussion about the role of constraints in the state estimation,
the numerical example illustrates that the performance of the
newmethod is better than the performance of set-membership
filtering without using constraints. Future work may include
more general inequality constraints and multisensor set-
membership filter fusion.

VOLUME 8, 2020 13381



X. Li et al.: Set-Membership Filtering for Nonlinear Dynamic Systems With Quadratic Inequality Constraints

APPENDIXES
APPENDIX A
Proof 1.1 (Proof of Proposition 1): Note that xk ∈ Ek is
equivalent to xk = x̂k+Ekuk , ‖uk‖ ≤ 1, wherePk = Ek (Ek )T

(i.e., Ek is the Cholesky factorization of Pk ). By Taylor’s The-
orem and the remainder bounding techniques [33], we have:

xk+1 − x̂k+1|k = fk (xk )+ wk − x̂k+1|k

= fk (x̂k + Ekuk )+ wk − x̂k+1|k

= fk (x̂k )+ JfkEkuk

+ efk + Bfk1fk + wk − x̂k+1|k , (91)

yk = hk (xk )+ vk

= hk (x̂k )+ JhkEkuk + ehk + Bhk1hk + vk .

(92)

In defining

ξ = [1, uTk ,w
T
k , v

T
k ,1

T
fk ,1

T
hk ,1]T , (93)

(91) and (92) can be rewritten as:

xk+1 − x̂k+1|k = Φk+1|k (x̂k+1|k )ξ, (94)

0 = Ψk+1|k (yk )ξ, (95)

the constraint of xk (i.e., (12)) can be rewritten as:

ξT0ξ = 0, (96)

where Φk+1|k , Ψk+1|k and 0 are denoted by (18), (19) and
(22), with compatible dimension zero matrices among these,
respectively.

In addition, the condition of xk+1 ∈ Ek+1|k

(xk+1 − x̂k+1|k )T (Pk+1|k )−1(xk+1 − x̂k+1|k ) ≤ 1 (97)

is equivalent to

ξT [Φk+1|k (x̂k+1|k )
T (Pk+1|k )−1Φk+1|k (x̂k+1|k )

− diag(1, 0, 0, 0, 0, 0, 0)]ξ ≤ 0, (98)

with compatible dimension zero matrices among this. Based
on the definition of ξ , the conditions of the unknown vari-
ables, and the S-procedure [46], [47], a sufficient condition of
(98) to hold is that there exist scalars λy ∈ R, λg2 ∈ R, λu ≥
0, λw ≥ 0, λg1 ≥ 0, λv ≥ 0, λf ≥ 0, λh ≥ 0, such that:

Φk+1|k (x̂k+1|k )
T (Pk+1|k )−1Φk+1|k (x̂k+1|k )−Ξ

− λy(Ψk+1|k (yk ))TΨk+1|k (yk ) � 0, (99)

where Ξ is denoted by (24) with compatible dimension zero
matrices among this.

By denoting (Ψk+1|k (yk ))⊥ as the orthogonal complement
of Ψk+1|k (yk ), the inequality can be obtained:

((Ψk+1|k (yk ))⊥)TΦk+1|k (x̂k+1|k )
T (Pk+1|k )−1

Φk+1|k (x̂k+1|k )(Ψk+1|k (yk ))⊥

− ((Ψk+1|k (yk ))⊥)TΞ (Ψk+1|k (yk ))⊥ � 0. (100)

Based on Schur complements [46], (100) can be rewritten
as: [

−Pk+1|k

(Φk+1|k (x̂k+1|k )(Ψk+1|k (yk ))⊥)T

Φk+1|k (x̂k+1|k )(Ψk+1|k (yk ))⊥

−((Ψk+1|k (yk ))⊥)TΞ (Ψk+1|k (yk ))⊥

]
� 0, (101)

−Pk+1|k ≺ 0. (102)

The above analysis outlines the method of determining
the predicted state bounding ellipsoid. The optimal pre-
dicted state bounding ellipsoid can be derived by minimizing
f (Pk+1|k ).
Proof 1.2 (Proof of Proposition 2): By using Schur com-

plements [46] and reordering of the blocks, (17) is equivalent
to:Pk+1|k Z B

ZT Ξ11 + Ψ
T
1 Ξ22Ψ1 Ψ T

1 Ξ22Ψ2 −Ξ12Ψ2

BT Ψ T
2 Ξ22Ψ1 − Ψ

T
2 Ξ

T
12 Ψ T

2 Ξ22Ψ2


� 0, (103)

Z = x̂k+1|k − fk (x̂k ), (104)

B = [I , 0, 0], (105)

where zero matrices and identity matrices have compatible
dimensions. By using the decoupled method [30], the opti-
mization problem in Proposition 1 is equivalent to:

min
λ
g
2,λ

u,λw,λ
g
1,λ

v,λf ,λh
f (B(Ψ T

2 Ξ22Ψ2)+BT ) (106)

subject to (40), (41), (I − (Ψ T
2 Ξ22Ψ2)+Ψ T

2 Ξ22Ψ2)BT

= 0, (107)

and the optimal ellipsoid Ek+1|k can be computed as:

Pk+1|k = B(Ψ T
2 Ξ22Ψ2)−1BT , (108)

Z = B(Ψ T
2 Ξ22Ψ2)−1(Ψ T

2 Ξ22Ψ1 − Ψ
T
2 Ξ

T
12). (109)

Through the definition in (25)-(31) and (34)-(38), we have:

B(Ψ T
2 Ξ22Ψ2)−1BT

= (λuP−1k + λ
g
2Gk + (Jfk − I )

T (
Qk
λw
+
Pfk
λf

)−1(Jfk − I )

+ JThk (
Rk
λv
+ (λhP−1hk + λ

g
1I )
−1)−1Jhk )

−1, (110)

Z = x̂k+1|k − fk (x̂k )

= Pk+1|kX1 + Pk+1|kC1X2 + Pk+1|kC2X3. (111)

Thus, (32) and (33) can be achieved.
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APPENDIX B
Proof 2.1 (Proof of Proposition 3): xk+1 ∈ Ek+1|k is equiv-
alent to that xk+1 = x̂k+1|k + Ek+1|kuk+1|k , ‖uk+1|k‖ ≤ 1,
where Ek+1|k is the Cholesky factorization of Pk+1|k . Hence
we have:

xk+1 − x̂k+1 = x̂k+1|k + Ek+1|kuk+1|k − x̂k+1, (112)

and

yk+1 = hk+1(xk+1)+ vk+1

= hk+1(x̂k+1|k )+ Jhk+1Ek+1|kuk+1|k

+ ehk+1 + Bhk+11hk+1 + vk+1. (113)

In defining

ξ = [1, uTk+1|k , v
T
k+1,1

T
hk+1 ,1]T , (114)

(112) and (113) can be rewritten as:

xk+1 − x̂k+1 = Φk+1(x̂k+1)ξ, (115)

0 = Ψk+1(yk+1)ξ, (116)

the constraint of xk (i.e., (12)) can be rewritten as:

ξT0ξ = 0, (117)

where Φk+1(x̂k+1), Ψk+1(yk+1) and 0 are denoted by (46),
(47) and (50), with compatible dimension zero matrices
among these, respectively.

In addition, the condition of xk+1 ∈ Ek+1

(xk+1 − x̂k+1)T (Pk+1)−1(xk+1 − x̂k+1) ≤ 1 (118)

is equivalent to

ξT [Φk+1(x̂k+1)
T (Pk+1)−1Φk+1(x̂k+1)

− diag(1, 0, 0, 0, 0)]ξ ≤ 0, (119)

with compatible dimension zero matrices among this. Based
on the definition of ξ , the conditions of the unknown vari-
ables, and the S-procedure [46], [47], a sufficient condition of
(119) to hold is that there exist scalars λy ∈ R, λg2 ∈ R, λu ≥
0, λv ≥ 0, λg1 ≥ 0, λh ≥ 0, such that:

Φk+1(x̂k+1)
T (Pk+1)−1Φk+1(x̂k+1)−Ξ

− λy(Ψk+1(yk+1))TΨk+1(yk+1) � 0, (120)

where Ξ is denoted by (52) with compatible dimension zero
matrices among this.
By denoting (Ψk+1(yk+1))⊥ as the orthogonal com-

plement of Ψk+1(yk+1), the following inequality can be
obtained:

(Ψk+1(yk+1))⊥)TΦk+1(x̂k+1)
T (Pk+1)−1

Φk+1(x̂k+1)(Ψk+1(yk+1))⊥

− (Ψk+1(yk+1))⊥)TΞ (Ψk+1(yk+1))⊥ � 0. (121)

Based on Schur complements [46], (121) can be rewritten
as: [

−Pk+1
(Φk+1(x̂k+1)(Ψk+1(yk+1))⊥)T

Φk+1(x̂k+1)(Ψk+1(yk+1))⊥

−((Ψk+1(yk+1))⊥)TΞ (Ψk+1(yk+1))⊥

]
� 0, (122)

−Pk+1 ≺ 0. (123)

The above analysis outlines the principle of determining
the state bounding ellipsoid. The optimal state bounding
ellipsoid can be derived by minimizing f (Pk+1).
Proof 2.2 (Proof of Proposition 4): By using Schur com-

plements [46] and reordering of the blocks, (45) is equivalent
to:Pk+1 Z B

ZT Ξ11 + Ψ
T
1 Ξ22Ψ1 Ψ T

1 Ξ22Ψ2 −Ξ12Ψ2
BT Ψ T

2 Ξ22Ψ1 − Ψ
T
2 Ξ

T
12 Ψ T

2 Ξ22Ψ2


� 0, (124)

Z = x̂k+1 − x̂k+1|k , (125)

B = [I , 0], (126)

where zero matrices and identity matrices have compatible
dimensions. Through the decoupled method [30], the opti-
mization problem in Proposition 3 can be equivalent to:

min
λ
g
2,λ

u,λw,λ
g
1,λ

v,λf ,λh
f (B(Ψ T

2 Ξ22Ψ2)+BT ) (127)

subject to (66), (67), (I − (Ψ T
2 Ξ22Ψ2)+Ψ T

2 Ξ22Ψ2)BT

= 0, (128)

and the optimal ellipsoid Ek+1 can be computed as:

Pk+1 = B(Ψ T
2 Ξ22Ψ2)−1BT , (129)

Z = B(Ψ T
2 Ξ22Ψ2)−1(Ψ T

2 Ξ22Ψ1 − Ψ
T
2 Ξ

T
12). (130)

Through the definition in (53)-(59) and (62)-(64), we have:

B(Ψ T
2 Ξ22Ψ2)−1BT

= (λuP−1k+1|k + λ
g
2Gk+1

+ JThk+1 (
Rk+1
λv
+(λhP−1hk+1+λ

g
1I )
−1)−1Jhk+1 )

−1, (131)

Z = x̂k+1 − x̂k+1|k = Pk+1X1 + Pk+1CX2. (132)

Thus, (60) and (61) can be achieved.

APPENDIX C
Proof 3.1 (Proof of Corollary 1): Without loss of generality,
assume that d1k in (3) takes infinity and d2k ≥ 0, then the
unilateral constraint has the form:

xTk Ĝkxk + β̂
T
k xk + α̂k ≤ d

2
k . (133)

Hence, this can be rewritten as:

xTk Gkxk + β
T
k xk + αk ≤ 1, (134)

where Gk = 1
d2k
Ĝk , βTk =

1
d2k
β̂Tk , and αk =

1
d2k
α̂k .
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Prediction step: If we define

ξ = [1, uTk ,w
T
k , v

T
k ,1

T
fk ,1

T
hk ]

T , (135)

(134) can be rewritten as:

ξT (0 − diag(1, 0, 0, 0, 0, 0))ξ ≤ 0, (136)

where 0 is denoted by (70) with compatible dimension zero
matrices among this.

In addition, the condition of xk+1 ∈ Ek+1|k is equivalent
to:

ξT [Φk+1|k (x̂k+1|k )
T (Pk+1|k )−1Φk+1|k (x̂k+1|k )

− diag(1, 0, 0, 0, 0, 0)]ξ ≤ 0, (137)

where Φk+1|k is denoted by (68) with compatible dimension
zero matrices among this. Similar to Proposition 1, based on
the definition of ξ , the conditions of the unknown variables,
S-procedure [46], [47], and Schur complements [46], the pre-
diction step can be transformed into an SDP problem with the
definition in Corollary 1.

Update step: If we define

ξ = [1, uTk+1|k , v
T
k+1,1

T
hk+1 ]

T , (138)

the constraint of xk can be rewritten as:

ξT (0 − diag(1, 0, 0, 0))ξ ≤ 0, (139)

where 0 is denoted by (74) with compatible dimension zero
matrices among this.

Furthermore, the condition of xk+1 ∈ Ek+1 can be rewritten
as:

ξT [Φk+1(x̂k+1)
T (Pk+1)−1Φk+1(x̂k+1)

− diag(1, 0, 0, 0)]ξ ≤ 0, (140)

where Φk+1 is denoted by (72) with compatible dimension
zero matrices among this. Similar to Proposition 3, based on
the definition of ξ , conditions of the unknown variables, S-
procedure [46], [47], and Schur complements [46], the update
step can be transformed into an SDP problem with the defi-
nition in Corollary 1.
Proof 3.2 (Proof of Corollary 2): If Ĝk in (3) takes zero

matrix, (11) can be written as

−1 ≤ βTk xk + αk ≤ 1. (141)

Prediction step: If we define

ξ = [1, uTk ,w
T
k , v

T
k ,1

T
fk ,1

T
hk ]

T , (142)

(141) can be rewritten as:

ξT (0T0 − diag(1, 0, 0, 0, 0, 0))ξ ≤ 0, (143)

where 0 is denoted by (78) with compatible dimension zero
matrices among this.

In addition, the condition of xk+1 ∈ Ek+1|k is equivalent
to:

ξT [Φk+1|k (x̂k+1|k )
T (Pk+1|k )−1Φk+1|k (x̂k+1|k )

− diag(1, 0, 0, 0, 0, 0)]ξ ≤ 0, (144)

where Φk+1|k is denoted by (76) with compatible dimension
zero matrices among this. Similar to Proposition 1, based on
the definition of ξ , the conditions of the unknown variables,
S-procedure [46], [47], and Schur complements [46], the pre-
diction step can be transformed into an SDP problem with the
definition in Corollary 2.

Update step: if we define

ξ = [1, uTk+1|k , v
T
k+1,1

T
hk+1 ]

T , (145)

the constraint of xk can be rewritten as:

ξT (0T0 − diag(1, 0, 0, 0))ξ ≤ 0, (146)

where 0 is denoted by (82) with compatible dimension zero
matrices among this.

Furthermore, the condition of xk+1 ∈ Ek+1 is equivalent
to:

ξT [Φk+1(x̂k+1)
T (Pk+1)−1Φk+1(x̂k+1)

− diag(1, 0, 0, 0)]ξ ≤ 0, (147)

where Φk+1 is denoted by (80) with compatible dimension
zero matrices among this. Similar to Proposition 3, based
on the definition of ξ , the conditions of the unknown vari-
ables, S-procedure [46], [47], and Schur complements [46],
the update step can be transformed into an SDP problem with
the definition in Corollary 2.
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