
Received December 26, 2019, accepted January 10, 2020, date of publication January 13, 2020, date of current version January 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2966433

An Empirical Comparison of the Efficiency and
Effectiveness of Genetic Algorithms and Adaptive
Random Techniques in Data-Flow Testing
FAHAD M. ALMANSOUR1, ROOBAEA ALROOBAEA 2, AND AHMED S. GHIDUK 2,3
1Depertment of Computer Science, College of Sciences and Arts in Rass, Qassim University, Buraydah 51452, Saudi Arabia
2College of Computers and Information Technology, Taif University, Taif 21974, Saudi Arabia
3Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt

Corresponding author: Ahmed S. Ghiduk (asaghiduk@yahoo.com)

This work was supported by the Deanship of Scientific Research, Qassim University, Saudi Arabia, under Grant
alrasscac-2018-1-14-S-3997 during the academic year 1440 AH/2018 AD.

ABSTRACT Software Testing depends on the execution of the tested-program against a set of test-inputs
and the comparison of its outputs with the expected ones. The size of the input domain is very large
that can be the set of real numbers (R). Thus, the selection of the appropriate inputs is one of the key
problems in software testing. This process is time-consuming and needs a lot of effort and budget. Therefore,
automatic inputs generation techniques are required to overcome these problems. Genetic algorithms (GAs)
have been successfully used for generating test-inputs. Researchers proved that GAs overcame ordinary
random search techniques (ORTs) in generating inputs. In addition, GAs can converge faster than ordinary
random techniques and they can reduce effectively the size of the test-suite. Unfortunately, technically GAs
needs time more than ORTs. Adaptive random testing technique (ART) is a form of ORT that works for
distributing test-cases more evenly through the input domain to increase the efficiency of ORTs. So far,
there is no study comparing the efficiency of GAs and ARTs in data-flow testing. In this paper, we introduce
an empirical comparison for genetic algorithms and adaptive random techniques according to four factors:
reducing the size of the test-suite, convergence speed, elapsed time, and the effectiveness in maximizing the
coverage ratio of all du-pairs criterion. The experimental study, which was conducted to compare the two
techniques, contains 7 Java programs. The results of the experiments showed that the GA technique defeated
the ORT technique and the ART technique in reducing the size of the required test-suite to satisfy all du-pairs
criterion. Where the GA technique created in total 31532 test-inputs while the ART technique generated
61841 and the ORT technique produced 32064. Further, the results showed that the GA technique converged
faster than the ORT technique and the ART technique. Where the procedure of the GA technique was
repeated 3153 times totally while the procedure of the ART technique was iterated 6184 times and the
procedure of the ORT technique was repeated 3206 times. In addition, the convergence rate of GA-based
technique = 8.25 generations/second, the convergence rate of the ORT = 11.98 generations/second, and
the convergence rate of the ART = 13.27 generations/second. Moreover, the results showed that the GA
technique is faster than the ART technique and slower than the ORT technique. Where the GA technique
consumed in total 382 seconds while the ART technique consumed 465.9 seconds and the ORT technique
consumed 267.6 seconds. Additionally, the results showed that the GA technique satisfied overall coverage
ratio equals 74% of all du-pairs while the ART technique satisfied 78% and the ORT technique satisfied 73%.
From these results, we concluded that GA algorithms are more effective than ORT and ART techniques in
data-flow testing but ART satisfied the most coverage ratio. Therefore, we recommend hybridizing GA and
ART and applying the hybrid technique in the test-data generation process.

INDEX TERMS Adaptive random testing, data-flow testing, genetic algorithms, test data generation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

I. INTRODUCTION
Software Testing depends on the execution of the tested-
program against a set of test-inputs (test-data) and the

12884 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8199-5852
https://orcid.org/0000-0002-6845-3490
https://orcid.org/0000-0003-3264-185X


F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

comparison of its outputs to the expected ones [1], [2].
Finding the proper inputs is one of the major difficulties in
software testing. This process is a time-consuming process
and needs a lot of effort and budget. Therefore, automatic
test-inputs generation techniques are required to overcome
these problems.

Many test-inputs generation methodologies have been
developed [3]. The earliest test-inputs generation technique
is the random based inputs generation technique. The ran-
dom technique relies on producing the inputs randomly until
the suitable inputs are found [4]. Symbolic execution based
inputs generation: symbolic execution based techniques exe-
cute the tested-program using symbolic values instead of
actual or numerical values and collect a set of conditions
which are solved to find inputs that cover a given tar-
get [5] [6]. Dynamic execution based inputs generation tech-
niques depend on the execution of the tested-program using
actual or numerical values (e.g., produced randomly), and
symbolic values in parallel. Then, path conditions are col-
lected during the execution to find new test-inputs [7], [8].
Search based test-inputs generation techniques have been
suggested recently to produce test-inputs. These techniques
use techniques such as genetic algorithms [9]–[11], ant
colony [12], etc.

Adaptive random testing technique (ART) is a form ofORT
that works for distributing test-cases more evenly through
the input domain to increase the efficiency of ORTs. A wide
number of researches have studied the concept of Adaptive
Random Testing (ART) to increase the efficiency of random
testing [13]–[16]. ART has been applied in some aspects of
software testing such as failure detection [15] and test-data
generation for path coverage [16], [17].

Form the above discussion, GAs [37]–[39] and ARTs
[40]–[42] are search techniques that have been success-
fully used in the area of software testing. Researchers
demonstrated the efficiency and the effectiveness of GAs
which overcame random search in generating test-inputs.
In addition, the previous work showed that GA-based test-
inputs are effective than those generated randomly. Also,
GAs can converge faster than random techniques and they
can reduce effectively the size of the test-suite. Unfor-
tunately, technically GAs needs time more than random
techniques.

Although several studies have been done to find test-data
using genetic algorithms or adaptive random techniques,
there is no study compares the efficiency of the two tech-
niques in the area of data-flow testing.

Therefore, this paper provides an empirical study to assess
the efficiency and effectiveness of GA and ART in data-flow
testing. This study will assess the two techniques according to
four factors given below. Therefore, the main contributions
of this paper are: 1) developing a testing tool to create the
test-inputs using genetic algorithms; 2) developing a testing
tool to create the test-inputs using adaptive random technique;
3) conducting an empirical study to examine the following set
of research questions:

RQ1: In terms of the number of test-inputs, which one of
the two techniques is more effective in reducing the size of
the test-suite?

RQ2: In terms of the number of generations, which tech-
nique is faster in convergence, GA or ART?

RQ3: In terms of the elapsed time, which technique is
faster in time, GA or ART?

RQ4 In terms of the coverage ratio of all du-pairs crite-
rion, which one of the two techniques is more effective in
maximizing the coverage ratio, GA or ART?

The main objective of this paper is conducting an empiri-
cal comparison for genetic algorithms and adaptive random
testing techniques. The comparison of these two techniques
will use the following four factors to estimate their efficiency
and effectiveness:

i. Reducing the size of the test-suite. The first metric of
the comparison is the mass of the test-suite in terms of the
number of test-inputs generated by each technique.

ii. Convergence speed. The second metric of the compari-
son is the convergence in terms of the number of generations
needed to find the required test-inputs and the rate of conver-
gence.

iii. Elapsed time. The third metric of the comparison is the
execution time of each technique.

iv. Coverage efficiency. The fourth metric of the compar-
ison is the coverage efficiency (i.e. the effectiveness of each
technique in data-flow testing especially the coverage of all
du-pairs criterion).

A set of experiments will be conducted to compare the two
techniques according to these four factors.

The remainder of the paper is organized as follows. Some
essential concepts are given in Section 2. Section 3 presents
the proposed GAs and ART. Section 4 presents the details of
the empirical study and its results are presented in Section 5.
Section 6 summaries the results of the empirical study.
Section 7 introduces the conclusion of the paper and the
upcoming work.

II. BACKGROUND
This section introduces the concepts of test-inputs generation,
genetic algorithms, adaptive random techniques, and data-
flow testing to facilitate understanding of the rest of this
research.

A. TEST-DATA GENERATION
Software testing depends on the execution of the tested com-
ponent against a number of test cases for detecting defects or
assessing quality. A test case is a test element that comprises
of: (1) A number of test-inputs (test-suite) which are data
items generated by an outside source and delivered to the
tested component; (2) Execution conditions needed to run
the test such as a specific state of a database; (3) Expected
outputs which are the definite results generated by the tested
component [1], [2].

Creating test-inputs has a critical role in the success and
productivity of the software testing process. This process

VOLUME 8, 2020 12885



F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

concentrates on finding a set of test-inputs to execute the
tested-program.

B. GENETIC ALGORITHMS
The main principles of genetic algorithms (GAs) are pre-
sented by Holland [18] in 1975. The simple GA begins by
creating a preliminary population of individuals. Every one
of these individuals is symbolized by a binary string called
chromosome randomly created. Figure 1 presents the main
steps of the simple GA, in which P(n) is the set of individu-
als (population) at generation n.

FIGURE 1. Simple GA algorithm.

In the first step, GA randomly generates a set of individuals
as the initial population. In the second step, GA estimates
the fitness of every individual in the initial population. In the
third step, GA examines whether the termination condition
is satisfied or not. In the fourth step, GA picks out couples
of individuals to be combined in a selected method creating
a new population. In the fifth step, GA mixes the picked
individuals by two procedures (crossover and mutation) to
create new powerful individuals. The crossover procedure
swaps portions of data between two chromosomes while
the mutation procedure presents minor changes into a small
percentage of the population. Crossover and mutation pro-
cedures in GA are important factors to reaching the desired
outcomes. As observed in many of GA researches, select-
ing suitable crossover and mutation testing techniques are
objective to the nature of the studied problem, the desired
outcomes and data-representation methods [19]. In the sixth
step, GA evaluates the fitness of each individual in the current
population. These steps are repeated up to either the current
population composes a solution to the studied problem or the
termination criterion is reached.

C. ADAPTIVE RANDOM TECHNIQUES
A wide number of adaptive random search techniques for
solving optimization problems have been presented since
1968 [20]. The first presented Adaptive Random Test-
ing (ART) is the Fixed Size Candidate Set ART algorithm
(FSCS-ART) [13] presented in Figure 2. Basically, to select a
new test-input, n candidate test-inputs are randomly created.
To every candidate ci, the closest formerly executed test-input
is determined, and the distance di is calculated. The candidate
which has the biggest di is chosen, and the others are ignored.
This procedure is iterated until the desired stopping condition
is reached.

FIGURE 2. FSCS-ART algorithm.

D. DATA-FLOW TESTING
The construction of any program could be represented by the
control-flow graph. The control-flow graph CFG = (V, A),
distinguished by a single start vertex vs and a single end
vertex ve, is composed of a group of vertices V, where each
vertex represents a single statement or a set of consecutive
statements, and a group of directed arcs A, where a directed
arc a = (x, y) is an ordered pair of two adjacent vertices,
named tail and head of a, respectively [21], [22].

In data-flow testing, all definition-use associations
(du-pairs) for a variable z of the tested code are identified.
A du-pairs is an ordered triple (d, u, z) in which the statement
d holds a definition for the variable z and the statement
u holds a use of z that can be reached by d through some
paths in the tested code [23], [24]. A variable is defined in a
line of code once its value is assigned or changed. A variable
is used in a line of code once its value is used in that line and
not changed.

There are many data-flow testing criteria such as all
uses, all definitions, all du-pairs, etc. [21]–[24]. The aim
of data-flow testing is finding a test-suite to cover one of the
data-flow testing criteria [21]–[24]. In this work, we use all
du-pairs criterion.

III. THE PROPOSED TECHNIQUE
The proposed technique consists of four main phases. In the
following sections, these phases will be discussed in more
details.

A. ANALYSIS PHASE
This phase analyzes the tested-program and applies the data-
flow concepts introduced by Allen and Cocke [25] to find all
definition-use pairs (du-pairs) in the tested-program.

B. GENETIC ALGORITHM PHASE
Genetic algorithms have applied in many software test-
ing activates. This phase uses a proposed genetic algo-
rithm to create for the tested-program a suite of test-inputs.

12886 VOLUME 8, 2020



F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

The specifications of the proposed genetic algorithm are
described in the following subsections. These specifications
are improved from our preceding work [9], [10], and [26] as
follows:

1) REPRESENTATION OF THE CHROMOSOME
To represent the solution (the values of the inputs of the
tested-program), a binary array of length l which consists of a
set of zeros and ones (e.g., c = 10101001, l = 8 for example
for two integers input variable) is used by the suggested
genetic algorithm to encode the set of inputs of the tested-
program. The length (l) of this array (i.e., number of zeros
and ones) is subject to the demanded precision and the data
type of each variable. This binary array is called chromo-
some which can be decoded to represent a solution of the
studied problem or a set of test-inputs for the tested-program
(e.g. chromosome c can be decoded to test input 10 and 9).

2) INITIAL POPULATION
Each population (test-suite T ) is consists of ps of binary
arrays which are called chromosomes. Each chromosome
is a test input t . The first population is called the initial
population. Consistent with the representation of chromo-
some, the initial population is a set of size ps of binary
arrays or chromosomes which are built randomly by creating
ps bit arrays of length l. The accepted size of the popu-
lation is experimentally determined. Each chromosome can
be decoded into a number of values represent k test input
variables or a test input.

3) EVALUATION FUNCTION
The suggested genetic algorithm employs an evaluation func-
tion to estimate the quality of the created inputs. This function
aims at maximizing the coverage ratio of the du-pairs in the
tested-program. The function is written as a formula in terms
of the number of covered du-pairs and the total number of
du-pairs. This formula is encoded as given in eq. (1).

F =
number of coverd du_pairs
Total number of du_pairs

(1)

4) SELECTION
The suggested GA utilizes the roulette wheel technique [19]
to select from the current population of test-inputs a set
of inputs (parent individuals) to be recombined by two
GA-operations (GA-crossover and GA-mutation) for con-
structing ps new inputs as the new population.

5) RECOMBINATION
The recombination procedure applies GA-crossover and
GA-mutation processes on the data selected by the roulette
wheel technique to construct new individuals to form a new
population.

GA-Crossover creates more quality individuals over time
by swapping chunks of data at a random position between
couples of individuals in the current population. The subset

of individuals which subject to the crossover process depends
on crossover probabilitypx and population size ps. The size of
this subset is px × ps. The most suitable values of ps and px
depends on the experiment.

GA-Mutation changes the values of some cells inside a
selected individual from 0 to 1 or vice versa. The number of
mutated cells of an individual depends on a pre-determined
probability pm, length of the individual l, and the size of
population ps. The number of mutated cells can be computed
using the formula pm ×l×ps.

6) GA-STOP CONDITION
In each cycle of the suggested genetic algorithm, the popula-
tion is evolved until creating test-inputs that cover the target
du-pairs or the maximum number of generations maxGen
is reached. In addition, the suggested genetic algorithm is
reiterated until covering a percentage of all du-pairs.

C. ADAPTIVE RANDOM PHASE
This module implements the concepts of adaptive random
testing techniques [13]–[15], [20] to generate a set of test-
inputs for each tested-program. The first ART technique,
(FSCS-ART) [13], is given in Figure 2. The specifications
of the proposed adaptive random technique are described
in the following subsections. The major components of the
proposed ART are adapted from the work of T. Y. Chen
[13]–[15] as follows:

1) INITIAL TEST INPUT
The ART starts by generating randomly only one test
input t as the initial population. The ART executes the
tested-program against the test input t . Then ART keeps the
test input t in the test-suite T .

2) NEW TEST INPUTS
ART creates randomly k candidates test-inputs ci and
i = 1. . .k .

3) EVALUATION AND SELECTION
To select the new test input, ART locates for each candidate
test-input ci the closest previously executed test-input and
determines the distance di. Then, ART selects the candidate
with the largest di and discards the others.

4) ART-STOP CONDITION
This process is stopped once a percentage of all du-pairs are
covered by a set of test-inputs or the maximum number of
generation (mGen) is reached.

D. DATA-FLOW TESTING PHASE
This module aims at estimating the quality of each one of the
two test-suites which are generated in the earlier phases by
the proposed genetic algorithm and the suggested adaptive
random technique. To achieve its goal, the data-flow testing
module executes each tested-program against each one of

VOLUME 8, 2020 12887



F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

the two suites. Then for each tested-program, the size of
the test-suite, the number of generations, the elapsed time
and the coverage ratio of all du-pairs for each technique are
calculated.

Any data-flow testing criterion can be used instead of all
du-pairs criterion [22], [24]. Besides, mutation testing can be
used to evaluate the quality of the test-suites [27].

IV. THE PROPOSED EMPIRICAL STUDY
In this section, the main stages of the empirical study such as
the implemented prototype, the subject programs, the con-
ducted experiments to answer the proposed research ques-
tions and the setup and procedure of the experiments are
discussed. While the results of these experiments will be
discussed in the next section.

A. PROTOTYPE IMPLEMENTATION
To answer the research questions, a set of empirical stud-
ies was conducted to investigate these questions. Therefore,
an automatic tool was developed which consists of four
modules: Analysis-Module, GA-Module, ART-Module, and
Data-flow-Testing Module. Figure 3 shows the architecture
of the prototype tool.

FIGURE 3. Architecture of the prototype tool.

The tool starts by reading the program under test in Java
language. Then, the tool calls the analysis module to find the
set of all du-pairs. After that, it passes the tested-program and
the set of all du-pairs to the GA-Module and ART-Module.
Then, it selects one of two modules (GA-Module or ART-
Module) to generate a test-suite to cover a selected data-flow
criterion such as all-du-pairs. Finally, the tool passes the
generated test-suites to the Data-flow Testing Module which
executes each tested-program using the generated test-suite.
Then, the data-flow testing module estimates the quality of
the test-suite by calculating for each tested-program the size
of the test-suite, the number of generations, the elapsed time
and the coverage ratio of all du-pairs.

B. SUBJECT PROGRAMS
The conducted experiment used a set of subject Java pro-
grams that have been used in previous similar researches [9],
[28]–[32]. These subjects contain a set of benchmarks pro-
grams such as Mid, Remainder, Triangle, and Power, and

some artificial programs of various configurations and struc-
tures. Table 1 gives the specifications of these programs:
the first column presents code and name for each program;
the second column gives several of the previous work which
employed these programs; the third column presents the spec-
ifications of each program. Each program is treated distinctly
from the other programs. Consequently, the procedure of the
experiment is conducted separately on each program and each
research question is investigated separately.

TABLE 1. The specifications subjects.

C. THE SETUP AND PROCEDURE OF THE EMPIRICAL
STUDY
Setup the specification of the proposed genetic algorithm
to be: ps = 10 , 50, and 100; px = 0.85; pm = 0.15;
maxGen= 100. In addition and to fairness, setup the specifi-
cation of the proposed adaptive random technique to be: the
number of candidates test-inputs k = 10 as recommended by
Chen et al. [13]; mGen = 100.

For each tested-program apply the following steps ten
times with changing ps to be 10, 50, or 100:

1- Apply the analysis module on the tested-program to
find its du-pairs.

2- For each du-pair, do the following steps:
a- Select ps test-inputs and apply the proposed GA

to find a test-suite (GA-T) that covers the selected
du-pair.

b- Select k test-inputs and apply the proposed ART
to find a test-suite (ART-T) that covers the
selected du-pair.

c- Pass the tested-program, the selected du-pair
and the two test-suite GA-T and ART-T to the
data-flow testing module which executes the
tested-program against each one of the two test-
suites.

d- For each tested-program, record the following
four metrics: the size of the test-suites GA-T
and ART-T, the number of generations needed to
create each test-suite, elapsed time, and coverage
ratio of all du-pairs.

e- Go to step (a).
3- find the average of the ten times for each metric.
4- Go to step (1).

V. RESULTS AND DISCUSSION
To answer the research questions, the procedure of the exper-
iment is performed ten times such that in the first three

12888 VOLUME 8, 2020



F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

TABLE 2. No. of test-data generated by GA.

TABLE 3. No. of test-data generated by ORT.

TABLE 4. No. of test-data generated by ART.

times ps is configured to be 10; in the second three times
ps is configured to be 50; in the last four times ps is
configured to be 100. Besides, an ordinary random testing
technique (ORT) is implemented to be a baseline and com-
pared with GA and ART. The number of the generated test-
inputs, the number of generations, the elapsed time, and the
coverage ratio of all du-pairs for each subject program are
computed. Finally, the total and the average of all ten runs
are computed for the number of the generated test-inputs,
the number of generations, the elapsed time, and the coverage
ratio.

Exploring the first research question (RQ1: In terms of
the number of test-inputs, which one of the two techniques is
more effective in reducing the size of the test-suite?):

After applying the procedure of the empirical study as
given in section IV.C, the number of test-inputs was gathered
and presented as follows. Table 2 presents the number of
test-inputs generated by the GA technique. Table 3 presents
the number of test-inputs generated by the ORT technique.
Table 4 presents the number of test-inputs generated by the
ART technique.

Figure 4 gives a comparison between the GA, the ORT, and
the ART techniques according to the number of test-inputs
generated by each of them for every subject program.
Figure 5 gives a comparison between the GA, the ORT,
and the ART techniques according to the total number of
test-inputs generated by each of them for all subject programs
and the average as well.

VOLUME 8, 2020 12889



F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

FIGURE 4. No. of generated test-inputs for each program using the GA,
the ORT, and the ART techniques.

FIGURE 5. The total and average of no. of test-inputs generated by the
GA, the ORT, and the ART techniques.

According to the results given in Table 2, Table 3, Table 4,
Figure 4, and Figure 5, the GA technique is the most effective
technique in reducing the size of the test-suite. The GA
technique creates in total 31532 test-inputs to cover 74% of
all du-pairs of all subject programs with an average 4504.6
test-inputs for each subject program while the ART tech-
nique generates in total 61841 test-inputs to cover 78% of all
du-pairs of all subject programs with an average 8834.4 test-
inputs for each subject program. In addition, the ORT tech-
nique generates in total 32064 test-inputs to cover 73% of
all du-pairs of all subject programs with an average 4580.6
test-inputs for each subject program. Besides, the GA tech-
nique generates for each subject program a test-suite smaller
than the test-suite generated by the ORT technique and the
ART technique. Consequently, the GA technique defeated the
ORT technique and the ART technique in reducing the size of
the required test-suite to cover the du-pairs of each subject
programs.

Exploring the second research question (RQ2: In terms
of the number of generations, which technique is faster,
the GA or the ART?):

After applying the procedure of the empirical study as
given in section IV.C, the number of generations was gathered

and presented as follows. Table 5 presents the number of
generations taken by the GA technique to create a test-suite
for covering the du-pairs of the subject programs. In addition,
Table 6 presents the number of generations taken by the ORT
technique to find that test-suite. Besides, Table 7 presents the
number of generations taken by the ART technique to find
that test-suite. Figure 6 gives a comparison between the GA,
the ORT and the ART techniques according to the number of
generations taken by each of them for every subject program.
Figure 7 gives a comparison between the GA, the ORT and
the ART according to the total number of generations taken
by each of them for all subject programs and the average value
of number of generations as well.

FIGURE 6. No. of generations taken by the GA, the ORT and the ART
techniques.

FIGURE 7. Total and average of no. of generations taken by the GA,
the ORT, and the ART techniques.

According to the results given in Table 5, Table 6, Table 7,
Figure 6 and Figure 7 the GA technique converges faster
than the ORT technique and the ART technique. Where the
procedure of GA was repeated in total 3153 times to cover
74% of all du-pairs of all subject programs with an average
450.5 times for each subject program while the procedure of
the ART technique was iterated in total 6184 times to cover
78% of all du-pairs of all subject programs with an average
883.4 times for each subject program. In addition, the proce-
dure of the ORT technique was repeated in total 3206 times

12890 VOLUME 8, 2020



F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

TABLE 5. No. of generation taken by GA.

TABLE 6. No. of generation taken by ORT.

TABLE 7. No. of generation taken by ART.

to cover 73% of all du-pairs of all subject programs with
an average 458.1 times for each subject program. Besides,
the GA technique procedure was iterated for each subject
program number of generations smaller than the procedures

of the ORT technique and the ART technique. Consequently,
the GA technique overcomes the ORT technique and the ART
technique in reducing the number of generations to cover the
du-pairs of each subject programs.

VOLUME 8, 2020 12891



F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

TABLE 8. Elapsed time taken by GA.

TABLE 9. Elapsed time taken by ORT.

To find the convergence speed, we computed for each
technique of the three techniques (GA, ORT, and ART) the
convergence rate using the following formula:

convergence rate =
number of generations

elapsed time

We found that the convergence rate of GA-based tech-
nique = 8.25 generations/second, the convergence rate of
the ORT = 11.98 generations/second, and the convergence
rate of the ART = 13.27 generations/second. Consequently,
the GA-based technique converged faster than the ORT tech-
nique and the ART technique.

Exploring the third research question (RQ3: In terms of
the elapsed time, which technique is faster, the GA technique
or the ART technique?):

After applying the procedure of the empirical study as
given in section IV.C, the elapsed time was gathered and
presented as follows. Table 8 presents the elapsed time taken
by the GA technique to create a test-suite for covering the
du-pairs of the subject programs. In addition, Table 9 presents
the elapsed time taken by the ORT technique to find that test-
suite. Besides, Table 10 presents the elapsed time taken by
the ART technique to find that test-suite. Figure 8 gives a

FIGURE 8. Elapsed time taken by the GA, the ORT and the ART
techniques for each subject program.

comparison between the GA technique, the ORT technique
and the ART technique according to the elapsed time taken
by each of them for every subject program. Figure 9 gives a
comparison between the GA technique, the ORT technique
and the ART technique according to the total elapsed time
taken by each of them for all subject programs and the average
value of the elapsed time as well.

12892 VOLUME 8, 2020



F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

TABLE 10. Elapsed time taken by ART.

FIGURE 9. Total and average of elapsed time taken by the GA, the ORT
and the ART techniques.

According to the results given in Table 8, Table 9, Table 10,
Figure 8 and Figure 9 the GA technique is faster than the
ART technique and slower than the ORT technique. Where
the GA technique consumed in total 382 seconds to cover
74% of all du-pairs of all subject programs with an average
54.6 seconds for each subject program while the ART tech-
nique consumed in total 465.9 seconds to cover 78% of all
du-pairs of all subject programs with an average 66.6 seconds
for each subject program. In addition, the ORT technique
consumed in total 267.6 seconds to cover 73% of all du-pairs
of all subject programs with an average 38.2 seconds for each
subject program. Besides, the GA technique consumed time
smaller than the ART technique for three subject programs
out of seven programs while the ART technique consumed
time smaller than the GA technique for other three subject
programs. While the ORT technique consumed time smaller
than the GA technique and the ART technique for all subject
programs. These results due to the nature of each technique
where the processes of the GA procedure and the processes
of the ART procedure are more than the processes of the ORT
procedure.

Exploring the fourth research question (RQ4: In terms
of the coverage ratio of all du-pairs criterion, which one of the
two techniques is more effective in generating a high quality
test-suite, the GA technique or the ART technique?):

FIGURE 10. Coverage ratio done by the GA, the ORT and the ART
techniques for each subject program and its average.

After applying the procedure of the empirical study as
given in section IV.C, the coverage ratio of du-pairs was
gathered and presented as follows. Table 11 presents the
coverage ratio of du-pairs done by the test-suite generated
using the GA technique for each subject program. In addition,
Table 12 presents the coverage ratio of du-pairs done by
the test-suite generated using the ORT technique for each
subject program. Besides, Table 13 presents the coverage
ratio of du-pairs done by the test-suite generated using the
ART technique for each subject program. Figure 10 gives
a comparison between the GA technique, the ORT tech-
nique and the ART technique according to the coverage
ratio of du-pairs done by each of them for every subject
program.

According to the results given in Table 11, Table 12,
Table 13 and Figure 10 the coverage ratio of du-pairs done
by the ART technique is higher than the coverage ratio of
du-pairs done by the GA technique and the ORT technique.
Where the GA technique satisfied coverage ratio equals 74%
of all du-pairs for all subject programs while the ART tech-
nique satisfied coverage ratio equals 78% of all du-pairs for
all subject programs. In addition, the ORT technique satisfied
coverage ratio equals 73% of all du-pairs for all subject
programs.

VOLUME 8, 2020 12893



F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

TABLE 11. The coverage ratio of du-pairs done by GA.

TABLE 12. The coverage ratio of du-pairs done by ORT.

TABLE 13. The coverage ratio of du-pairs done by ART.

Although the ART technique satisfied in total a coverage
ratio better than the GA technique, the GA technique satisfied
a coverage ratio close to the coverage ratio done by the
ART technique for most subject programs except the fourth
subject programs where the ART technique satisfied 92.0%
and the GA technique satisfied 58%. Consequently, both the
GA technique and the ART technique can create high quality
test-suites which can satisfy high coverage ratio of all du-
pairs of the subject programs.

VI. RESULTS SUMMARY
The results of the experiments showed that the GA tech-
nique defeated the ORT technique and the ART technique
in reducing the size of the required test-suite to satisfy
all du-pairs criterion. Where the GA technique creates in

total 31532 test-inputs to cover 74% of all du-pairs of the
subject-programs with an average 4504.6 while the ART
technique generates 61841 test-inputs to cover 78% of all
du-pairs with an average 8834.4 and the ORT technique
generates 32064 test-inputs to cover 73% of all du-pairs
with an average 4580.6. Besides, the GA technique gen-
erates for each subject program a test-suite smaller than
the test-suite generated by the ORT technique and the ART
technique.

Further, the results showed that the GA technique defeated
the ORT technique and the ART technique in reducing the
number of generations required to cover all du-pairs criterion.
Consequently, the GA technique converges faster than the
ORT technique and the ART technique. Where the proce-
dure of the GA technique was repeated in total 3153 times

12894 VOLUME 8, 2020



F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

to cover 74% of all du-pairs with an average 450.5 times
while the procedure of the ART technique was iterated
6184 times to cover 78% of all du-pairs with an average 883.4
times and the procedure of the ORT technique was repeated
3206 times to cover 73% of all du-pairs with an average
458.1 times. Besides, the convergence rate of GA-based tech-
nique= 8.25 generations/second, the convergence rate of the
ORT = 11.98 generations/second, and the convergence rate
of the ART = 13.27 generations/second.
Moreover, the results showed that the GA technique is

faster than the ART technique and slower than the ORT
technique. Where the GA technique consumed in total
382 seconds to cover 74% of all du-pairs with an aver-
age 54.6 seconds while the ART technique consumed
465.9 seconds to cover 78% of all du-pairs with an
average 66.6 seconds and the ORT technique consumed
267.6 seconds to cover 73% of all du-pairs with an average
38.2 seconds.

Additionally, the results showed that the coverage ratio of
all du-pairs criterion done by the ART technique is higher
than the coverage ratio of du-pairs done by the GA technique
and the ORT technique. Where the GA technique satisfied
coverage ratio of all du-pairs equals 74% while the ART
technique satisfied coverage ratio of all du-pairs equals 78%
and the ORT technique satisfied coverage ratio of all du-pairs
equals 73%.

VII. CONCLUSION
This paper introduced an empirical comparison for genetic
algorithms and adaptive random techniques according to four
factors: reducing the size of the test-suite, convergence speed,
elapsed time, and the effectiveness of maximizing the cover-
age ratio of all du-pairs criterion. A set of experiments was
conducted to assess the two techniques according to the four
factors. The results of the experiments showed that the GA
technique defeated the ORT technique and theART technique
in reducing the size of the required test-suite to satisfy all
du-pairs criterion. Further, the results showed that the GA
technique defeated the ORT technique and theART technique
in reducing the number of generations required to cover
all du-pairs criterion. Consequently, the GA technique con-
verges faster than the ORT technique and the ART technique.
Moreover, the results showed that the GA technique is faster
than the ART technique and slower than the ORT technique.
Additionally, the results showed that the coverage ratio of
all du-pairs criterion done by the ART technique is higher
than the coverage ratio of du-pairs done by the GA technique
and the ORT technique. From these results, we concluded
that GA algorithms are more effective than ORT and ART
techniques in data-flow testing but ART satisfied the most
coverage ratio. Therefore, we recommend hybridizing GA
and ART and applying the hybrid technique in data-flow
testing. Therefore, the future work will focus on hybridizing
the genetic algorithms and the adaptive random techniques
and applying the hybrid technique in the test-data generation
process.

ACKNOWLEDGEMENT
The authors gratefully acknowledgeQassimUniversity repre-
sented by the Deanship of Scientific Research on the material
support for this research under the number (2018-1-14-S-
3997) during the academic year 1440 AH/2018 AD.

REFERENCES
[1] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,

3rd ed. Hoboken, NJ, USA: Wiley, 2011.
[2] I. Burnstein, Practical Software Testing: A Process-Oriented Approach,

1st ed. New York, NY, USA: Springer-Verlag, 2003.
[3] S. Mahmood, ‘‘A systematic review of automated test data genera-

tion techniques,’’ M.S. thesis, School Eng. Blekinge Inst. Technol.,
Karlskrona, Sweden, 2007.

[4] J. Voas, L. Morell, and K. Miller, ‘‘Predicting where faults can hide from
testing,’’ IEEE Softw., vol. 8, no. 2, pp. 41–48, Mar. 1991.

[5] M. R. Girgis, ‘‘Using symbolic execution and data flow criteria to aid test
data selection,’’ Softw. Test., Verification Rel., vol. 3, no. 2, pp. 101–112,
Jun. 1993.

[6] A. S. Ghiduk, ‘‘On symbolic execution software testing,’’ Int. J. Inform.
Med. Data Process., vol. 1, no. 1, pp. 38–49, 2016.

[7] R. Ferguson and B. Korel, ‘‘The chaining approach for software test
data generation,’’ Trans. Softw. Eng. Methodol., vol. 5, no. 1, pp. 63–86,
Jan. 1996.

[8] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. De Halleux, and H. Mei, ‘‘Test
generation via dynamic symbolic execution for mutation testing,’’ in Proc.
IEEE Int. Conf. Softw. Maintenance, Sep. 2010, pp. 1–10.

[9] A. S. Ghiduk, M. J. Harrold, and M. R. Girgis, ‘‘Using genetic algorithms
to aid test-data generation for data-flow coverage,’’ in Proc. 14th Asia–
Pacific Softw. Eng. Conf., Dec. 2007, pp. 41–48.

[10] A. M. Khamis, M. R. Girgis, and A. S. Ghiduk, ‘‘Automatic software
test data generation for spanning sets coverage using genetic algorithms,’’
Comput. Inform., vol. 26, no. 4, pp. 383–401, 2007.

[11] D. N. Thi, V. D. Hieu, and N. V. Ha, ‘‘A technique for generating test data
using genetic algorithm,’’ inProc. Int. Conf. Adv. Comput. Appl. (ACOMP),
Nov. 2016, pp. 67–73.

[12] A. S. Ghiduk, ‘‘A new software data-flow testing approach via ant colony
algorithms,’’ Universal J. Comput. Sci. Eng. Technol., vol. 1, no. 1,
pp. 64–72, 2010.

[13] T. Y. Chen, H. Leung, and I. K. Mak, ‘‘Adaptive random testing,’’ in
Advances in Computer Science—ASIAN. Higher-Level Decision Making
(Lecture Notes in Computer Science), vol. 3321, M. J. Maher, Ed. Berlin,
Germany: Springer, 2004.

[14] T. Y. Chen, ‘‘Adaptive random testing,’’ in Proc. 8th Int. Conf. Qual.
Softw., (QSIC), 2008, p. 443.

[15] T. Y. Chen, F.-C. Kuo, R. G.Merkel, and T. Tse, ‘‘Adaptive random testing:
The ART of test case diversity,’’ J. Syst. Softw., vol. 83, no. 1, pp. 60–66,
Jan. 2010.

[16] E. Nikravan, F. Feyzi, and S. Parsa, ‘‘Enhancing path-oriented test data
generation using adaptive random testing techniques,’’ in Proc. 2nd Int.
Conf. Knowl.-Based Eng. Innov. (KBEI), Nov. 2015, pp. 510–513.

[17] R. Huang, J. Chen, and Y. Lu, ‘‘Adaptive random testing with
combinatorial input domain,’’ Sci. World J., vol. 2014, Mar. 2014,
Art. no. 843248.

[18] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI,
USA: Univ. Michigan Press, 1975.

[19] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-
grams, 3rd ed. Berlin, Germany: Springer-Verlag, 1999.

[20] L. Cockrell, ‘‘On adaptive random search techniques,’’ in Proc. 7th Symp.
Adapt. Processes, Dec. 1968, p. 64.

[21] M. S. Hecht, Flow Analysis of Computer Programs. New York, NY, USA:
Elsevier, 1977.

[22] S. Rapps and E. J. Weyuker, ‘‘Data flow analysis techniques for test data
selection,’’ in Proc. 6th Int. Conf. Softw. Eng., Los Alamitos, CA, USA,
Sep. 1982, pp. 272–278.

[23] P. M. Herman, ‘‘A data flow analysis approach to program testing,’’ Aus-
tral. Comput. J., vol. 8, no. 3, pp. 92–96, 1976.

[24] S. Rapps and E. Weyuker, ‘‘Selecting software test data using data flow
information,’’ IEEE Trans. Softw. Eng., vol. SE–11, no. 4, pp. 367–375,
Apr. 1985.

[25] F. E. Allen and J. Cocke, ‘‘A program data flow analysis procedure,’’
Commun. ACM, vol. 19, no. 3, p. 137, Mar. 1976.

VOLUME 8, 2020 12895



F. M. Almansour et al.: Empirical Comparison of the Efficiency and Effectiveness of GAs and ARTs in Data Flow Testing

[26] A. S. Ghiduk and M. R. Girgis, ‘‘Using genetic algorithms and dominance
concepts for generating reduced test data,’’ Informatica, vol. 34, no. 3,
pp. 377–385, 2010.

[27] Y. Jia and M. Harman, ‘‘An analysis and survey of the development of
mutation testing,’’ IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678,
Sep. 2011.

[28] W. B. Langdon, M. Harman, and Y. Jia, ‘‘Efficient multi-objective higher
order mutation testing with genetic programming,’’ J. Syst. Softw., vol. 83,
no. 12, pp. 2416–2430, Dec. 2010.

[29] P. May, J. Timmis, and K. Mander, ‘‘Immune and evolutionary approaches
to software mutation testing,’’ in Artificial Immune Systems (Lecture Notes
in Computer Science), vol. 4628, L. N. de Castro, F. J. Von Zuben, and
H. Knidel, Eds. Berlin, Germany: Springer, 2007.

[30] M. Polo, M. Piattini, and I. García-Rodríguez, ‘‘Decreasing the cost of
mutation testingwith second-ordermutants,’’ Softw. Test., Verification Rel.,
vol. 19, no. 2, pp. 111–131, Jun. 2009.

[31] A. S. Ghiduk and M. Rokaya, ‘‘An empirical evaluation of the subtlety of
the data-flow based higher-order mutants,’’ J. Theor. Appl. Inf. Technol.,
vol. 97, no. 15, pp. 4061–4074, 2019.

[32] A. S. Ghiduk, M. R. Girgis, and M. H. Shehata, ‘‘Employing dynamic
symbolic execution for equivalent mutant detection,’’ IEEE Access, vol. 7,
pp. 163767–163777, 2019.

[33] C. Michael, G. Mcgraw, and M. Schatz, ‘‘Generating software test data
by evolution,’’ IEEE Trans. Softw. Eng., vol. 27, no. 12, pp. 1085–1110,
Dec. 2001.

[34] R. P. Pargas, M. J. Harrold, and R. R. Peck, ‘‘Test-data generation using
genetic algorithms,’’ Softw. Test., Verification Rel., vol. 9, pp. 263–282,
1999.

[35] A. S. Ghiduk, ‘‘Reducing the number of higher-order mutants with the
aid of data flow,’’ e-Inform. Softw. Eng. J., vol. 10, no. 1, pp. 31–49,
2016.

[36] A. S. Ghiduk, ‘‘Using evolutionary algorithms for higher-order mutation
testing,’’ Int. J. Comput. Sci., vol. 11, no. 2, pp. 93–104, Mar. 2014.

[37] D. S. Rodrigues, M. E. Delamaro, C. G. Corrêa, and F. L. S. Nunes, ‘‘Using
genetic algorithms in test data generation: A critical systematic mapping,’’
ACM Comput. Surv., vol. 51, no. 2, p. 41, 2018.

[38] K. E. Serdyukov and T. V. Avdeenko, ‘‘Using genetic algorithm for gen-
erating optimal data sets to automatic testing the program code,’’ in Proc.
Int. Conf. Inf. Technol. Nanotechnol. (ITNT), 2019, pp. 173–182.

[39] S. Rani, B. Suri, and R. Goyal, ‘‘On the effectiveness of using elitist genetic
algorithm in mutation testing,’’ Symmetry, vol. 11, no. 9, 1145, pp. 1–26 ,
2019.

[40] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, ‘‘Adaptive random test
case prioritization,’’ in Proc. IEEE/ACM Int. Conf. Automated Softw. Eng.,
Nov. 2009, pp. 233–244.

[41] B. Jiang andW. Chan, ‘‘Input-based adaptive randomized test case prioriti-
zation: A local beam search approach,’’ J. Syst. Softw., vol. 105, pp. 91–106,
Jul. 2015.

[42] R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey, and X. Xia, ‘‘A survey on
adaptive random testing,’’ IEEE Trans. Softw. Eng., to be published.

FAHAD M. ALMANSOUR received the
bachelor’s degree in primary education from Qas-
sim University, Saudi Arabia, in 2006, the M.S.
degree in IT from De Montfort University, U.K.,
in 2010, and the Ph.D. degree in computing in
programming development from Playmoth Uni-
versity, U.K., in 2017. He is currently an Assistant
Professor with the Computer Science Department,
Qassim University, Saudi Arabia. He is currently
the Dean of Information Technology Deanship of

Qassim University. His research interests include software testing, software
usability, and software development.

ROOBAEA ALROOBAEA received bachelor’s
degree (Hons.) in computer science from King
Abdulaziz University (KAU), Saudi Arabia,
in 2008, and the master’s degree in information
system and the Ph.D. degree in computer sci-
ence from the University of East Anglia, U.K.,
in 2012 and 2016, respectively. He is currently
an Assistant Professor with the College of Com-
puters and Information Technology, Taif Univer-
sity, Saudi Arabia. His research interests include

human–computer interaction, software engendering, cloud computing,
the Internet of Thing, artificial intelligent, and machine learning.

AHMED S. GHIDUK received the B.Sc. degree
from Cairo University (Beni-Suef Branch), Egypt,
in 1994, the M.Sc. degree from Minia University,
Egypt, in 2001, and the joint Ph.D. degree from
Beni-Suef University and the College of Com-
puting, Georgia Institute of Technology, Atlanta,
GA, USA, in 2007. He is currently an Associate
Professor with theDepartment ofMathematics and
Computer Science, Faculty of Science, Beni-Suef
University, Egypt. He is also an Associate Pro-

fessor with the College of Computers and Information Technology, Taif
University, Saudi Arabia. His research interests include software engineer-
ing, search-based software engineering, software testing, mutation testing,
higher-order mutation testing, weak mutation testing, test data generation,
requirements engineering, and genetic algorithms.

12896 VOLUME 8, 2020


