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ABSTRACT Bayesian optimisation is a statistical method that efficiently models and optimises expensive
‘‘black-box’’ functions. This review considers the application of Bayesian optimisation to experimental
design, in comparison to existing Design of Experiments (DOE) methods. Solutions are surveyed for a range
of core issues in experimental design including: the incorporation of prior knowledge, high dimensional
optimisation, constraints, batch evaluation, multiple objectives, multi-fidelity data, and mixed variable types.

INDEX TERMS Bayesian methods, design for experiments, design optimization, machine learning algo-
rithms.

I. INTRODUCTION
Experiments are fundamental to scientific and engineering
practice. A well-designed experiment yields an empirical
model of a process, which facilitates understanding and
prediction of its behaviour. Experiments are often costly,
so formal Design of Experiments methods (or DOE) [1]–[3]
optimise measurement of the design space to give the best
model from the fewest observations.

Models are important decision tools for design engineers.
Understanding of design problems is enhanced when the
design space can be explored cheaply and rapidly, allowing
adjustment of the number and range of design variables, iden-
tification of ineffective constraints, balancing multiple design
objectives, and optimisation [4]. Industrial processes must
be robust to environmental conditions, component variation,
and variability around a target [3]. Robust Parameter Design
(RPD) [5]–[7] systematically characterises the influence of
uncontrollable variables and noise. The number of observa-
tions required to build a model increases rapidly with the
number of variables, making it challenging to investigate
systems with many variables. Screening experiments can
identify subsets of important variables to be later investigated
in more detail [8], [9]. Optimisation is important in most
industrial applications, and there are oftenmultiple objectives
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which must balanced including yield, robustness, and cost.
In classical experimental design, modelling and optimisation
are separate processes, but newer model-based approaches
can potentially sample more efficiently by adapting to the
response surface, and can incorporate optimisation into the
modelling process.

Machine learning has made great strides in the recent
past, and we present here a machine learning approach to
experimental design.BayesianOptimisation (BO) [19], [20]
is a powerful method for efficient global optimisation of
expensive black-box functions. The experimental method
introduces specific challenges: how to handle constraints,
high dimensionality,mixed variable types,multiple objec-
tives, parallel (batch) evaluation, and the transfer of prior
knowledge. Several reviews have presented BO for a tech-
nical audience [20]–[22]. Our review surveys recent meth-
ods for systematically handling these challenges within a
BO framework, with an emphasis on applications in science
and engineering, and in the context of modern experimental
design.

Bayesian optimisation is a sample efficient optimisa-
tion algorithm and thus suits optimisation of expensive,
black-box systems. By ‘‘black-box’’ we mean that the
objective function does not have a closed-form represen-
tation, does not provide function derivatives, and only
allows point-wise evaluation. Several optimisation algo-
rithms can handle optimisation of black-box functions such as
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FIGURE 1. Sampling methods used in experimental design. In classical Factorial designs samples are placed on a geometric grid. Space filling
designs are used with a variety of non-linear models. Sample requirements are determined heuristically, but these designs are empirically much
more efficient than grids.

multi-start derivative free local optimiser e.g. COBYLA [36],
or evolutionary algorithms e.g. ISRES [37], or Lipschitzian
methods such as DIRECT [34]. However, none of these are
designed to be sample efficient, and all need to evaluate a
function many times to perform optimisation. In contrast,
Bayesian optimisation uses a model based approach with
an adaptive sampling strategy to minimise the number of
function evaluations.

Past approaches to experimental design have closely cou-
pled sampling and modelling. Factorial designs assume a
linear model and sample at orthogonal corners of the design
space (see Figure 1). For more complex non-linear models,
general purpose space-filling designs such as Latin hyper-
cubes offer a more uniform coverage of the design space. For
N sample points in k dimensions, there are (N !)k−1 possi-
ble Latin hypercube designs, and finding a suitable design
involves balancing space-filling (e.g. via entropy, or potential
energy) with other desirable properties such as orthogonality.
Much literature exists on the design of Latin hypercubes, and

many research issues remain open [10], [11] such as: mixing
of discrete and continuous variables, incorporation of global
sensitivity information, and sequential sampling.

Response Surface Methodology (RSM) [3], [12] is a
sequential approach which has become the primary method
for industrial experimentation. In its original form, response
surfaces are second order polynomials which are determined
using central composite factorial experiments, and a path
of steepest ascent is used to seek an optimal point. For
robust design, replication is used to estimate noise fac-
tors, and optimisation must consider dual responses for pro-
cess mean and variance. Approaches for handling multi-
ple objectives include ‘‘split-plot’’ techniques, ‘‘desirability
functions’’ and Pareto fronts [13]. Non-parametric RSM can
be more general than second-order polynomials, and uses
techniques such as Gaussian processes, thin-plate splines,
and neural networks. Alternative optimisation approaches
include simulated annealing, branch-and-bound and genetic
algorithms [14].
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In many areas, experiments are performed with detailed
computer simulations of physical systems. Aerospace design-
ers frequently work with expensive CFD (computational
fluid dynamic) and FEA (finite element analysis) simula-
tions. Multi-agent simulations are used to model how actor
behaviour determines the outcome of group interactions
in areas such as defence, networking, transportation, and
logistics. Design and Analysis of Computer Experiments
(or DACE, after [15]) differs fromDOE in several ways. Sim-
ulations are generally deterministic, without random effects
and uncontrolled variables, so less emphasis is placed on
dealing with measurement noise. Simulations often include
many variables, so there is more need to handle high dimen-
sionality and mixed variable types. Where the response
is complex, non-parametric models are used, including
Gaussian Processes, Multivariate Adaptive Regression
Splines, and Support Vector Regression [4], [16], [17].

A problem with classical DOE and space-filling designs is
that the sampling pattern is determined before measurements
are made, and cannot adapt to features that appear during
the experiment. In contrast, adaptive sampling [16], [18]
is a sequential process that decides the location of the next
sample by balancing two criteria. Firstly, it samples in areas
that have not been previously explored (e.g. based on distance
from previous samples). Secondly, it samples more densely
in areas where interesting behaviour is observed, such as
rapid change or non-linearity. This can be detected using
local gradients, prediction variance (e.g. where uncertainty
is modelled), by checking agreement between the model and
data (cross-validation), or agreement between an ensemble
of models. BO is a form of model-based global optimisation
(MBGO [16]), which uses adaptive sampling to guide the
experiment towards a global optimum. Unlike pure adaptive
sampling, MBGO considers the optimum of the modelled
objective when deciding where to sample.

Recently, there has been a surge in applying Bayesian opti-
misation to design problems involving physical products and
processes. In [23], Bayesian optimisation is applied in combi-
nationwith a density functional theory (DFT) based computa-
tional tool to design low thermal hysteresis NiTi-based shape
memory alloys. Similarly, in [24] Bayesian optimisation is
used to optimise both the alloy composition and the asso-
ciated heat treatment schedule to improve the performance
of Al-7xxx series alloys. In [25], Bayesian optimisation is
applied for high-quality nano-fibre design meeting a required
specification of fibre length and diameter within few tens of
iterations, greatly accelerating the production process. It has
also been applied in other diverse fields including optimi-
sation of nano-structures for optimal phonon transport [26],
optimisation for maximum power point tracking in photo-
voltaic power plants [27], optimisation for efficient determi-
nation of metal oxide grain boundary structures [28], and for
optimisation of computer game design to maximise engage-
ment [29]. It has also been used in a recent neuroscience study
[30] in designing cognitive tasks that maximally segregate
ventral and dorsal FPN activity.

The recent advances in both the theory and practice of
Bayesian optimisation has led to a plethora of techniques.
In most parts, each advance is applicable to a sub-set of
experimental conditions. What is lacking is both an overview
of these methods and a methodology to adapt these tech-
niques to a particular experimental design context. We fill
this gap and provide a comprehensive study of the state-of-
the-art Bayesian optimisation algorithms in terms of their
applicability in experimental optimisation. Further, we pro-
vide a template of how disparate algorithms can be connected
to create a fit-for-purpose solution. This thus provides an
overview of the capability and increases the reach of these
powerful methods. We conclude by discussion where further
research is needed.

II. BAYESIAN OPTIMISATION
Bayesian optimisation incorporates two main ideas:
• A Gaussian process (GP) is used to maintain a belief
over the design space. This simultaneously models the
predicted mean µt (x) and the epistemic uncertainty
σt (x) at any point x in the input space, given a set
of observations D1:t = {(x1, y1), (x2, y2), ...(xt , yt )},
where xt is the process input, and yt is the corresponding
output at time t .

• An acquisition function expresses the most promising
setting for the next experiment, based on the predicted
mean µt (x) and the uncertainty σt (x).

A GP is completely specified by its mean function m(x) and
covariance function k(x, x′):

f (x) ∼ GP(m(x), k(x, x′)) (1)

The covariance function k(x, x′) is also called the ‘‘kernel’’,
and expresses the ‘‘smoothness’’ of the process. We expect
that if two points x and x′ are ‘‘close’’, then the corresponding
process outputs y and y′ will also be ‘‘close’’, and that the
closeness depends on the distance between the points, and
not the absolute location or direction of separation. A popular
choice for the covariance function is the squared exponential
(SE) function, also known as radial basis function (RBF):

k(x, x′) = exp
(
−

1
2θ2

∥∥x− x′∥∥2) (2)

Equation 2 says that the correlation decreases with the
square of the distance between points, and includes a param-
eter θ to define the length scale over which this happens.
Specialised kernel functions are sometimes used to express
pre-existing knowledge about the function (e.g. if something
is known about the shape of f ).

In an experimental setting, observations include a term
for normally distributed noise ε ∼ N (0, σ 2

noise), and the
observation model is:

y = f (x)+ ε

Gaussian process regression (or ‘‘kriging’’) can predict the
value of the objective function f (·) at time t + 1 for any
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FIGURE 2. Bayesian optimisation is an iterative process in which the unknown system response is modelled using a Gaussian process. An acquisition
function expresses the most promising setting for the next experiment, and can be efficiently optimised. The model quality improves progressively over
time as successive measurements are incorporated.

location x. The result is a normal distribution withmeanµt (x)
and uncertainty σt (x).

P(ft+1 | D1:t , x) = N (µt (x), σ 2
t (x)) (3)

where

µt (x) = kT [K + σ 2
noiseI ]

−1y1:t (4)

σt (x) = k(x, x)− kT [K + σ 2
noiseI ]

−1k

k = [k(x, x1), k(x, x2), . . . , k(x, xt )]

K =

 k(x1, x1) . . . k(x1, xt )
...

. . .
...

k(xt , x1) . . . k(xt , xt )

 (5)

Using the Gaussian process model, an acquisition func-
tion is constructed to represent the most promising setting
for the next experiment. Acquisition functions are mainly
derived from the µ(x) and σ (x) of the GP model, and are
hence cheap to compute. The acquisition function allows a
balance between exploitation (sampling where the objective
mean µ(·) is high) and exploration (sampling where the
uncertainty σ (·) is high), and its global maximiser is used as
the next experimental setting.

Acquisition functions are designed to be large near poten-
tially high values of the objective function. Figure 3 shows
commonly used acquisition functions: PI, EI, and GP-UCB.

PI prefers areas where improvement over the current max-
imum f (x+) is most likely. EI considers not only proba-
bility of improvement, but also the expected magnitude of
improvement. GP-UCB maximises f (·) while minimising
regret, the difference between the average utility and the ideal
utility. Regret bounds are important for theoretically proving
convergence. Unlike the original function, the acquisition
function can be cheaply sampled, andmay be optimised using
a derivative-free global optimisation method like DIRECT
[34] or using multi-start method with a derivative based
local optimiser such as L-BFGS [35]. Details can be found
in [19], [21].

III. EXPERIMENTAL DESIGN WITH BAYESIAN
OPTIMISATION
BO has been influential in computer science for hyper-
parameter tuning [38]–[42], combinatorial optimisation
[43], [44], and reinforcement learning [21]. Recent years have
seen new applications in areas such as robotics [45], [46],
neuroscience [47], [48], and materials discovery [49]–[55].

Bayesian optimisation is an iterative process outlined
in Figure 2, which can be applied to experiments where
inputs are unconstrained and the objective is a scalarised
function of measured outputs. Examples of this kind include
material design using physical models [56], or laboratory
experiments [25]. However, experiments often involve
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FIGURE 3. Acquisition functions expressed in terms of the mean µ(x), variance σ (x), and current maximum f (x+). 8(·) and φ(·) are the cumulative
distribution function and the probability distribution function of the standard normal distribution. Some functions include factors to balance between
exploration and exploitation: ξ in PI is constant, whereas κt in GP-UCB usually increases with iteration, causing the search to maintain exploration even
with many samples.

FIGURE 4. Case Study: Alloy design process. Alloy samples are cast with
varying compositions according to a set of constraints. The samples are
then tempered to improve hardness, which is subsequently measured.
The physics of tempering of an alloy is based on nucleation and growth.
During nucleation, new ‘‘phases” or precipitates are formed when
clusters of atoms self-organise. These precipitates then diffuse together
to achieve the requisite alloy characteristics in the growth step.

complicating factors such as constraints, batches, and multi-
ple objectives. For example, in the alloy design process the
composition of each sample follows a set of mixture con-
straints (see Figure 4). Batches of samples then undergo heat
treatment for up to 70 hours, exposed to the same tempera-
tures but with possible variation in duration between samples
[24]. The optimiser must produce a batch of experimental
settings, obeying inequality constraints, with some factors
varying and others fixed within each batch. This impacts the
design of the optimiser, through the formulation of the model,
acquisition functions, and the search strategy. These are active
areas of research, and recent developments are surveyed in the
following discussion.

A. INCORPORATING PRIOR KNOWLEDGE
Where successive experiments are sufficiently similar to
previous ones, it may be desirable to transfer knowledge
from previous outcomes. Prior knowledge about the function
or data can be used to reduce the search complexity and
accelerate optimisation. Table 1 outlines some approaches.
(1) Knowledge may be transferred from past (source)
experiments to new (target) experiments where there are
known or learnable similarities between the domains. For
example, the source and target may be loosely similar,
or have similar trends. (2) Where something is known
about the influence of particular variables on the objective

function, this can be imposed on the GP model. This could
include monotonicity, function shape, or the probable loca-
tion of the optimum or other features. (3) Where depen-
dency structures exist in the design space, these can exploited
to constrain the GP, or to handle high dimensionality via
embedding.

B. HIGH DIMENSIONAL OPTIMISATION
The acquisition function must be optimised to find the next
best suggestion for evaluating the objective. In continuous
domain the acquisition functions can be extremely sharp in
high dimensions, having only a few peaksmarooned in a large
terrain of almost flat surface. Global optimisation algorithms
such as DIRECT [34] are infeasible above about 10 dimen-
sions, and gradient-dependent methods cannot move if ini-
tialised in the flat terrain.

General strategies for tackling high-dimensionality include
[103]: reducing the design space, screening important vari-
ables, decomposing the design into simpler sub-problems,
mapping into a lower-dimensional space, and visualisation.
Table 1(4) outlines approaches that have been reported for
high dimensional BO, including: using coarse-to-fine approx-
imations, projection into a lower-dimensional space, and
approximation through low-rank matrices or additive struc-
tures. Choice of a method depends on whether the objective
function has an intrinsic low dimensional structure (4B) or
not (4A).

Standard BO is known to perform well in low dimen-
sions, but performance degrades above about 15-20 dimen-
sions. High dimensional BO has been demonstrated for
25-34 intrinsic dimensions on ‘‘real world’’ data, and up to
50 dimensions for synthetic functions [73], [77]. Projection
methods have been shown to work independently of the num-
ber of extrinsic dimensions [43], [79], [81], whereas special
kernels are shown to work in hundreds of dimensions [75].

C. MULTI-OBJECTIVE OPTIMISATION
Design problems often include multiple objectives which can
be challenging to optimise. For example [104] demonstrates
multiple objectives for discovery of new materials. Scalarisa-
tion by weighted sum of objectives can be done, but may not
work when objectives have strong conflicts. In that setting a
Pareto set of optimal points can be found [105]. For a point
in a Pareto set, any one of the objectives cannot be improved
without penalising another objective.
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TABLE 1. Methods for transferring prior knowledge from past experiments (source) to new experiments (target) (1–3). Methods marked (*) have only
been demonstrated for Gaussian processes, but are also applicable to Bayesian optimisation. Methods for handling high dimensionality (4),
constraints (5), and parallel optimisation (6).

Many methods have been proposed for using Bayesian
optimisation for multi-objective optimisation [106]–[109],
but these suffer from computational limitations because the
acquisition function generally requires computation for all
objective functions and as the number of objective functions
grow the computational cost grows exponentially.

Moving away from EI, the method of [109] allows the opti-
misation of multiple objectives without rank modelling for

conflicting objectives, while also remaining scale-invariant
toward different objectives. The method performs better
than [107], but suffers in high dimensions and can be com-
putationally expensive. Predictive entropy search is used by
[110], allowing the different objectives to be decoupled, com-
puting acquisition for subsets of objectives when required.
The computational cost increases linearly with the num-
ber of objectives. The method of [111] can be used for
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single- or multiple-objective optimisation, including in mul-
tiple inequality constraints and has been shown to be robust
in highly constrained settings where the feasible design space
is small.

D. CONSTRAINTS
Table 1(5) outlines some approaches to handling constraints.
If constraints are known, they can be handled during optimi-
sation of the acquisition function by limiting the search. More
difficult are ‘‘black box’’ constraints that can be evaluated
but have unknown form. If the constraint is cheap to evalu-
ate, this is not a problem. Methods for expensive constraint
functions include a weighted EI function [83], [84], and
weighted predictive entropy search [86]. A lookahead strat-
egy for unknown constraints is described by [88]. A different
formulation for the unknown is proposed by [85], handling
expensive constraints using ADMM solver of [112].

The abovemethods deal with inequality constraints. In [89]
both inequality and equality constraints are handled, using
slack variables to convert inequality constraints to equal-
ity constraints, and Augmented Lagrangian (AL) to con-
vert these inequality constraints into a sequence of simpler
sub-problems.

The concept of weighted predictive entropy search has
been extended for multi-objective problems [87] for inequal-
ity constraints which are both unknown and expensive to
evaluate. A different type of constraint specifically for mul-
tiple objectives is investigated by [90] where between all
the objectives, there exists a rank order preference on which
objective is important. The algorithm developed therein can
preferentially sample the Pareto set such that Pareto samples
are more varied for the more important objectives.

E. PARALLEL (BATCH) OPTIMISATION
In some experiments it can be efficient to evaluate several
settings in parallel. For example, during alloy design batches
of different mixtures undergo similar heat treatment phases,
so the optimiser must recommend multiple settings before
receiving any new results. Sequential algorithms can be used
to find the point that maximises the acquisition function,
and then move on to find the next point in the batch after
suppressing this point. Suppression can be achieved by tem-
porarily updating the GP with a hypothetical value for the
point (e.g. based on a recent posterior mean), or by applying
a penalty in the acquisition function. Table 1(6) outlines
some approaches that have been reported. Most methods are
for unconstrained batches, though recent work has handled
constraints on selected variables within a batch [102].

F. MULTI-FIDELITY OPTIMISATION
When function evaluations are prohibitively expensive, cheap
approximations may be useful. In such situations high fidelity
data obtained through experimentation might be augmented
by low fidelity data obtained through running a simula-
tion. For example, during alloy design, simulation soft-
ware can predict the alloy strength but results may be less

accurate than measurements obtained from casting experi-
ments. Multi-fidelity Bayesian optimisation has been demon-
strated in [113], [114]. Recently, [115] proposed BO for
an optimisation problem with multi-fidelity data. Although
multi-fidelity approach has been applied in problem-specific
context or non-optimisation related tasks [41], [116]–[120],
the method of [115] generalises well for BO problems.

G. MIXED-TYPE INPUT
Experimental parameters are often combinations of different
types: continuous, discrete, categorical, and binary. Incorpo-
ration of mixed type input is challenging across the domains,
including simpler methods such as Latin hypercube sam-
pling [11]. Non-continuous variables are problematic in
BO because the objective function approximation with GP
assumes continuous input space, with covariance functions
defining the relationship between these continuous variables.
One common way to deal with discrete variables is to round
the value to a close integer [40], but this approach leads to
sub-optimal optimisation [121].

Two options for handling mixed-type inputs are:
(1) designing kernels that are suitable for different variables,
and (2) subsampling of data for maximising the objective
function, which is especially useful in higher dimensional
space. For integer variables the problem can be solved
through kernel transformation, by assuming the objective
function to be flat for the region where two continuous vari-
ables would be rounded to the same integer [121]. In [67] cat-
egorical variables are included by one-hot-encoding along-
side numerical variables. A specialised kernel for categorical
variables is proposed in [122].

Random forest regression is a good alternative to GP for
regression in a sequential model-based algorithm configura-
tion (SMAC, [44]). Random forests are good at exploitation
but don’t performwell for exploration as they may not predict
well at points that are distant from observations. Additionally,
a non-differentiable response surface renders it unsuitable for
gradient-based optimisation.

IV. DISCUSSION
Machine-learning methods through Bayesian optimisation
offer a powerful way to deal with many problems of experi-
mental optimization that have not been previously addressed.
While techniques exist for different issues (high dimensional-
ity, multi-objective, etc.), few works solve multiple issues in
a general way. Methods are likely to be composable where
no incompatible changes are required to the BO process.
Figure 5 outlines composability based on the current reper-
toire of Bayesian optimisation algorithms. When a design
problem is single objective, has single fidelity measure-
ment, and all the variables are continuous then it offers
the greatest flexibility in terms of adding specific capability
such as transfer learning or high dimensional optimisation.
Other cases require careful selection of algorithms to add
desired capabilities. For example, the method of [111] han-
dles multiple objectives with constraints, and the method
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FIGURE 5. Current capability graph on the composability of various aspects of experimental design problems in Bayesian optimisation. It is possible to
compose algorithms which lie on a path in the graph. It is possible to finish at any block and even skip multiple blocks on a path. Regular text denotes
the capability achievable with standard Bayesian optimisation, whereas highlighted text denotes the existence of specialised algorithms.

of [43] handles parallel evaluation in high dimensions with
mixed type inputs. Some combinations may not even be
possible, for example, Random Forest based algorithm such
as [44] would not admit many capabilities. Note that this
graph does not portray any theoretical limitations, but merely
presents a gist of the current capability through the lens of
composability.

Several open-source libraries are available for incor-
porating BO into computer programs. Depending on the
application, computation speed may be an issue. A com-
mon operation in most algorithms is Cholesky decomposition
which is used to invert the kernel matrix and is generally
O(n3) for n data points, but with care this can be calculated
incrementally as new points arrive, reducing the complexity
to O(n2) [123]. Several algorithms gain speed-up by imple-
menting part of the algorithm on a GPU, which can be
up to 100 times faster than the equivalent single-threaded
code [124].

• GPyOpt (https://github.com/SheffieldML/GPyOpt) is a
Bayesian optimisation framework, written in Python
and supporting parallel optimisation, mixed factor types
(continuous, discrete, and categorical), and inequality
constraints.

• GPflowOpt (https://github.com/GPflow/GPflowOpt) is
written in Python and uses TensorFlow (https://www.
tensorflow.org) to accelerate computation on GPU hard-
ware. It supports multi-objective acquisition functions,
and black-box constraints [125].

• DiceOptim (https://cran.r-project.org/web/packages/
DiceOptim/index.html) is a BO package written in R.
Mixed equality and inequality constraints are imple-
mented using the method of [89], and parallel optimi-
sation is via multipoint EI [91], however parallel and
constraints cannot be mixed in a single optimisation.

• MOE (https://github.com/Yelp/MOE) supports paral-
lel optimisation via multi-point stochastic gradient
ascent [124]. Interfaces are provided for Python and
C++, and optimisation can be accelerated on GPU
hardware.

• SigOpt (http://sigopt.com) offers Bayesian optimisation
as a web service. The implementation is based on MOE,

but includes some enhancements such as mixed factor
types (continuous, discrete, categorical), and automatic
hyperparameter tuning.

• BayesOpt (https://github.com/rmcantin/bayesopt) is
written in C++, and includes common interfaces for C,
C++, Python, Matlab, and Octave [123].

V. CONCLUSION
This review has presented an overview of Bayesian opti-
misation (BO) with application to experimental design.
BO was introduced in relation to existing Design of Experi-
ments (DOE)methods such as factorial designs, response sur-
face methodology, and adaptive sampling. A brief discussion
of the theory highlighted the roles of the Gaussian process,
kernel, and acquisition function. A set of seven core issues
was identified as being important in practical experimental
designs, and some detailed solutions were reviewed. These
core issues are: (1) the incorporation of prior knowledge,
(2) high dimensional optimisation, (3) constraints, (4) batch
evaluation, (5) multiple objectives, (6) multi-fidelity data, and
(7) mixed variable types.

Recent works have shown the potential of Bayesian optimi-
sation in fields such as robotics, neuroscience, and materials
discovery. As the range of potential applications expands, it is
increasingly unlikely that ‘‘vanilla’’ optimisation approaches
for small numbers of unconstrained, continuous variables will
be appropriate. This is particularly true in DACE simulation
applications where high dimensional mixed-type inputs are
typical.

Bayesian optimisation offers a powerful and rigorous
framework for exploring and optimising expensive ‘‘black
box’’ functions. While solutions exist for the core issues in
experimental design, each approach has strengths and weak-
nesses that could potentially be improved, and the combina-
tion of the individual solutions is not necessarily straight-
forward. Thus there is a need for ongoing work in this
area to: (1) improve the efficiency, generality, and scala-
bility of approaches to the core issues, (2) develop designs
that allow easy combination of multiple approaches, and
(3) develop theoretical guarantees on the performance of
solutions.
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