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ABSTRACT Maximum a posteriori (MAP) approach, based on Bayesian criterion, is proposed to overcome
the low azimuth resolution in real-aperture imaging. The essence of this approach is to use the statistical
characteristics of the imaging background and target to invert the real target scene. This paper presents
a deconvolution method based on Maximum a posteriori (MAP) criterion, which combines the Rayleigh
distribution and Lognormal distribution, to realize high angular resolution for sea-surface target. Firstly,
Rayleigh distribution is considered to express the statistical properties of sea clutter. Moreover, the Log-
normal distribution is employed to represent the statistical properties of target as prior information. The
reason is that Lognormal distribution can be approximatively regarded as a combined constraint term.
Finally, the optimization theory is utilized to obtain the iterative estimated solution. The processed results of
simulation and measured data are given to verify the performance of proposed algorithm.

INDEX TERMS Radar imaging, angular superresolution, lognormal restrict, sea-surface target.

I. INTRODUCTION
The reconnaissance and detection of sea-surface target are of
crucial importance, which are applied to marine environmen-
tal monitoring, marine vessel detection and maritime rescue.
In particular, it plays an indispensable role in the situational
awareness of the sea battlefield. Real-aperture scanning radar
imaging is a significant technology to achieve the reconnais-
sance and detection of sea-surface target because it is suitable
for most geometry situation [1]. However, the angular reso-
lution of this radar system is greatly limited by the antenna
aperture size, which seriously influences the searching ability
and location accuracy [2], [3]. Over the years, the proposed
angular superresolution approaches are applied to the ground
scenarios mostly. Therefore, it is urgent for us to propose
effective methods to improve the angular resolution of real-
aperture radar for sea-surface target.

So far, the angular superresolution methods can be divided
into three categories. One is the traditional spectral estimation
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method [4]–[6], represented by multiple signal classification
(MUSIC) method. However, how to collect enough snapshots
to realize the high estimation precision of the covariance
matrix is difficult for the mechanical scanning radar system
[7], [8]. In recent years, an iterative adaptive approach (IAA)
was presented, which can significantly decrease the require-
ment of snapshots in traditional method. Some effects have
been gained by applying this approach to the real-aperture
angular superresolution problem [9], [10]. Besides, there are
two main categories of deconvolution techniques based on
regularization theory and Bayes criterion, respectively. The
core of regularization theory is to model the unknowns as a
deterministic function, where the errors are Gaussian noise.
The pseudo-inverse solution is regarded as an optimal solu-
tion. In the references [11], [12], the authors proposed a
truncated singular value decomposition (TSVD) method with
the intention of suppressing noise amplification. It is able
to reduce the influence of noise in the solving process and
suitble for low noise environment. Another class of meth-
ods with additional regular terms to balance the effect of
noise suppression and target prior, such as l1 − norm and
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l2 − norm, are widely studied by researchers [13], [14].
However, the constraint of single regular term only can be
applied to the specific imaging scene, so the adaptability on
different scenes is poor.

The traditional spectral estimation method and regular-
ization method are mainly applied to ground target. It is
deemed that the noise satisfies the Gaussian distribution, and
the sea clutter characteristics are not considered. Therefore,
the imaging performance of the above two methods is poor
when they are applied to the sea target.

Bayesian deconvolution approaches, relying on the sta-
tistical characteristics of noise and the prior knowledge of
target scatters, can convert the solving problem of angular
superresolution into maximum a posterior probability (MAP)
estimation [15], [16]. In these references [17]–[19], the MAP
method was presented based on the assumption that the statis-
tic of noise obeys Gaussian or Poisson distribution, which is
effective in the process of recovering land target. However,
the imaging results of these methods above are undesired
facing the problem of sea-surface environment.

The essence of angular superresolution imaging on sea-
surface target is to improve angular resolution under the con-
dition of suppressing sea clutter. Sea clutter is complicated
and changeable under the interference of natural climate,
and the previous assumptions are no longer suitable for sea-
surface environment. Therefore, the sea-surface background
and the target prior need to be modeled again in the sea-
surface environment. Bayesian approach need to choose the
reasonable likelihood function and prior information.

The likelihood function is mainly used to represent the
distribution characteristics of clutter, which can effectively
reduce the estimation error in the solving process of algo-
rithm. The existingmethods in [20], [21] usually consider that
the clutter in the received echo obeys Gaussian or Poisson
distribution, and they can be applied to the ground-target
imaging well. However, these distribution characteristics can
not truly reflect the sea surface background dominated by sea
clutter. Researches show that the distribution of sea clutter
approximately obeys K distribution [22], Rayleigh distribu-
tion [23] and Log-normal distribution [24]. In reference [25],
the authors presented a maximum likelihood (ML) approach,
whose likelihood function is Rayleigh distribution. The simu-
lation results show the effective improvement of azimuth res-
olution under the background of sea clutter, but the property
of clutter suppression and imaging quality is insufficient due
to the lack of prior information.

Prior information expressed as probability density function
represents the statistical characteristics of target backscatter
coefficient, which is employed for high angular resolution
and image quality [26]. The sparse distribution is usually
considered as the prior information in real aperture imaging
because in most cases, the distribution of strong scattering
target is sparse relative to the imaging area [27]. It can
greatly improve the azimuth resolution of target imaging, but
the drawbacks of this constraint are losing imaging quality
and the false target will appear when the signal to noise

ratio (SNR) is low. In addition, the smoothing property
of Gaussian distribution is in favor of the enhancement of
imaging quality, but the improvement in azimuth resolution is
limited [28], [29].

In this paper, a novel MAPmethod is proposed by combin-
ing Rayleigh-basedML approach and Lognormal distribution
as prior information. It has been verified in [30]and [31] that
the major statistical models of K distribution and Weibull
distribution that have been proposed for the statistics of sea
clutter may be represented as a Rayleigh mixture model.
Therefore, Rayleigh distribution is well suited for describ-
ing the statistic property of sea clutter. And the Lognormal
distribution [32]–[34], as a heavy-tailed distribution which
means the probability of strong scatters is large, can catch the
strong targets easily. In addition, the Lognormal distribution
can be approximatively regarded as a combined constraint
term, and it possesses better smooth features compared with
the common sparse distribution.

This paper is organized as follows. The imaging model of
the real aperture scanning radar is described in Section II.
In Section III, the MAP method based on the hypothesis
that the sea clutter and targets obey the Rayleigh distribution
and Log-normal distribution is derived in detail. Section IV
shows the processed results of simulation and measured data
as well as the analysis of the handled image. Conclusions are
discussed in Section V.

II. IMAGING MODEL OF REAL APERTURE SCANNING
RADAR
In this section, we mainly describe the angular super-
resolution model which emphasis on the echo formulation.
Figure 1 shows the geometric model of the real aperture
scanning radar. In the scanning imaging model, the airborne
platform moves on with a uniform velocity V , and the radar
antenna counterclockwise sweeps across forward-looking
imaging region containing targets l1 ∼ lk . H and ω repre-

FIGURE 1. Geometric model of the real aperture scanning radar.
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sent the flight height of airborne platform and the scanning
speed of the antenna, respectively. R0 is initial range history
between the antenna and l1. After a time interval t , the range
history R(t) can be expressed as

R(t) =
√
R20 + V

2t2 − 2R0Vt cos θ0, (1)

where θ0 is forward-looking angle. Simplify Eq.(1) by Taylor
expansion and R(t) can be written as

R(t) ≈ R0 − Vt cos θ0 +
V 2 sin θ20

2R0
t2. (2)

In practical applications, the time to sweep through a target
is very short. In addition, forward-looking scanning radar
generally has a long range history. Thus, the influence of the
quadratic term on the range history is often ignored and Eq.(2)
can be further simplified as

R(t) ≈ R0 − Vt cos θ0. (3)

The antenna transmits linear frequency modulation (LFM)
signal to achieve high range resolution. The specific formulae
of the LFM signal is

g(τ ) = rect
[
τ

Tr

]
exp

(
j2π f0τ + jπKrτ 2

)
, (4)

where τ denotes the fast time, and Tr is the pause width of the
LFM. f0 and Kr mean the carrier frequency and frequency
modulation slope, separately. The window function can be
expressed as

rect
[
τ

Tr

]
=

{
1, τ < Tr

2
0, others

. (5)

After the antenna scans whole forward-looking imaging
region, the discrete two-dimensional echo signal processed
by the down-conversion can be expressed as

g(t, τ )=
M∑
j=1

N∑
i=1

σijA(t)rect
(
τ − τd

Tr

)
exp

[
jπKr (τ − τd )2

]
× exp (−j2π f0τd ) , (6)

where g(t, τ ) denotes the echo signal and t is the slow time.M
and N represent the sampling number in range and azimuth,
respectively. σijmeans the scatting amplitude of target located
at ith azimuth and jth range bin and A(t) is the antenna pattern
modulation. τd=2R(t)

/
c represents the time delay and c is

the velocity of light.
Pulse compression and range walk correction can realize

high range resolution. After these processes, the echo signal
can be transformed as

g(t, τ ) =
M∑
j=1

N∑
i=1

σijA(t) sin c
{
B
[
τ −

2R0
c

]}

× exp
{
−jπ f0

4R(t)
c

}
. (7)

According to t = (θ − θ0)/ω, Eq.(7) can be written as

g(R, θ) =
M∑
j=1

N∑
i=1

σijA (θ − θ0) sin c
{
2B
c

[R− R0]
}

× exp
{
−j

4π
λ
V
θ − θ0

ω
cos θ0

}
. (8)

exp
{
−j 4π

λ
V θ−θ0

ω
cos θ0

}
is the Doppler shift, which can usu-

ally be ignored in practice. In other words, the Doppler shift
is zero for static platform and has small effect to the echo
signal for themotion plat formwith low speedmoving or high
speed scanning [13]. The received echo can be written as the
following two-dimensional convolution model

g(R, θ) = H(R, θ)⊗ f (R, θ), (9)

where g(R, θ) is the received two-dimensional signal,
R and θ represent the range and azimuth variable of the
two-dimensional signal, respectively. H(R, θ) is the two-
dimensional convolution kernel function and f (R, θ) is the
target scattering distribution. The high resolution can be eas-
ily achieved by transmitting a large bandwidth LFM signal
in range dimension, and the range resolution is decided by
the 3-dB width of the convolution kernel sinc function, which
can be calculated by c/2B. In azimuth dimension, the kernel
function is the antenna pattern, and the azimuth resolution
is limited by the size of real aperture which leads to the
unmatched two-dimensional resolution. This paper presents
a new deconvolution method for high azimuth resolution.
We first rearrange Eq.(9) as the following matrix form

g = Hf + n

=

HN×K . . .

HN×K




f (1, 1)
f (1, 2)

...

f (1,K )
...

f (M ,K )


+ n, (10)

HN×K =



h1 0 0 0

h2 h1
...

...
... h2

. . . h1 0

hL
...

. . . h2 h1

0 hL
. . .

... h2
...

... hL
...

0 0 0 hL


, (11)

where g = [g(1, 1), g(1, 2), · · · , g(1,N ), · · · , g(M ,N )]T

represents the two-dimensional echo measurements which is
rearranged in azimuth dimension with sizeMN×1, andM ,N
are the sampling numbers of the received echo in range and
azimuth dimension, respectively.
f = [f (1, 1), f (1, 2), · · · , f (1,K ), · · · , f (M ,K )]T

denotes the unknown imaging scene amplitude values which
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is rearranged in azimuth dimensionwith sizeMK×1, andK is
the discrete number in azimuth of imaging scene. n represents
the additive clutter and noise vector with size MN × 1.
Matrix H is the convolution measurement matrix with size
MN × MK . This matrix is composed of HN×K which is the
convolution measurement matrix of the single range unit, and
HN×K can be written as Eq.(10).

Where the elements of Eq.(11) are the weighed value of
the antenna pattern to the corresponding target at different
sampling times, and L denotes the discrete number of antenna
pattern. The goal of radar imaging with high azimuth resolu-
tion is to accurately infer f from the echo signal g. Based on
the convolution model of g and f , this task is called decon-
volution problem in this paper. However, direct division in
the frequency domain is unstable and impracticable for radar
system due to the band-limited character of antenna pattern in
the frequency domain and the influence of echo noise, which
is called ill-posed nature for direct deconvolution [35], [36].

Eq.(11) can be regarded as the classical signal recovery
problem in estimation theory. In the next section, a MAP
deconvolution algorithm is proposed based on the property
of the sea clutter and target.

III. BAYESIAN SUPERRESOLUTION METHOD
In this section, we convert the deconvolution problem into an
equivalent maximum a posterior (MAP) estimation task. The
MAP algorithm is a typical superresolution approach which
is based on the Bayesian framework

p(f |g) =
p(g|f )p(f )

p(g)
, (12)

where p(f |g ) is the posteriori probability, p(g |f ) is the like-
lihood probability and p(f ) is the prior knowledge of target
scattering coefficient. The estimated value f̂ is acquired by
the maximum a posterior (MAP) criterion, which satisfies

f̂ = argmax
f

p(f |g ) = argmax
f

p(g |f )p(f )

= argmin
f
{− ln p(g |f )− lnp(f )} . (13)

In this paper, it is assumed that the noise in each observed
cell obeys independent Rayleigh distribution [23] so that the
likelihood function can be written as

p(g|f ) =
∏
i

gi − (Hf )i
σ 2 exp

{
−
[gi − (Hf )i]

2

2σ 2

}
, (14)

where i is the sampling cell, (Hf )i =
∑MK

j=1 hijf j,
i ∈ 1 ∼ MN , and σ 2 indicates the parameter of Rayleigh
distribution which affects the mean and variance. It has
been verified in [30] and [31] that Rayleigh assumption is
well suited for describing the statistic property of sea clut-
ter. Moreover, the Rayleigh-based ML approach in [25] has
demonstrated the feasibility of superresolution imaging for
sea-surface target.

Prior knowledge plays an important role in Bayesian
method. It is helpful to approximate the optimal solution

during the iterations. The introduction of reasonable prior
knowledge for the target scene could significantly improve
the imaging performance. This paper introduces Lognormal
distribution as the prior distribution of sea-surface target,
for the reason that Lognormal distribution [37] as a heavy-
tailed distribution can catch the strong targets easily, and it
can be approximatively regarded as a combined constraint
term. It possesses better smooth features comparing with the
common sparse distribution. And the Lognormal distribution
function can be written as

p(f ) =
∏
j

1

f jη
√
2π

exp

{
−
(ln f j − µ)

2

2η2

}
, (15)

where µ, η represent the distribution parameter of the
Lognormal, which restrict the mean and variance. f j is the
j-th element of f . Combining Eq.(14) and Eq.(15), the poste-
riori probability function with negative-logarithm operation
becomes

− ln p(g|f )− lnp(f )

=

∑
i

[
− ln[gi − (Hf )i]+ ln σ 2

+
[gi − (Hf )i]

2

2σ 2

]

+C ln(2πη2) +
∑
j

ln(f j)+
1
2η2

∑
j

(ln f j − µ)
2,

(16)

where C is a constant.
In order to obtain the optimization solution of the estimated

value f̂ acquired by the maximum a posterior (MAP) cri-
terion, we let T = − ln p(g|f ) − lnp(f ), and calculate the
gradient of Eq.(16) with respect to f

∇f (T ) = HT 1
g−Hf

−
1
σ 2H

T (g−Hf )

+
1
f
+

1
η2
×

1
f
× ln f −

µ

η2
×

1
f
, (17)

where the × represents dot product of vectors. For simple
expression, Eq.(17) is rewritten as the following form

∇f (T ) = HT 1
g−Hf

−
1
σ 2H

T (g−Hf )+ Pf , (18)

where matrix P = diag {· · ·, pi, · · ·} , pi = 1
f2i
+

1
η2
×

ln(fi) × 1
f2i
−

µ

η2
×

1
f2i
. Then we can minimize Eq.(18) by

letting ∇f (T ) = 0, and simple solution is derived as

f = (
1
σ 2H

TH + P)−1(
1
σ 2H

T g−HT 1
g−Hf

). (19)

We can obtain the iterative expression from Eq.(19)

f (k+1) = (
1
σ 2H

TH + P(k))−1(
1
σ 2H

T g−HT 1

g−Hf (k)
),

(20)

where k represents the iteration index, P(k) is calculated by
f (k), and the initial value of iteration f (1) is simply represented
by the received data g.
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In addition, the estimation method based on the maximum
likelihood(ML) is used to estimate the statistical parameters
of the Rayleigh distribution. The sea clutter signal is sampled
as sequence c1, c2 · · · cL , where ci = gi − (Hf )i and L is
sampling points. The log-likelihood function of Rayleigh
distribution can be transformed as

LML(c, σ ) = −L ln σ 2
+

L∑
i=1

ln ci −
L∑
i=1

(ci)2

2σ 2 . (21)

The parameter estimate of σ is obtained by setting the gradi-
ent of Eq.(21) to zero.

∂LML(c, σ )
∂σ

= −
2L
σ
+

1
σ 3

L∑
i=1

(ci)2 = 0. (22)

Solving the above Eq.(22), we can obtain the expression of σ
based on ML estimation as

σ 2
=

L∑
i=1
(ci)2

2L
(23)

The performance of the proposed MAP algorithm also relies
on the parameters µ and η from the prior function.
The smaller the η is, the closer is the estimate to the

smooth imaging, and the larger the η is, the less the result
is influenced by the prior [26]. In practice, we need to select
suitable parameters to balance clutter amplification and angu-
lar superresolution. The proposed MAP algorithm was listed
in TABLE 1, where K is the iterations.

IV. SIMULATON RESULTS
In this section, the simulation results and the analysis of
the handled image are given to verify the performance of
proposed RLGMAP algorithm. The point target simulation
is performed by different algorithms at SCR = 20 and
SCR = 10 respectively, and resolution performance of
the proposed algorithm and other traditional algorithms are
compared. Besides, the iterative error curves are compared
with different superresolution algorithms to verify the conver-
gence property. At last, the real data was further processed to
validate the performance of proposed algorithm in practice.

A. SIMULATION RESULTS OF POINT TARGETS
In this subsection, the simulation results are two parts that
they are point target and iterative error curve in different
signal to clutter ratio (SCR). In the first part, the point
target simulations by ten times’ Monte Carlo experiments
are processed under different algorithms, which include the
TSVD algorithm, Rayleigh-based ML algorithm, IAA algo-
rithm, Guassian-based sparse MAP (GSMAP) algorithm and
proposed algorithm(RLGMAP). In the second part, iterative
error curve simulation results of different algorithms are
presented. The angular Superresolution and stability of the
RLGMAP are verified. The detailed simulation parameters
are given in Table 2.

TABLE 1. Flow chart of the proposed MAP algorithm.

TABLE 2. Simulation parameters.

Because the noise is invertable in practice, the Rayleigh
noise is added into the echo signal.

SCR= 10log10
‖f ‖2

‖g−Hf ‖2
, (24)

where ‖·‖ represents the 2-norm.
Three point targets are set at −2◦, 1◦, 1.5◦ with the

same amplitude. The echo signal is obtained after range
compression and migration correction. Fig.2(a) and Fig.3(a)
are the Real-beam echo signal. Ten times’ Monte Carlo
experiments are also processed by the TSVD, Rayleigh-
based ML, IAA, GSMAP, proposed RLGMAP algorithm at
SCR = 20dB and SCR = 10dB, respectively. The simulation
results are shown from Fig.2(b) to Fig.2(f) and Fig.3(b) to
Fig.3(f). In order to compare the performance of algorithms
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FIGURE 2. The simulation results of point target when the SCR is 20dB. (a) Real-beam echo signal, (b) TSVD algorithm, (c) Rayleigh-based ML
algorithm, (d) IAA algorithm, (e) GSMAP algorithm, (f) Proposed MAP algorithm.

FIGURE 3. The simulation results of point target when the SCR is 10dB. (a) Real-beam echo signal, (b) TSVD algorithm, (c) Rayleigh-based ML
algorithm, (d)IAA algorithm, (e) GSMAP algorithm, (f) Proposed MAP algorithm.

effectively, all simulation results are normalized amplitude.
In Fig.2, it is clear that the Real-beam echo signal takes on
low angular resolution. The angular resolution of TSVD is

improved, but the sharpening ability is limited. The Rayleigh-
based ML algorithm and IAA algorithm have a good effect
on distinguishing adjacent point targets, but the saddle of
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FIGURE 4. The normalized iterative error curves. (a) Rayleigh distribution when the SCR is 20 dB, (b) Rayleigh distribution when
the SCR is 10 dB.

adjacent targets is high and the Rayleigh-basedML algorithm
has unequal amplitudes of point targets. Compared with the
IAA algorithm, the resolution performance and the ability of
clutter suppression processed by the GSMAP algorithm and
proposed algorithm can be greatly improved. It can be seen
that the GSMAP algorithm and proposed algorithm can more
effectively distinguish adjacent targets with the lower saddle
than others.

The effect of clutter on imaging performance is significant
in Fig.3. Processed by ten times’ Monte Carlo experiments,
the IAA algorithms recovers the original scene targets no
better than the Rayleigh-based ML algorithm, and the adja-
cent targets located at 1◦ and 1.5◦ both are seriously mixed
together for the two algorithms. The GSMAP algorithm can
recover the original scene targets at SCR = 20dB, but
the simulation result shows the unexpected false targets at
SCR = 10dB. However, the proposed method can obtain
better robustness of angular resolution and noise suppression
ability than other methods.

We characterize the convergence property by the iteration
error, which is defined as

ei=
∥∥∥g−Hf i∥∥∥

2
(25)

where ei means the iteration error after i iterations and f i

is the estimation of imaging scene amplitude values after i
iterations.

Fig.4(a) shows a plot of the normalized iterative error
curves in Rayleigh distribution when the SCR is 20 dB. The
Rayleigh-basedML algorithm has stable convergence perfor-
mance, but the iterative error is higher than other methods.
Oppositely, the convergence speed of the other algorithms
is lower than Rayleigh-based ML algorithm, whereas the
iterative error is low. The IAA algorithm and GSMAP both
have stable convergence after 7 iterations, but the proposed
RLGMAP algorithm can converge well in less than 7 iteratins
with lower iteration errors, which shows that the proposed
algorithm has the advantage of envergence property over
other methods.

Fig.4(b) shows a plot of the normalized iterative error
curves in Rayleigh distribution when the SCR is 10 dB. In this
low SCR condition, the Rayleigh-based ML algorithm, IAA
algorithm, GSMAP algorithm and proposed method’s con-
vergence speed slows down. The Rayleigh-based ML algo-
rithm also has higher iterative error. In particular, the iterative
error curve of the GSMAP algorithm produces a fluctuation
and iteration number of convergence is greater than 15. How-
ever, the proposed RLGMAP algorithm has a good conver-
gence speed and low normalized iterative error.

B. REAL DATA PROCESSING
Above simulation results have verified angular superresolu-
tion of the proposed RLGMAP algorithm in Rayleigh dis-
tribution. In this section, the real data was processed by the
RLGMAP and other traditional algorithms to verify imaging
performance in practical sea-surface targets. The original
scene is shown in Fig.5 with some lands and the superreso-
lution targets of two ships in the red circle, and the picture is
from Google Earth. The real data was recorded by an X-band
radar whose main system parameters were listed in TABLE 3.

FIGURE 5. Original scene of real data.

The superresolution results of measured data processed by
different algorithms are shown in Fig.6. From the Fig.6.(a),
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FIGURE 6. Simulation results of real data. (a) Real-beam echo signal, (b) TSVD algorithm, (c) Rayleigh-based ML algorithm, (d)IAA algorithm,
(e) GSMAP algorithm, (f) Proposed MAP algorithm.

TABLE 3. Simulation parameters.

we can see that real beam echo has low resolution and many
targets are merged by clutters. Fig.6.(b) and Fig.6.(c) show
the results processed by the TSVD algorithm and Rayleigh-
based ML algorithm, respectively. The TSVD algorithm has
poor resolution improvement, thus adjacent ships marked
in red circle are almost undistinguishable in azimuth, and
the imaging result produces more obvious parasitic rip-
ples. The Rayleigh-based ML algorithm has improved res-
olution performance and the ability of clutter suppression,
but the sharpening ability is limited. The imaging results
of the IAA algorithm and GSMAP algorithm are shown
in Fig.6.(d) and Fig.6.(e), respectively. The two methods can
basically distinguish adjacent ships, but they amplify the
clutter, resulting in parasitic ripples that cannot be ignored.
Compared with the imaging results of GSMAP algorithm,
the proposed RLGMAP algorithm shown in Fig.6.(f) has
greatly improved the resolution of targets estimation under
sea clutter interference. That is to say, not only the adjacent
ships are distinguished clearly, but also the noise level is
lower than others. We can see that the proposed RLGMAP

algorithm can obtain better superresolution of angular and
noise suppression ability than other methods.

To further verify the superresolution performance, the pro-
files of two adjacent targets marked by red circle are shown
in Fig.7. From the profiles,we can find that the TSVD algo-
rithm and Rayleigh-basedML algorithm only can sharpen the
real beams lightly with a high saddle. The IAA algorithms
can achieve higher resolution than above two algorithms,
but the resolution improvement is limited compared with
the GSMAP algorithm and proposed RLGMAP algorithm.
Obviously, the GSMAP algorithm and proposed RLGMAP
algorithm can achieve higher resolution with lower saddle
than other algorithms, but their performance was not the
same. We can find that the profile of GSMAP algorithm
generates the unexpected false target, and the proposed

FIGURE 7. Profles of real data.

13426 VOLUME 8, 2020



J. Yang et al.: Bayesian Angular Superresolution Method With Lognormal Constraint for Sea-Surface Target

RLGMAP algorithm distinguishes the adjacent targets and
has better noise suppression ability than others algorithms.

V. CONCLUSION
This paper focused on the problem of low azimuth reso-
lution in forward-looking radar imaging of sea-surface tar-
get and proposed a deconvolution RLGMAP algorithm. The
proposed RLGMAP algorithm establishes the signal model
of forward-looking scanning radar as a convolution of the
antenna pattern and the target scattering coefficient. Then,
relying on the statistical characteristics of sea clutter and
the prior knowledge of target scatters, we can obtain the
iterative estimated solution based on the optimization theory
to achieve azimuth superresolution. At length, the simulation
and real data processing results show that the proposed algo-
rithm not only can effectively improve the azimuth resolution
and suppress sea clutter, but also can maintain stable conver-
gence characteristics compared with other algorithms.
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