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ABSTRACT Conventional optimization-driven secure relay selection relies on maximization algorithm
and accurate channel state information (CSI) of both legitimate and eavesdropper channels. Particularly,
estimating and collecting accurate eavesdropper CSI is a difficult task. In this paper, we exploit the benefits of
machine learning in solving secure relay selection problem from a data-driven perspective.We convert secure
relay selection to a multiclass-classification problem and solve it by a decision-tree-based scheme, which is
composed of three phases - preparing training data, building decision tree and predicting relay selection. To
meet decision tree’s requirement that input features must take discrete values, a feature extraction method is
proposed to generate discrete input by quantizing the accurate CSI of legitimate and eavesdropper channels.
By this means, the decision-tree-based relay selection only requires quantized CSI feedback which takes
substantially fewer bits in predicting phase. For the purpose of optimizing quantization parameters and
enhancing decision tree prediction, we further derive three splitting criteria, i.e. information gain, information
gain ratio and Gini index. Simulation results show that if the quantization parameters are set properly,
the proposed decision-tree-based scheme can achieve satisfactory performance in terms of average secrecy
rate while reducing computational complexity and feedback amount.

INDEX TERMS Physical-layer security, relay selection, machine learning, decision tree, splitting criterion.

I. INTRODUCTION
Machine learning is an effective artificial intelligence tech-
nology which predicts the result of a task based on large
amount of data. Machine learning has been widely investi-
gated in the field of data mining, natural language processing,
image processing, etc. Recently, research efforts have been
devoted to using machine learning in next-generation wire-
less networks [1]–[9], covering channel estimation, informa-
tion dissemination and network optimization. In [1], antenna
selection of multiple-input-multiple-output (MIMO) sys-
tems, which is a conventional problem in wireless communi-
cations, was interpreted to multiclass-classification problem
and solved by k-nearest neighbors (k-NN) and support vector
machine (SVM) algorithms. More recently, authors in [2]
considered antenna selection in wireless wiretap channels and
proposed two machine-learning-based schemes: SVM-based
scheme and naive-Bayes-based scheme.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilsun You .

In recent years, physical-layer techniques for securing
wireless transmissions against eavesdropping has been draw-
ing great attention, including, resource allocation [10],
[11], signal design [12], [13], etc. If active eavesdroppers
exist [14], [15], more sophisticated techniques need to be
designed. Relay technique, which has led to numerous the-
ories and optimization methods, is also an effective tool
enhancing physical-layer security. Relay selection for secu-
rity was first investigated by Krikidis et al. in [16], which
showed that relay selection tries to maximize the ratio of
signal-to-noise ratio (SNR) of legitimate channel to SNR of
eavesdropper channel. Then, researches on various relay pro-
tocols and selection requirements emerged [17]–[21]. Exist-
ing relay selection policies for physical-layer security all
belong to optimization-driven schemes which strongly rely
on maximization (or minimization) algorithms and accurate
channel state information (CSI) feedback. Therefore, the cost
of optimization computation and resource consumption of
accurate CSI feedback cannot be neglected. Particularly, it is
often difficult to acquire the accurate CSI of eavesdroppers,
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so that designing efficient feedback strategy is also of impor-
tance [22], [23]. As long as optimization-driven selection
schemes are adopted, these weak points cannot be overcome.
This evokes our attempt to exploit brand new relay selection
methods beyond conventional optimization theories.

Inspired by recent developments of machine learning and
the bottleneck of conventional optimization-driven algo-
rithms, we reconsider relay selection problem from data-
driven perspective and propose a machine-learning-based
relay selection scheme. Among the learning algorithms,
decision tree has advantages of low computational com-
plexity, discrete input and one-time initialization. [4] was
our first attempt to solve relay selection by a supervised
learning algorithm - decision tree learning. Massive samples
of relay CSI were collected to generate training data, based
on which a decision tree was constructed. The decision
tree was then used to predict the best relay. The computa-
tion cost and communication overhead of the decision-tree-
based scheme are remarkably reduced while communication
performance is comparable to the optimal selection
policy.

In this paper, we design a decision-tree-based relay selec-
tion scheme for physical-layer security in dualhop wireless
networks. To predict selection results with a decision tree,
we first model relay selection as a multiclass-classification
problem, where each class label represents the index of a
candidate relay and the output label represents the index of
the selected relay. Different from conventional optimization-
driven selection schemes which calculate maximization
(or minimization) problems with accurate instantaneous CSI,
data-driven selection scheme constructs a decision tree with
large amount of sample data. The proposed scheme is com-
posed of three phases - preparing training data, building
decision tree and predicting relay selection. Decision tree
requires the input features to be finite discrete values, so we
design an extraction method which generates discrete fea-
tures by quantizing continuous CSI of legitimate and eaves-
dropper channels. Using this quantization method, training
data is generated from a large number of CSI samples. For
each dualhop transmission, the scheme only requires quan-
tized CSI feedback to predict selection results. To achieve
high spectrum efficiency, quantization parameters should be
set judiciously. Because splitting criteria play a key role
in building an efficient decision tree, we derive splitting
criteria of the input features and examine the quantiza-
tion parameters maximizing the splitting criteria. The pro-
posed decision-tree-based secure relay selection also has
advantages in computation cost, communication overhead
and feedback CSI requirement. Compared with our prelim-
inary work in [4], this work is different in the following
aspects.
(1) Feature generating method : In [4], a binary quantization

method was proposed to generate one-bit features. In
this paper, we propose a multi-level quantizationmethod
which divides the CSI region into multiple segments and
generates a feature set with multiple discrete values.

(2) Derivation of splitting criteria: As a result of the multi-
level quantization method, the derivation of splitting
criteria should cover all possible values of input fea-
tures. Moreover, features representing legitimate CSI
and eavesdropper CSI lead to different calculations.

(3) Parameter optimization: In [4], splitting criteria are
determined by only one parameter, i.e. quantization
threshold, and are concave functions of the threshold.
In this paper, multi-level quantization needs two param-
eters to define the quantization. Thus, analyzing the
optimal values of the two parameters is intriguing.

The rest of this paper is organized as follows. In Section II,
system model is introduced and conventional optimization-
driven selection schemes are described. Section III elabo-
rates the decision-tree-based relay selection algorithm. In
Section IV, three splitting criteria of input features are
derived. Simulation results are presented in Section V, fol-
lowed by conclusions in Section VI.

II. SYSTEM MODEL AND OPTIMIZATION-DRIVEN
RELAY SELECTION
A. SYSTEM MODEL
Consider a dualhop network with one source (S), one desti-
nation (D), K decode-and-forward (DF) relays and a passive
eavesdropper (E). The transmission from S to D is completed
in two time slots aided by one of the relays. We assume cov-
erage extension scenario where D is beyond the transmission
range of S. The eavesdropper is located near D and is also
beyond the coverage of S.

The wireless channel between each pair of nodes is
assumed to experience independent and identically dis-
tributed (i.i.d.) Rayleigh fading. Large-scale fading is not
considered in the systemmodel. Suppose that the fading envi-
ronment is not changing over time and the CSI is correctly
estimated. The noise at each receiver is modeled as complex
Gaussian random variable with zero mean and variance σ 2.
For convenience, the K relays are denoted by R = {rk |k =
1, 2, . . . ,K }. Let hSk denote the complex channel coefficient
from S to rk , and let hkD and hkE denote coefficients from rk
to D and E. If rk is selected, the secrecy rate of the dualhop
transmission is [24]

RSk =
1
2
[min{RSk ,RkD} − RkE ]+

=
1
2

[
min

{
log2

(
1+

PgSk
σ 2

)
, log2

(
1+

PgkD
σ 2

)}
− log2

(
1+

PgkE
σ 2

)]+
, (1)

where RSk , RkD and RkE represent the information rates of
rk , D and E. Moreover, [x]+ = max{x, 0}, gSk = |hSk |2,
gkD = |hkD|2 and gkE = |hkE |2. Thus, gSk , gkD and gkE are
exponential distributed random variables with parameter λD
for legitimate channels and λE for eavesdropper channels. To
improve the readability of this paper, nomenclature is listed
in Table 1.
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TABLE 1. Nomenclature.

B. OPTIMAL SELECTION
In conventional optimization-driven relay selection, a central
controller collects gSk , gkD and gkE of all relays, and selects
the relay maximizing RSk . This problem is to find from the
cluster the index of the relay which yields maximum secrecy
rate, as expressed by

k∗ = arg max
1≤k≤K

RSk

= arg max
1≤k≤K

min{RSk − RkE ,RkD − RkE }

= arg max
1≤k≤K

min
{
σ 2
+ PgSk

σ 2 + PgkE
,
σ 2
+ PgkD

σ 2 + PgkE

}
. (2)

To evaluate the communication performance of different
relay selection schemes, average secrecy rate is computed as
performance metric, which is given by

RS = lim
T→∞

1
T

T∑
t=1

RSk∗ (2t). (3)

C. SUBOPTIMAL SELECTION
Optimal selection scheme requires full CSI of both legiti-
mate and eavesdropper channel from all hops. Suboptimal
selection schemes only take into account the CSI of a par-
ticular group of channels, ignoring the other channels with
the purpose of simplifying calculation or reducing cost. One
way to design suboptimal selection schemes is to consider
only legitimate channel or eavesdropper channel [18], [25].
Another way to design suboptimal selection is to consider
only one hop of the dualhop transmission [26]. These types of
suboptimal selections are often referred to as partial selection.

Here, we give the following two partial selection schemes:
the scheme that only considers legitimate CSI (Partial-D) and
the scheme that only considers eavesdropper CSI (Partial-E).
Partial-D is described by

k∗ = arg max
1≤k≤K

1
2
min{RSk ,RkD}

= arg max
1≤k≤K

min
{
1+

PgSk
σ 2 , 1+

PgkD
σ 2

}
= arg max

1≤k≤K
min {gSk , gkD} , (4)

and Partial-E is described by

k∗ = arg min
1≤k≤K

RkE

= arg min
1≤k≤K

1
2
log2

(
1+

PgkE
σ 2

)
= arg min

1≤k≤K
gkE . (5)

These two partial selection schemes are simpler to implement
and cost fewer resources, but compromise communication
performance compared with optimal selection. Partial-D and
Partial-E are proposed as comparison to the decision-tree-
based selection.

D. MULTICLASS-CLASSIFICATION PROBLEM
In machine learning, classification is the problem of deciding
which class a sample belongs to. If each sample is labeled
with single class and the class set contains multiple labels,
this problem becomes multiclass classification. LetX denote
the input space and all elements in X are i.i.d. Let Y denote
the output space where the classes are marked with num-
bers. The learner receives a set of labeled samples S =(
(x1, y1), . . . , (xm, ym)

)
∈ (X × Y)m, and trains a classifier

which defines the target labeling function f : X → Y .
To be solved by machine learning methods, relay selection

problem needs to be converted to multiclass classification
problem. To be specific, elements of X are drawn from
gSk , gkD and gkE . The classes are labeled by the indices of
candidate relays, i.e. Y = {1, . . . ,K }. A decision tree is
trained to simulate the labeling function f : X → Y .

III. DECISION-TREE-BASED RELAY SELECTION
To solve themulticlass-classification problem converted from
relay selection problem, we adopt decision tree learning and
build a classification tree. The entire relay selection scheme
is composed of three phases: preparing training data, building
decision tree and predicting relay selection. The first two
phases are regarded as initialization and conducted before
S transmits the first bit. After tree building is completed,
no update or modification is needed to the decision tree.
At the beginning of each dualhop transmission, the central
controller collects CSI from all relays and uses the stored
decision tree to compute selection result. System model
and the decision-tree-based scheme are briefly illustrated
in Fig. 1. Next, we elaborate the details of the decision-tree-
based scheme.

A. PREPARING TRAINING DATA
Training data demanded by decision tree is generated
from CSI of the legitimate and eavesdropper chan-
nel, i.e. gSk , gkD and gkE , and is denoted by D =

{(x1, y1), (x2, y2), . . . , (xM , yM )}. (xm, ym) is the mth sample
consisting of input xm and output ym.M should be sufficiently
large in order to train an accurate tree. ym represents the
index of optimal relay and is calculated by the optimization-
driven relay selection algorithm specified in (2) using themth
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FIGURE 1. System model of the decision-tree-based secure relay
selection.

CSI samples. Input data is the values of 2K features describ-
ing the quality of all legitimate and eavesdropper channels.
The features are denoted by F = [F1,F2, . . . ,F2K ]. xm is
the input vector containing 2K values, and is given by

xm = [x1m, x
2
m, . . . , x

2K
m ], (6)

where xkm is the value of the kth feature.
The procedure of training data preparing is completed in

the following steps.

1.1 Sensing fading characteristics. calculating splitting cri-
terion and set up new quantization parameters.

1.2 Estimate and feedback gSk , gkD and gkE for all k to
the central controller. Generate input features. Compute
xm = [x1m, x

2
m, . . . , x

2K
m ] from gSk , gkD and gkE .

The input features required by decision tree are discrete
values describing the object to be classified. Therefore,
we need to transform gSk , gkD and gkE to a set of values
which are taken from finite discrete domain and can well
characterize the relays. x1m, x

2
m, . . . , x

K
m are generated from

gk which is given by gk = min{gSk , gkD}, 1 ≤ k ≤ K .
The entire CSI region is divided into ND + 1 segments by
S1, S2, . . . , SND , 0 < S1 < S2 < ... < SND . To clearly show
the relations between quantization parameters and prediction
performance, we consider uniform quantization. We set an
upperbound TD for gk , and then evenly divide the [0,TD]
into ND segments. Then, the entire CSI region is divided into
ND+1 segments, each of which is denoted by [glD(n), g

u
D(n)]

with

glD(n) =

{
(n−1)TD
ND

, 1 ≤ n ≤ ND
TD, n = ND + 1

(7)

and

guD(n) =

{
nTD
ND
, 1 ≤ n ≤ ND

∞, n = ND + 1.
(8)

Then, the value of xkm is an integer that lies between 1 and
ND + 1. To be specific, for 1 ≤ k ≤ K ,

xkm =

{
n, glD(n) < gk < guD(n)
ND + 1, gk > glD(ND + 1).

(9)

xK+1m , . . . , x2Km represent channel features of the eaves-
dropper and are generated from gkE following the same pro-
cedure as the first K features. An upperbound TE is set to gkE
and [0,TE ] is divided evenly into NE segments. The entire
CSI region is divided into NE + 1 segments, each of which is
denoted by [glE (n), g

u
E (n)] with

glE (n) =

{
(n−1)TE
NE

, 1 ≤ n ≤ NE
TE , n = NE + 1

(10)

and

guE (n) =

{
nTE
NE
, 1 ≤ n ≤ NE

∞, n = NE + 1.
(11)

For K + 1 ≤ k ≤ 2K , the kth feature is calculated as

xkm =

{
n, glE (n) < g(k−K )E < guE (n)
NE + 1, g(k−K )E > glE (NE + 1).

(12)

The insight of the feature extraction method is to quantize
gk and gkE , and assign the quantization results to input fea-
tures. Quantization parameters for legitimate channels and
eavesdropper channels can be set independently by different
parameters.
1.3 Central controller calculates (2) with gSk , gkD and gkE ,

and form (xm, ym), assigns k∗ to ym and forms (xm, ym).
1.4 Repeat 1.1-1.3 for anotherM−1 times to form a training

data set containing totally M samples.
Collecting and preparing M samples of training data are

completed offline before the transmissions are started. Once
the decision tree is built, no training data are required as long
as the network topology keeps stable.

B. BUILDING DECISION TREE
After training data is prepared, the decision tree is built by
selecting the best feature and splitting the data set into sub-
sets based on feature value test. This process is repeated on
each subset until stopping criterion is satisfied. Indices of all
candidate relays are represented by the leaf nodes. Before we
describe the building procedure, it is necessary to introduce
the terminology of decision tree.
• Splitting criterion: The metric of evaluating a feature

is called splitting criterion. It measures the decreased
impurity after the current data set is split by a feature.
Information gain, information gain ratio and Gini index
are commonly adopted splitting criteria.

• Stopping criterion: Stopping criterion is the condition
under which the current data set cannot be further split
and the building of the current branch should stop. It is
often defined that the number of samples in current data
set is smaller than a threshold, or splitting criterion of
current feature is smaller than a threshold, or no feature
is left to choose.

• Multi-branch tree: As observed from feature extraction
method , each feature has more than two possible values
if ND,NE ≥ 2, which means that the decision tree
is a multi-branch tree and each interior node is split
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into multiple branches. Multi-branch tree can also be
converted to binary tree.

The decision tree building of the proposed scheme directly
adopts the most widely-accepted decision tree algorithms.
The details depend on the selection of splitting criterion,
the selection between binary tree and multi-branch tree, etc.
ID3 [27] and C4.5 [28] are two well-known multi-branch
decision tree algorithms. ID3 adopts information gain as split-
ting criterionwhile C4.5 adopts information gain ratio. CART
(Classification And Regression Tree) [29] is another widely
used decision tree algorithm. It adopts Gini index as splitting
criterion and is designed by binary tree. Here, we only briefly
describe the steps of building phase.

2.1 Input sample data, set up parameters and stopping
criterion.

2.2 Build a decision tree with sample data. From the root
node, each node represents a test to one of the features
which is selected for having the best splitting criterion.
Then, the current data set is split according to the value
of this feature.

2.3 Split subset of each branch according to the best feature
in the remaining feature set. Build the decision tree
recursively until stopping criterion is satisfied.

It is worth mentioning that the decision tree is converged
if one of the stopping criteria is satisfied. The training data
is generated from perfect CSI of all legitimate and eaves-
dropper channels. Thus, the decision tree is regarded to
converge to optimal point. We only need to build the deci-
sion tree in the initialization phase of the dualhop trans-
mission. After tree construction is completed, it is used to
predict the best relay in each transmission, and requires no
renewal.

C. PREDICTING RELAY SELECTION
In each prediction, input features are generated from
instantaneous CSI of legitimate and eavesdropper channels.
As shown in feature extraction method, the values in xm are
assigned by the quantization results of gSk , gkD and gkE .
Therefore, the central controller only needs to estimate and
collect the quantized CSI of legitimate and eavesdropper
channels.

3.1 Collect quantized CSI from all legitimate and eaves-
droppers channels, and generate xm.

Let gqSk , g
q
kD and gqkE denote the quantization results of

gSk , gkD and gkE , the first two of which are generated by
the quantization method (9) and the third one is generated
by (12). Thus, gqSk , g

q
kD ∈ [1, 2, . . . ,ND + 1] and gqkE ∈

[1, 2, . . . ,NE + 1]. Transmitting them requires log2(ND+ 1)
bits and log2(NE + 1) bits, respectively. At the beginning
of each odd time slot, gqSk , g

q
kD and gqkE are collected by the

central controller. Then, xm is generated by

xkm =

{
min{gqSk , g

q
kD}, 1 ≤ k ≤ K

gq(k−K )E , K + 1 ≤ k ≤ 2K .
(13)

In each dualhop transmission, the feedback amount is reduced
compared with the optimal selection scheme. Accurate
instantaneous eavesdropper CSI is no longer required.

After input data is generated, it is input into the root
node and tested by the rule that the current node defines.
A leaf nodes will be reached following each branch repre-
senting test result. Relay selection prediction is elaborated as
follows.
3.2 Input xm into the decision tree, test feature values

from root to leaf. From root node, we examine the
feature of xm that current node is testing and follow
the right branch to the next node until a leaf node is
reached.

3.3 Assign the leaf label to k∗. The central controller broad-
casts the selection result to all nodes. The selected relay
is ready to work.

Before next prediction starts, the network first senses
the fading environment. If fading characteristics have not
changed, only Step 3, i.e. relay prediction, is repeated. Else,
new data will be collected and a new tree will be built. All
three steps will be repeated. The entire algorithm is summa-
rized as follows.

Algorithm 1 Decision-Tree-Based Relay Selection
Step 1. Prepare training data.
1.1. Sensing fading characteristics. Calculate splitting cri-

terion and set up new quantization parameters.
1.2. Estimate and feedback gSk , gkD and gkE for all k to the

central controller. Compute xm = [x1m, x
2
m, . . . , x

2K
m ]

using (9) and (12).
1.3. Solve problem (2) using gSk , gkD and gkE , calculate k∗

and assign it to ym. Form (xm, ym).
1.4. Repeat 1.1-1.3 for M − 1 times. Form training data D.
Step 2. Build decision tree.
2.1. Input training sample, define stopping criterion and set

up parameters.
2.2. From the root node, split data set according to the

feature with best splitting criterion.
2.3. Split subset of each branch according the best feature

in the remaining feature set. Build the decision tree
recursively until stopping criterion is satisfied.

Step 3. Predict relay selection
3.1. Collect gqSk , g

q
kD and gqkE from allK relays, and generate

xm.
3.2. Input xm into the decision tree and test feature values

from root to leaf.
3.3. Assign the leaf label to k∗.
Sense fading characteristics.
if fading has not changed

repeat Step 3;
else

repeat Step 1-Step 3;
end if
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D. CLOUD-ASSISTED STRUCTURE
The decision-tree-based scheme requires large amount of
training data, which is generated or collected in different
ways. In the considered network, training data can be col-
lected by CSI estimation and feedback. If fading environment
is changing fast, training data collection and tree building
are repeated frequently, which leads to high overhead and
long delay. Therefore, we consider to adopt the cloud-assisted
structure proposed by [30] to save transmission overhead.
Huge amount of historical data is collected and stored in
cloud servers. Based on the data from same fading envi-
ronment, the cloud server computes a number of different
decision trees and stores them in the cloud. When it is uneco-
nomical or impossible to collect CSI by real measurement,
the dualhop network only estimates the fading characteristics
and asks the cloud for the decision tree that best fits the
current fading. The best tree will be used to predict relay
selection.

The cloud-assisted structure provides a new way of gen-
erating training data, especially when fading environment is
changing frequently. To efficiently use this structure, there are
still many open issues to be solved, such as which features to
be collected, how to compare the fading features with stored
learning models, how to store and transmit learning model
appropriately, etc.

IV. ANALYSIS OF SPLITTING CRITERIA
The input features are generated from continuous CSI and
determined by quantization parameters, i.e. TD, TE and
ND, NE . These parameters also affect the features’ splitting
criteria, which play a key role in building decision tree
and enhancing prediction accuracy. Wisely setting up these
parameters can promote the performance of decision-tree-
based relay selection. Moreover, investigating the relation
between quantization parameters and communication perfor-
mance can help revealing the laws of relay selection.

In this section, we derive three commonly used splitting
criteria, namely information gain, information gain ratio and
Gini index. These splitting criteria describe the impurity of
a data split. Large information gain means that this feature
splits the current data set more efficiently. Information gain
favors features with a large number of distinct values. Then,
information gain ratio is defined as the ratio of information
gain to intrinsic entropy to solve the weakness of information
gain. Gini index measures the probability that a sample is
incorrectly classified and takes value from 0 to 1. In the
literature, it is not obvious which of the splitting criteria will
produce the optimal decision tree for a given data set. Among
all existing splitting criteria, no one is consistently superior
to the others. As a result, it is necessary to derive these
splitting criteria and analyze their relations with quantization
parameters.

The optimal selection policy specified in (2) provides lit-
tle insight and has to be simplified in order to derive the
expressions of splitting criteria. Thus, approximation to (2)

is made as

k∗ = arg max
1≤k≤K

RSk

≈ arg max
1≤k≤K

min
{
gSk
gkE

,
gkD
gkE

}
≈ arg max

1≤k≤K

min {gSk , gkD}
gkE

. (14)

For the convenience of derivation, we let γk =
min{gSk ,gkD}

gkE
.

A. INFORMATION GAIN
Information gain, which is adopted by ID3 algorithm, repre-
sents the entropy change after data set is split by a feature. To
build a more efficient decision tree, information gain of the
features need to be maximized. The information gain of the
kth feature Fk is given by

IG(D,Fk ) = H (D)− H (D|Fk ). (15)

Here, H (D) is the entropy of the classification and given by

H (D) = −
K∑
i=1

Pr(ym = i) log2 Pr(ym = i) = log2 K . (16)

H (D|Fk ) is the average entropy after the split caused by
Fk . In the remaining part, we focus on the derivation
of H (D|Fk ).

Since all wireless links experience i.i.d. Rayleigh fading,
the first K features representing legitimate channels share
identical information gain, and the other K features repre-
senting eavesdropper channels also share identical informa-
tion gain. This means that information gain of the first K
features can be maximized simultaneously. This conclusion
also applies to the other K features and to other two splitting
criteria. Next, we derive the expressions of information gain
for the two cases.

1) 1 ≤ K ≤ K
The first K features are extracted from gk , and quantized by
TD, ND. The entropy after splitting is calculated as

H (D|Fk ) =
ND+1∑
n=1

Pr(xkm = n)Hn(TD,ND)

=

ND+1∑
n=1

Pr
(
glD(n)<gk<g

u
D(n)

)
Hn(TD,ND), (17)

where

Hn(TD,ND)

=−

K∑
i=1

Pr(ym= i|xkm=n)log2 Pr(ym= i|x
k
m=n). (18)

In order to facilitate the derivation of Pr(ym = i|xkm = n), let
γM = max

i 6=k
γi and its probability density function (PDF) is
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given by fM (z) = (K−1)λE (2λD)K−1zK−2

(λE+2λDz)K
. When i = k ,

Pr(ym = i|xkm = n)

= Pr
(
gk
gkE

> γM |glD(n) < gk < guD(n)
)

=

∫
∞

0

∫ guD(n)

glD(n)

∫ x
z

0
fX (x)fY (y)fM (z)dxdydz

=

∫
∞

0
fM (z)

(
(e−2g

l
D(n)λD − e−2g

u
D(n)λD )−

2λDz
λE + 2λDz

×(e−g
l
D(n)(λE+2λDz)/z − e−g

u
D(n)(λE+2λDz)/z)

)
dz = q(n).

(19)

When i 6= k ,

Pr(ym = i|xkm = n)=Pr(γM = γi, γM > γk |xkm = n)

=
1− q(n)
K − 1

. (20)

Calculating the summation in (18), we obtain

Hn(TD,ND)=−q(n) log2 q(n)−(1−q(n)) log2
1−q(n)
K−1

.

(21)

Combining all probabilities derived above, we can obtain the
expression of information gain for k = 1, . . . ,K .

2) K + 1 ≤ K ≤ 2K
xK+1m , . . . , x2Km are extracted from gkE and determined by TE ,
NE . The entropy after splitting is calculated as

H (D|Fk )

=

NE+1∑
n=1

Pr(xkm = n)Hn(TE ,NE )

=

NE+1∑
n=1

Pr
(
glE (n) < g(k−K )E < guE (n)

)
Hn(TE ,NE ), (22)

where

Hn(TE ,NE )

=−

K∑
i=1

Pr(ym = i|xkm = n) log2Pr(ym = i|xkm = n). (23)

When i = k − K ,

Pr(ym = i|xkm = n)

= Pr
(

gk−K
g(k−K )E

> γM |glE (n) < gkE < guE (n)
)

=

∫
∞

0

∫ guE (n)

glE (n)

∫
∞

yz
fX (x)fY (y)fM (z)dxdydz

=

∫
∞

0
fM (z)

λE

λE + 2λDz

×

(
e−g

l
E (n)(λE+2λDz) − e−g

u
E (n)(λE+2λDz)

)
dz = p(n).

(24)

When i 6= k − K ,

Pr(ym = i|xkm = n) = Pr(γM = γi, γM > γk |xkm = n)

=
1− p(n)
K − 1

. (25)

Substituting above results into (23), the entropy of the nth
selection result is expressed as

Hn(TE ,NE )

= −p(n) log2 p(n)− (1− p(n)) log2
1− p(n)
K − 1

. (26)

Combining all probabilities derived above, we can obtain the
expression of information gain for k = K + 1, . . . , 2K .

B. INFORMATION GAIN RATIO
Information gain ratio is a splitting criterion defined as the
ratio of information gain to the intrinsic information gain.
It is proposed to reduce information gain’s bias towards
multi-valued features by taking into account the number of
branches. Information gain ratio of Fk is calculated by

IGR(D,Fk ) =
IG(D,Fk )
HFk (D)

. (27)

HFk (D) denotes the intrinsic entropy of Fk and is expressed
by

HFk (D) = −
ND+1∑
n=1

Pr(xkm = n) log2 Pr(x
k
m = n), (28)

for 1 ≤ k ≤ K and

HFk (D) = −
NE+1∑
n=1

Pr(xkm = n) log2 Pr(x
k
m = n), (29)

for K + 1 ≤ k ≤ 2K . Combining the results of information
gain and intrinsic entropy, information gain ration can be
obtained.

C. GINI INDEX
For the convenience of comparing the splitting criteria, Gini
index is defined as the change of Gini impurity. As a result,
it will be maximized to optimize the performance of the
proposed scheme. Assume that feature Fk is considered, Gini
index is given by

GINI(D,Fk ) = Gini(D)− Gini(D|Fk ). (30)

Gini(D) denotes the impurity of sample data and is irrelevant
to quantization parameters. Then, we focus on the deriva-
tion of Gini(D|Fk ), which represents average Gini if Fk is
considered.

1) 1 ≤ K ≤ K
Gini(D|Fk ) is calculated as

Gini(D|Fk ) =
ND+1∑
n=1

Pr(xkm = n)Gini(n). (31)
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Gini(n) is the Gini of branch xkm = n and is expressed as

Gini(n) = 1−
(
Pr(ym = k|xkm = n)

)2

−

∑
j 6=k

(
Pr(ym = j|xkm = n)

)2

= 1− q(n)2 −
(1− q(n))2

K − 1
. (32)

Substituting above results into (31), the Gini index of feature
Fk is expressed as

Gini(D|Fk ) =
ND+1∑
n=1

(
e−

2(n−1)TDλD
ND − e−

2nTDλD
ND

)
×

(
1− q(n)2 −

(1− q(n))2

K − 1

)
. (33)

2) K + 1 < K < 2K
In this case, we calculate that

Gini(D|Fk ) =
NE+1∑
n=1

Pr(xkm = n)Gini(n), (34)

where Gini(n) is the Gini of branch xkm = n and is expressed
as

Gini(n) = 1−
(
Pr(ym = k|xkm = n)

)2

−

∑
j 6=k

(
Pr(ym = j|xkm = n)

)2

= 1− p(n)2 −
(1− p(n))2

K − 1
. (35)

Substituting above result into (34), we obtain the following
expression

Gini(D|Fk ) =
NE+1∑
n=1

(
e−

(n−1)TE λE
NE − e−

nTE λE
NE

)
×

(
1− p(n)2 −

(1− p(n))2

K − 1

)
. (36)

V. PERFORMANCE EVALUATION
A. NUMERICAL RESULTS
We provide experiments for the proposed decision-tree-based
relay selection scheme. 5 × 103 CSI samples that follow
Rayleigh fading are generated to construct training samples.
We use classregtree function from MATLAB Statistics and
Machine Learning Toolbox to build the CART tree based on
training samples. More 5 × 103 Rayleigh distributed sam-
ples are generated to test the decision tree. Average secrecy
rate over all testing sample output is considered as perfor-
mance metric to evaluate the proposed decision-tree-based
scheme. Comparison schemes are optimal selection given in
(2), Partial-D in (4), Partial-E in (5) and random selection.
We first demonstrate numerical results of splitting criteria,

FIGURE 2. Information gain of input features.

FIGURE 3. Information gain ratio of input features.

FIGURE 4. Gini index of input features.

i.e. information gain, information gain ratio and Gini index,
with respect to quantization parameters. Then, we show how
the performance of the proposed decision-tree-based scheme
changes with quantization parameters.

In Fig. 2, Fig. 3 and Fig. 4, numerical results of splitting
criteria are depicted by three-dimensional colored mesh with
respect to quantization parameters. The range of TD and TE
is from 0 to 10, and the range of ND and NE is from 1 to
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20. These figures will show the intrinsic relation between
splitting criteria and quantization parameters. Fig. 2 shows
information gains of the two sets of features representing
legitimate channels and eavesdropper channels. Information
gain is regarded as a function of TD(TE ) andND(NE ), which is
depicted three-dimensionally. We first observe that informa-
tion gain of both feature sets is decreasing with TD(TE ) when
ND(NE ) is fixed. The reason lies in that large TD(TE ) yields
longer segments and thus lowers accuracy of quantization.
It can be concluded that the length of each segment plays
an important role in the decision-tree-based scheme. Thus,
we infer that information gain is also increasing withND(NE ).
However, the two surfs show no obvious rise along ND(NE )
axis, except for large TD(TE ) region. This suggests that when
the length of each segment is small enough, it is no longer
a significant factor that enhances the performance of the
decision-tree-based scheme.

Information gain ratios of the 2K features are depicted
in Fig. 3. It is clearly observed that both of the two surfs
have a peak point at (TE ,NE ) = (0.5, 1), the point closest
to the origin. The reason lies in that information gain ratio
favors partitions with fewer distinct values. Fig. 4 shows Gini
indices of the two feature sets with respect to quantization
parameters. We can easily observe that Gini indices of both
feature sets are decreasing with TD(TE ). The change of the
two surfs along ND(NE ) axis is inconspicuous when TD(TE )
is small. As TD(TE ) grows larger, Gini indices of the two
feature sets drop slightly with the decreasing of ND(NE ).
Note that Gini index changes with quantization parameters in
the similar pattern to information gain. However, information
gain ratio shows evident bias towards quantization with two
levels. Obviously, information gain and Gini index are more
appropriate to the relay selection problem. Consequently,
we adopt CART algorithm to build the decision tree in sim-
ulation experiments as CART uses Gini index as splitting
criterion.

In our simulation experiments, average secrecy rate over
the sample data is computed instead of the average secrecy
rate defined in (3) owing to the ergodicity of Rayleigh fading
channels. In practical wireless networks, CSI of legitimate
channels can be precisely estimated, but to obtain full CSI of
eavesdropper channels is a difficult task. Therefore, we fix the
parameters of legitimate channels and depict average secrecy
rate with respect to TE and NE in Fig. 5 and Fig. 6, respec-
tively. Average secrecy rates of optimal selection, Partial-D,
Partial-E and random selection are depicted as comparison.
System parameters are K = 5, TD = 5, ND = 20,
λD = λE = 1.

Fig. 5 shows how average secrecy rate is affected by TE
when NE = 2, 8, 15. We observe that when TE < 0.5,
increasing TE raises RS for NE = 8, 15. This is because too
small TE cannot cover enough CSI samples. When TE > 0.5,
all curves drop with the growing of TE , among which the
curve with NE = 2 drops with largest slope, the curve with
NE = 15 only drops slightly with smallest slope and the
NE = 8 curve lies between the other two. It is concluded

FIGURE 5. Average secrecy rate vs. TE when NE =2, 8, 15.

FIGURE 6. Average secrecy rate vs. NE when TE =0.1, 1, 2.

that growing TE leads to larger quantization segments and
thus lower selection accuracy. If NE is large enough, quan-
tization segments can maintain a small length, and selection
accuracy is guaranteed. Then, we compare the decision-tree-
based scheme with benchmark schemes. If TE and NE are set
properly, RS of the decision-tree-based scheme can achieve
a value close to optimal selection. Moreover, even if TE
and NE are not set optimally, RS of the decision-tree-based
scheme can still remarkably exceed random selection. RS for
NE = 8 and NE = 15 always outperform Partial-D, which
only outperforms the curve with NE = 2 in high TE region.
Although Partial-E is superior to Partial-D, it is still inferior
to the decision-tree-based scheme if TE and NE are properly
configured.

Fig. 6 shows how RS changes with NE when TE is fixed
to 0.1, 1 and 2. The first observation is that when TE = 0.1,
RS shows nearly zero fluctuation with NE due to the severely
incomplete sample set covered by TE . When TE = 1 or 2,
as NE keeps growing, RS first rises with NE and then stays
around a certain value. This is also attributed to the length
change of quantization segments, which can hardly influence
selection accuracy when exceeding a certain threshold. We
also notice that although the converged RS for TE = 0.1
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FIGURE 7. Correct ratio vs. TE when NE =2, 8, 15.

FIGURE 8. Correct ratio vs. NE when TE =0.1, 1, 2.

is lower than TE = 1 and 2, RS for TE = 0.1 is higher
than the curves with larger TE if NE is smaller than a thresh-
old. This suggests that the length of quantization segments
plays a more important role in the proposed decision-tree-
based scheme. Comparing decision-tree-based selection with
benchmark schemes, we can draw similar conclusions to
Fig. 5. It is worth mentioning that RS for TE = 1 and TE = 2
are higher than Partial-E if NE is sufficiently large.
Accuracy is one of the metrics evaluating the performance

of a decision tree. It is defined as correct ratio, the ratio of the
number of correctly predicted samples to the total number of
samples. In the simulation experiments, we calculate correct
ratio of the decision-tree-based selection as a function of
TE and NE . Fig. 7 depicts correct ratio versus TE when
NE = 2, 8, 15 and Fig. 8 depicts correct ratio versusNE when
TE = 0.1, 1, 2. Both figures show that correct ratio can reach
70% if TE and NE are set optimally. The curves of correct
ratio look similar to average secrecy rate. This means that
communication metrics such as average rate can also evaluate
the performance of decision-tree-based selection.

In Fig. 9, the decision-tree-based scheme is compared
with SVM and k-NN. Relay selection problem is solved
by SVM and k-NN with both accurate and quantized CSI.

FIGURE 9. Average secrecy rate comparison with SVM and k-NN.

Average secrecy rates with respect to K are depicted. It is
observed that when quantized CSI is used, decision tree is
superior to SVM and k-NN for any K . Even if accurate CSI is
used, decision tree still outperforms k-NN as long as K > 2.

Summing up all observations described above, we draw
the following conclusions. (1) The proposed decision-tree-
based scheme achieves satisfactory performance in terms
of average secrecy rate if the learning parameters are set
properly. (2) The length of quantization segments, i.e. TE

NE
,

plays the key role in deciding relay selection accuracy unless
TE
NE

is sufficiently small when the performance boost vanishes.
Therefore, TE should be large enough to cover sufficient
CSI samples. (3) Increasing NE is definitely beneficial to
enhancing RS , but also raises the difficulty of estimating
eavesdropper channel. How to decide the value of NE relies
on performance requirement and system’s ability to obtain
eavesdropper CSI. Generally, in order to achieve high average
rate, ND/NE and TD/TE should be set large simultaneously.
However, large N costs more feedback bits and large T
requires higher hardware quality. If resources are limited,
tradeoff between performance and cost should be taken into
account.

B. COST ANALYSIS
1) COMPUTATIONAL COMPLEXITY
Computational complexity of optimization-driven relay
selection schemes is O(K ), the complexity of maximization
algorithm. As comparison, the computational complexity of
SVM and k-NN is O(K 2) and O(K ), respectively.
The complexity of decision-tree-based prediction depends

on the tree depth whose upperbound is K . Consequently, the
average time complexity of prediction is lower than O(K ).
We take balanced decision tree as an example, whose com-
plexity is O(log2 K ). Preparing data and building decision
tree are only performed in the initialization part before the
dualhop transmissions start. Preparing each sample includes
generating M samples of xm and calculating ym. There-
fore, the complexity of preparing training data is O(KM ).
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TABLE 2. Cost Comparison of relay selection schemes.

Building decision tree includes selecting the best feature from
2K features and splitting the M samples into two subsets.
Thus, the complexity of building a tree is O(KM log2 M ).
The decision tree needs no renewal in each dualhop

transmission provided that fading environment stays stable.
If one time slot is 0.5ms, the source transmits 1000 times
per second. As transmissions continue, the decision-tree-
based scheme shows its superiority to the optimization-driven
scheme.

2) FEEDBACK AMOUNT
In optimization-driven scheme, gSk , gkD and gkE takes 3K real
values. In practical systems, 16 bits are usually used to trans-
mit one continuous real value. Thus, the feedback amount is
48K bits for each selection. In decision-tree-based prediction,
gqSk , g

q
kD and gqkE are estimated and fed back to the central

controller. Total feedback amount isK log2(ND+1)
2(NE+1)

bits, which is much lower than 48K for practical values
of ND and NE .
In decision-tree-based scheme, training data contains M

samples of (xm, ym), leading to 3K×M real values, i.e. 48KM
bits. In prediction phase, if one time slot is 0.5 ms, S transmits
for 1000 times per second. For ND = NE = 15, the feedback
amount of is 12K bits per second, economizing 36K103 bits
per second compared with optimal selection.M is the order of
103, so it takes only several seconds to compensate the delay
caused by training data collection.

3) CSI ACCURACY
In secure relay selection design, acquiring eavesdropper’s
CSI is a difficult task. Optimization-driven schemes require
accurate eavesdropper CSI while decision-tree-based scheme
only requires quantized eavesdropper CSI. The costs of
decision-tree-based selection and comparison schemes are
compared in Table 2.

VI. CONCLUSIONS AND DISCUSSIONS
In this paper, we propose a decision-tree-based relay selection
scheme for secure dualhop wireless networks. Input features
are generated by quantization of legitimate and eavesdropper
CSI. To analyze the influence of quantization parameters,
we derive three splitting criteria - information gain, informa-
tion gain ratio and Gini index. We evaluate the performance
of the decision-tree-based scheme via simulation, and com-
pare it with optimal selection and other comparison schemes.
Simulation results show that if quantization parameters are
set properly, the decision-tree-based scheme achieves com-
parable average secrecy rate to optimal selection results.
Cost analysis reveals that the decision-tree-based scheme

has advantages in lower computational complexity, smaller
feedback amount and lower eavesdropper CSI requirement.

In this paper, we have assumed that all channels in the
dualhop network experience i.i.d. Rayleigh fading, based on
which expressions of splitting criteria are derived and sim-
ulation results are presented. The proposed scheme can be
extended to other channel models, such as non-i.i.d. fading,
imperfect CSI, etc. The key issue is how to design quantiza-
tion parameters for new channel models.
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