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ABSTRACT While malicious attacks in Android devices are growing, machine learning-based malware
prediction has become time-consuming and space-consuming. Open-source parallel frameworks for mas-
sive data processing can efficiently deal with iterative machine learning tasks based on their distributed
computation and in-memory abstraction, but the performance of category validation actually degrades over
Android kernel features in task_struct. In this paper, to thoroughly investigate Android kernel behaviors,
we first present a kernel feature based framework, CrowdNet, for cloud computing platforms. CrowdNet
includes an automatic data provider that collects footprints of kernel features and a parallel malware predictor
that validates Android malicious behaviors. Then we calculate and select hidden centers by a heuristic
approach for 12,750 Android applications to reduce the number of iterations and time complexity. Our
experimental results show that CrowdNet protects large-scale data validation and speeds up the learning of
kernel behaviors twofold. Further, identifying malicious attacks with CrowdNet improves the classification
efficiency compared to traditional neural network and other machine learning techniques.

INDEX TERMS Android system, kernel feature, malware detection, machine learning, neural network,
cloud computing.

I. INTRODUCTION
Due to the user-friendly and reliable operating system in
Android devices, Android phones have become pervasive
and ubiquitous in our daily life and 76.7% of them are
captured by Android system [1]. The popularity of Android
systems encourages developers and researchers to design and
implement Android applications for satisfying different types
of users. Unfortunately, the number of Android applications
(apps) has a phenomenal growth accompanied by the rise of
malicious attacks. According to a threat report from Kasper-
sky Lab in 2018 [2], there is a doubling of the number
of attacks with malicious Android software: 116.5 million,
against 66.4 million in 2017. These malicious attacks force-
fully inflict different types of damages on normal Android
devices, from the loss of important private user information
to the disruption of system’s performance. Consequently,
a myriad of Android malware detection approaches [3]–[7]
have been proposed to solve this issue and safeguard Android
systems.
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To comprehensively study the phenomenon of Android
malicious attacks and properly detect the threats, kernel-
based malware detection [8], [9] has been proposed and
improved in 2011 and 2013 respectively. This technique
audits all the applications of Android systems and obtains
comprehensive log information from a Linux1 kernel layer
of Android systems. However, the practitioners in [9] only
collected 32 kernel features from the Linux kernel of Android
systems. In consideration of kernel-based malware detection,
the number of kernel features is crucial to the correctness
and scalability of Android malware detection [10]. Therefore,
to leverage the kernel-based malware detection, extending
multiple dimensions of all kernel features becomes indis-
pensable and consequential to validate two categories of
Android applications. In addition, due to continuous scanning
for the entire kernel structures, the size of data collection
increases exponentially, which typically leads to a poor clas-
sification performance and slow execution time. The massive
data which cannot be processed by a single computer [11]
elaborates useful information of Android malware detection.
A cluster computing architecture with in-memory abstraction

1Linux 14.04.1-Ubuntu
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such as Apache Spark [12] is likely to enable the time-
efficient malware detection for massive Android kernel data
analytics.

As the fundamental in-memory-oriented data structure,
Resilient Distributed Dataset (RDD), Apache Spark caches
massive data into sharedmemory and handle them efficiently.
To eliminate the overhead of I/O communications, it iter-
atively exploits RDDs for parallel operations while deal-
ing with large-scale data samples. But performing iterative
scientific computation over Android kernel features incurs
the decrements of classification performance in particular
for neural network method. On the other hand, distributed
iterative numerical calculation destroys the characteristics
of malicious and benign behaviors that identify distinctive
categories.

Detecting malicious threats with large-scale data samples
in Android systems needs quantities of resources [13], e.g.,
a large memory, a high-speed CPU, because the scientific
computation becomesmore andmore complicated along with
the curse of dimensionality and data size. When dealing with
the large-scale data on a general-purpose computer, there are
a plethora of intermediate results saved in the memory or the
disk, which introduces additional storage overhead for multi-
dimensional data. As a fast analytics engine for massive data
and machine learning, Spark is able to continuously cache
data to shared memory and speed up large-scale data opti-
mization. However, huge volumes of kernel feature datasets
and a large number of machine learning iterations decrease
classification performance of Android malware detection
in Spark. To bridge the performance gap between massive
data and machine learning, we propose a CrowdNet frame-
work over kernel features and design several techniques in
Spark.

The CrowdNet malware detection framework, consisting
of two key components: an automatic kernel feature provider
and a novel neural network-based predictor, is able to sys-
tematically analyze and evaluate kernel features and improves
classification performance of Android malware prediction by
dissecting different parts of kernel features. CrowdNet pro-
vides dedicated supports for gathering massive data and pre-
dicts malicious attacks based on their characteristics. Thereby
it avoids unnecessary repetition of the analysis of malicious
behaviors and makes up for the lost performance caused
by machine learning iterations. Compared to the traditional
neural network on parallel platform, CrowdNet calculates
hidden centers by a heuristic approach in parallel and outper-
forms fine-grained operations. Furthermore, its properties of
category identification best fit the demands of in-execution
dynamic malware analysis and detection. In summary, our
research makes the following contributions:

1) An automatic CrowdNet data provider is proposed to
gather genetic footprints of Android kernel features
in task_struct, which sequentially scans the instal-
lation files and automatically saves massive original
data into the parallel database. Further, a large-scale
dataset of Android kernel features, including above

191,250,000 data records, has been constructed for
indicating a decent coverage of Android applications.

2) A novel CrowdNet predictor based on Android kernel
feature datasets is designed and implemented to lever-
age the traditional neural network, which supports the
efficient malware prediction and enhances the detec-
tion performance. Our optimized prediction technique
as the best classifier between seven popular classifiers
improves the performance by 12% compared to the
traditional neural networks and only uses around 50%
of original time to execute the prediction program.

3) We evaluate the performance of CrowdNet with a broad
set of computing nodes and data volumes. Our results
demonstrate that CrowdNet achieves the best perfor-
mance than other techniques in terms of accuracy rates
in parallel platforms. Moreover, CrowdNet reduces the
time consumption caused by frequent iterations and I/O
communications.

4) To the best of our knowledge, CrowdNet is the first
system designed to automatically collect Android ker-
nel features and concurrently predict Android malware
on distributed platforms, which will serve as guidelines
for researchers to explore the trends of Android kernel
features and provide the support of validating Android
malware detection models.

The rest of this paper is organized as follows. Section II
introduces how to identify malicious attacks over kernel
features in Android. Related work is shown in Section III.
Sections IV and V present the design of CrowdNet data
provider and CrowdNet predictor. Then, Section VI evaluates
the benefits of the CrowdNet framework. Conclusion is dis-
cussed in Section VII.

II. IDENTIFY ANDROID MALWARES OVER KERNEL LAYER
This section introduces the background of Android malware
detection, the challenges of Android malware detection and
the CrowdNet model of how to identify Android malwares
over kernel features.

A. ANDROID BASICS AND KERNEL LAYER
Figure 1 illustrates four main components of Android sys-
tem [14], which is comprised of Applications, Application
Framework, Libraries & Android Runtime, and Linux Ker-
nel. The application layer is located on the top of Android
system, with the responsibility for installation and operation
of user software. The application framework contains high-
level services in the form of java classes for communica-
tions between application layer and Android libraries. The
Android libraries layer provides the resource access to system
APIs from the second layer, in addition to those C/C++
based applications. The Android runtime encompasses two
important components, core libraries for the standard java
language and light-weight Android virtual machine. The bot-
tom layer, Linux kernel, is the core of Android architecture,
which handles the process scheduling, memory management,
power management, communication between hardware and
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TABLE 1. Feature categories and number signs (from number 3 to number 114, 112 features in total) in data structure task_struct: task_struct structure
contains 6 task_state features, 48 mem_info features, 15 sche_info features, 30 signal_info features, and 13 others features.

FIGURE 1. Android system architecture.

software, etc. In this open-source software platform, our
CrowdNet mainly focuses on the Linux kernel layer.

B. ANDROID KERNEL STRUCTURES IN PCB
The data structure, task_struct [15] in Process Control
Blocks (PCB), as a descriptor of process interaction, has
112 features to store the information of executing programs.
It gives us an elaborate description of a running process, e.g.,
process state, process priority, scheduling policy, etc., after
being allocated by the slab allocator. While measuring the
variables constantly invoked by a malware process, kernel
features can be used for delimiting the malicious behaviors.
PCB can dynamically update and maintain the process identi-
fication data, process current state and process control infor-
mation, so a method of mining PCB in the Linux operating
system is proposed to predict malware applications in [9],
[10], [16]–[20].

The 112 kernel features of Android task_struct [8] in
Process Control Blocks (PCB) and their categories are shown
in Table 1. hash_key & classifier mean unique nonmal-
ware or malware software applications applied in smart-
phones. 6 task_state variables are defined to describe the
exiting case of task execution. The traces of 48 mem_info
memory usage features indicate resource demand and pro-
cess interaction. When the ability of computation of an

OS exceeds its threshold, a reasonable scheduling strategy
in 15 sche_info features is introduced to increase the sys-
tem’s tolerance. The task structures containing 30 signal_info
features reserve space for handling received signals for each
process which applies or utilizes the limited resources to
restrict or make excessive use of CPU, memory, or disk. The
remaining 13 others kernel features are used to describe guest
time, link number, session ID, etc. Note that the number signs
of hash_key and classifier, Number 1 and Number 2, are not
shown in Table 1.

C. APACHE SPARK FOR ITERATIVE MACHINE LEARNING
Figure 2 shows the brief framework of Spark on Mesos [21]
and resource allocation example. Mesos Cluster communi-
cates the Spark Scheduler andData Nodes withMesosMaster
and Mesos Slaves. Mesos Master, located between Spark
Master andData Nodes, is responsible for retrieving the usage
information of resources from Mesos Slaves on Data Nodes
and informing Spark Scheduler. When receiving the details
from Mesos Master, Spark Scheduler decides the job with a
higher priority should be launched at first and then sends the
feedback signal to Mesos Cluster. Meanwhile, Spark loads
the data samples into shared memory constituted by RDD
from Hadoop Filesystem (HDFS), which translates the disk-
based data to in-memory data. For example, Node 1 (N1)

FIGURE 2. Framework of spark on Mesos and example of resource
allocation.
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in Figure 2 sends the information of free resources (2CPUs,
2GB memory) in ¬ to Mesos Cluster. Then Mesos Cluster
sends the details in ­ to Spark Scheduler and Task 1 (T1)
is designated to utilize the resources (1CPU, 2GB memory)
of Node 1 in ® by Spark Scheduler. Finally, Mesos Cluster
assigns T1 to N1 with 1CPU and 2GB memory via ¯. Note
thatN1, T1 and SS in ¬ ­ ® ¯ represent Node 1, Task 1 and
Spark Scheduler, respectively.

D. CHALLENGES OF IDENTIFYING MALICIOUS ATTACKS
AT SCALE
Collecting large datasets is indispensable for training accurate
malware detection models [22]. The difficulty of collecting
large-scale datasets lies with Android platforms, in which
there is no existing data collection and storage tools.

1) CHALLENGE 1: LARGE-SCALE DATA COLLECTION IN
ANDROID PHONES
There are many approaches to gathering Android malware
datasets, for instance, collecting crowdsourcing datasets,
emulating user interactions and investigating user logs [23].
Due to the popularity of crowdsourcing data with its conve-
nience and inexpensiveness, the datasets with kernel features
have been used to detect Android malware. But the datasets
including 112 kernel features from Android kernel layers
have not been collected by software practitioners. To investi-
gate Android kernel features, an automatic data provider must
support massive data collection for specific information in
Android kernel layers.

In order to profile malicious apps from Android devices,
massive data storage has become a critical challenge on
distributed systems. The strategy of large-scale data storage
must be provided on parallel platforms because the storage
space on Android phones is limited. However, in this work,
our framework scans 750 records every second and completes
data collection in 20 seconds. Finally 15,000 original data
records can be collected for each app. But these massive data
records cannot be saved into a small memory card in Android.
So we design a data processing module in Section IV-D to
transfer data, compress data and store data.

2) CHALLENGE 2: ACCURATELY NORMALIZING DATA
RECORDS
The dimensionality of data records affects the efficiency of
massive data analytics for Android apps [24]. To reflect the
effect of massive data from Android devices, the elaborative
analysis of a data record of Android app is a must. Figure 3
demonstrates a data record of an Android app containing
112 kernel features described in Table 1. The letter E in
Figure 3 represents the exponent of ten. For instance,
4.29E + 9 marked by a red oval in Figure 3 stands for
4.29 × 109. It is observed that the value of each kernel
feature is either too small (less than 10) or too large (equal
to 4.29 × 109), which incurs underfitting of training the
large-scale data [25]. To preserve high efficiency of training
a best-fit model, normalizing data is required to reduce the

FIGURE 3. A data record of 112 kernel features.

time overhead of malware analysis. Hence how to accurately
normalize massive data becomes more compelling in a single
computer. It is obvious that the individual computer does
not support the efficient operations at scale. Apache Spark,
as a fast analytics engine, can speed up data normalization
and learning rate in parallel. Another distributed framework,
Message Passing Interface (MPI), provides standards and
libraries for distributed computing systems [26], but com-
pared to Spark it has a lower performance while tackling iter-
ative machine learning algorithms. Thereby the distributed
machine learning based framework, CrowdNet, is proposed
to secure the accuracy rate of original large-scale data in
Section V.

3) CHALLENGE 3: PERFORMANCE LOSS AND
DEGRADATION FOR MASSIVE DATA
Area Under an ROC Curve [27] intuitively tells how much
prediction models are capable for validating categories.
To help investigators to analyze Android kernel features
based on machine learning, a robust analysis of how machine
learning techniques affect malware prediction is allowed
and shown in Figure 4. It illustrates the ROC space of
the six methods, Naive Bayes (NB), Neural Network (NN),
Convolutional Neural Network (CNN), Decision Tree (DT),
Support Vector Machine (SVM) and Logistic Regression
(LR). When applying these methods to our massive dataset,
they generate four separate confusion matrices that in turn
correspond to ROC points [28]. The X-axis denotes the false
positive rate which equals to the number of negatives incor-
rectly classified divides by the number of total negatives.

FIGURE 4. ROC curves of six machine learning methods in massive data.
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The Y-axis denotes the true positive rate which equals to the
number of positives correctly classified divides by the number
of total positives.

As we can see in Figure 4, in contrast with DT, CNN, SVM,
and LR, NN achieves a lower performance to offer low avail-
ability and security for massive kernel data. Furthermore,
the ROC curve of NN increases slowly against with false
positive rate with a smaller value of AUC. NN, as an efficient
computational model, should have provided the best solutions
to classification and regression according to characteristics
and qualities of data. But the large amounts of Android data
samples and the characteristics of massive data incur the
lower performance specifically for NN method. Actually the
number of Android samples greatly exceeds the dimension
of Android kernel features, which is the main reason of per-
formance loss and degradation for NN. Processing the large
volumes of data cannot only depend on the original imple-
mentation of NN and has to devolve on a novel integrated
neural network for performance improvement. Furthermore,
while the size of Android dataset is growing exponentially,
massive numerical computation of iterative machine learning
also leads to extra memory and CPU overhead for NN. Hence
we optimize the massive dataset and improve the classifica-
tion performance by our new CrowdNet framework in the
following sections.

E. ATTACK MODEL
In this section we outline the attack model that CrowdNet
assumes and protects against. Our work mainly focuses on
providing a data-efficient framework to analyze in-execution
kernel features in Android, so we assume the client device
is compromised by attackers that get access to the kernel
data in Android kernel layer of Figure 1. On the other
hand, we assume the adversaries control the entire kernel
layer, which enables them to modify any kernel feature
while processes are performing. Hence the dynamic attacks
leave enough evidences in proc file which can be traced and
predicted by our CrowdNet provider. In line with previous
studies, CrowdNet can leverage well-known techniques for
tracing footprints of in-execution Android kernel features
such as kernel based behavior analysis [8], behavioral mal-
ware detection framework [29], [30], andmulti-level anomaly
detector [18]. We assume the customers are perceived to
install an unknown Android application which attempts to be
granted permission of the important information. Moreover,
we assume the untrustworthy application such as Trojan horse
masquerading as the legitimate controls the fine-grained
dynamic data access and operation in proc system file that
acts as a dynamic interface to map kernel information. The
virtual file system, proc file, is generated when system boots
and is dissolved at time of system shutdown.

We assume the Android permission system does not deny
access to user sensitive data, including SMS, business (trade
secrets, contracts, or call information), etc. In relation to
the running processes in Android, we assume adversaries do
not incur severe damage in Android system and they only

steal the user private information, obtain the administrator
privilege, or misuse resources. We also make the standard
assumptions about Internet connection, e.g., that users can
use Wi-Fi to connect to Internet, that users can use unlimited
cellular data of 4G LTE (Long-Term Evolution), so Android
malicious applications can be downloaded and installed from
the online market and then massive data of malicious attacks
can be transferred and stored to distributed platforms. Finally,
we assume malicious attacks leave evidences in proc file
between the scan interval and the evidence in Android ker-
nel layer is not erased before uninstalling the application.
To achieve the correct footprints, we also assume the attacks
are computationally bound and therefore cannot easily run the
brute force attacks.

F. SYSTEM ARCHITECTURE
Our CrowdNet Architecture is shown in Figure 5, including
two main modules: CrowdNet Data Provider and CrowdNet
Predictor. On the top of Figure 5 is the CrowdNet data
provider which is in charge of collecting massive kernel
data from Android devices. On the bottom of Figure 5 is
the CrowdNet predictor, in which massive data is saved into
distributed database and analyzed to detect Android malware.
To enhance the performance and availability, CrowdNet also
provides the support of malware detection for massive data.
CrowdNet is deployed on Apache Spark [31] with Apache
Cassandra [32] and Mesos [21]. The CrowdNet data provider
can dynamically trace the footprints of kernel features while
the process is running and then transfers data to parallel
storage system on computer cluster. Overall, it constantly
works on client side and transparently communicates with
administrators on parallel platforms. The CrowdNet predictor
storesmassive data fromCrowdNet data provider and reduces
the size of the large-scale data with standardized function.

FIGURE 5. CrowdNet architecture with data provider and predictor.

From the above discussion, the communication between
the two major components is orchestrated by UDP services
and HTTP services with several important programming
tools. The CrowdNet provider is responsible for data transfer-
ring, data compressing and message communication. When it
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receives data instances and finishes data compressing, UDP
and HTTP services will send them to computer side with
a USB cable or over a Wi-Fi connection for distributed
storage. Additionally, CrowdNet predicts Android malicious
attacks associated with provider and predictor on distributed
platforms.

III. RELATED WORK
A. ANDROID MALWARE DETECTION OVER KERNEL
FEATURES
Kernel-based malware detection has been proposed to
dynamically analyze the behaviors of Android malicious
apps. For instance, H. Alptekin et al. theoretically pro-
pose a malware detection method, named TRAPDROID,
from Linux kernel perspective in [20], where they dynam-
ically capture unified behavior profiles, such as maj_flt,
min_flt, stime, utime, etc., to demonstrate the importance
of kernel features for Android malware detection. In [10],
the ‘‘Andromaly’’ framework is also proposed to collect
Android kernel features. The researchers utilize machine
learning algorithms to find the best combination for their
own datasets. Ham et al. [33] have collected 32 resource
features of network, SMS, CPU, power, memory, virtual
memory and process. They also use different machine learn-
ing algorithms to train suitable models for Android systems.
In [9], F. Shahzad et al. provide a TstructDroid framework
to discriminate Android benign apps and Android malicious
apps. They gather a small dataset consisting of 110 malicious
apps and 110 benign apps with 32 Android kernel features.
Isohara et al. [8] design an audit application called logcat
on virtual machine to monitor the application behaviors and
propose a kernel-based behavior analysis method.

B. LARGE-SCALE STUDY ON ANDROID MALWARE
DETECTION
Due to the growing popularity of high performance com-
puting, many researchers provide parallel frameworks to
analyze their large-scale datasets. Yuan et al. [34] propose
a new framework, named Lshand, to discover unknown
Android malware and perform further analysis on Android
apps. Y. Zhang et al. design a novel ANDroid Hybrid REp-
resentation Learning (ANDRE) method to cluster weakly-
labeled Android malware [35] and a machine learning based
malware detection system [36] is proposed to impove the
detecting accuracy. V. Afonso et al. use a large-scale anal-
ysis for Android apps to create native code policy in [37].
Mojica et al. [38] analyze the software reuse on hundreds
of thousands of Android apps across 30 categories. SMV-
HUNTER [39] combines static and dynamic analysis for
large-scale identification of vulnerabilities in 23,418 apps.
An offloading algorithm [40] based on Q-learning is pro-
posed for smartphones to accurately detect Android mal-
ware with unknown features. Huang et al. [41] provide
an insight on Android malware development by a sys-
tem called AMDHunter for revealing new Android threats.

Paranthaman et al. [42] also utilize Apache Spark to detect
Android malware in 2169 software samples. To precisely
detect Android malware, J. DeLoach et al. leverage a mod-
ified Logistic Regression classifier in [43]. DroidRA [44] is
used to extract the target object values of reflective methods.
R. Goyal et al. present a distributed service called SafeDroid
in [45] to detect malicious apps on Android platforms.

IV. CROWDNET DATA PROVIDER
From the above disscusion, we identified the major chal-
lenges of Android malware detection. Therefore, in this
section, we systematically interpret how CrowdNet data
provider gathers the 112 fields of Android task structure and
analyzes Android apps installed into a real Android device.

A. MALWARE & BENIGN DATASETS
As shown in Tables 2 and 3, we gather 6375 representative
Android malicious apps by VirusTotal [46] from 38 Android
malware families and 6375 Android benign apps in 24 pop-
ular benign categories from Google Play Store [47] where
there is an APK downloading mirror [48]. Our data collection
is described in the following sections. To trace footprints
of 112 kernel features in task_struct our CrowdNet provider
monitors and retrieves 750 records per second while Android
programs in Tables 2, 3 are executing. For each Android app,
we finally obtain 15,000 data records in 20 seconds. After
collecting data records of 12,750 Android apps, we construct

TABLE 2. Android malware families.

TABLE 3. Android benign categories.
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two massive datasets. Our datasets contains 191,250,000 data
records in total which indicates a decent coverage of Android
apps.

B. READ AND WRITE OF KERNEL MODULE IN ANDROID
To efficiently achieve the massive data from Android phones,
a new module with read and write operations must be con-
structed to record the changes of system resources. Thereby
we directly build a new component for virtual file man-
agement to monitor the changes of kernel features. If this
module detects the variation of system resources, a new
variable for the current task with a unique process ID is
generated and sent to the hard disk via socket connec-
tion. Here, the new variable only needs 4 bytes to store in
Android, which does not cause extra storage and schedule
overhead. Meanwhile, we can achieve the changed vari-
ables of kernel features and transfer them to other storage
devices.

C. ANALYSIS SEQUENCE OF APK FILES
To accurately analyze the sequence of APK files, we design
a simple state machine in Android. Initially, we install APK
files into a physical device with a Node.js program when
the Android system is available. But if the device is busy
with waiting or recharging, we do not launch the analysis
program because the entire system is not stable and safe
to run additional programs. Until the device becomes ready
to analyze APK files, our analysis program automatically
installs APK files to Android device.

We define three states for the analysis sequence of APK
files:

1) Ready: this state shows the next APK is ready to install
to the device or analyze via /proc file.

2) Waiting: this state showsmultiple APKs are waiting for
installing or analyzing when the system is busy with
analyzing other APKs.

3) Recharging: this state shows the device is busy with
charging without installing or analyzing any APKs.

D. ARCHITECTURE OF CROWDNET DATA PROVIDER
The multiple dimensional kernel feature’s provider shown
in Figure 6, working both on Android devices and storage
servers, is mainly composed of three components: (1) The
scheduling mechanism of Android APK repository, (2)&(3)
message (package) communication in local computer, and
(4)&(5) data processing of compression, transformation and
storage via several User DatagramProtocol (UDP) services of
lightweight data package transmission and Hypertext Trans-
fer Protocol (HTTP) of the request-response module. In order
to efficiently scan the detailed information of kernel features,
the scheduling mechanism is implemented to dispatch the
setup of Android apps concurrently. Therefore, we design a
lightweight scheduler for the scheduling component (1) to
reduce the storage overhead and assign scanning tasks.

As shown in Figure 6 (2)&(3), the message communica-
tion component on computer side with /proc file generates
intermediate results to read the information of all kernel
features (task_struct). Components (2) and (3) in Figure 6
are the same module to illustrate the implementation of mes-
sage communication. After loading this module into physical
devices, multiple communication assignments, such as mem-
ory allocation, read/write operations, scheduling strategies,
etc., can be executed coordinating with the scheduling part.
Furthermore, how to monitor the utilization efficiency is
indispensable for system’s maintenance and succinctness.

In Figure 6 (4)&(5), we introduce scalable data processing
component which converts data formats, compresses data

FIGURE 6. Overview of multiple dimensional kernel feature’s (Raw Data) provider. In (2)&(3), message communication module in local computer, where
(2) and (3) are the same component. In (4)&(5), data processing module in android kernel, similarly, where (4) and (5) are the same component.
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volumes and transfers data. Components (4) and (5) work-
ing on Android side are also the same module divided into
two parts: UDP and HTTP. To convert binary data to string
data, UDP services need support numerical calculation and
transformation. Moreover, the data must be compressed to
the format with less bytes to reduce the storage overhead in
Android. But when data conversion and data compression are
finished, the new data will be sent to a local database from this
temporal data pool.

E. IMPLEMENTATION OF CROWDNET DATA PROVIDER
Algorithm 1 illustrates the implementation of our auto-

matic CrowdNet data provider in section II-F. We first man-
ageAPKfiles on computer side in Lines 1-2. Line 1 shows the
downloaded APK files are copied to the specified folder and
then they are sorted by Line 2 according to their last modified
date. The scheduling mechanism in Figure 6 is simply imple-
mented in Lines 1-2. As shown from Line 3 to Line 8 in Algo-
rithm 1, we build the message communication component
of Figure 6. After orchestrating Android apps on computer
side, HTTP server is started for listening to /proc file and
relaying Android data records in Line 3. Line 4 illustrates the
process of collecting data from Android is monitored by port
8080. Lines 5-6 show a tool called Android Debug Bridge
(ADB) inserts a new kernel module into Android device. And
then ADB triggers installing APKs by Line 7 and achieves
the current process ID to verify different APKs by Line 8.
The data processing component in Figure 6 is implemented
from Line 9 to Line 18 in Algorithm 1. Line 9 launches
UDP service to send Android data records from Android side
to computer side and Lines 10-11 trigger data collection on
Android side. Lines 12-15 show the iterative data collection
and Line 16 is the data compression. The data is sent to

Algorithm 1 CrowdNet Data Provider
1: cp − r/home/Android_apps/ ∗ /home/Android

_installed
2: sort_apps(path)
3: httpServer(relay_data)
4: listenPort(8080)
5: adb push tstruct_mod .ko /sdcard/
6: adb shell insmod /sdcard/tstruct_mod .ko
7: adb shell am start activity_name
8: PID← ps activity_name
9: udpServer(PID)

10: adb shell echo PID→ /proc/getMalwareData
11: adb shell sh start_collect(PID)
12: while (i 6= 15000) do
13: sample← cat /proc/getDataInstance
14: i← i+ 1
15: end while
16: compressdata(sample)
17: switch2httpServer(PID)
18: savedata(sample)

computer side via HTTP server in Line 17 and stored into
the parallel database in Line 18.

V. CROWDNET PREDICTOR
To mitigate the gap between massive data and I/O communi-
cation, we also design a novel CrowdNet predictor for large-
scale datasets. Hence, we introduce the implementation of
CrowdNet predictor and the strategies of how CrowdNet pre-
dictor to deal with massive data and improve the performance
in parallel.

A. DATA PROCESSING
To maintain the massive data integrity, all kernel features
within the parallel database are preserved over continuous
time. Initially, we have to look up the metadata in distributed
system to find out the data instances with inaccurate values.
But if some missed or corrupted data instances are observed,
these unexpected fields must invoke one or more data
management operations for data consistence. In this work,
we remove the inaccurate fields, replace the missed or cor-
rupted fields with their expected values. With the frequent
analysis of CrowdNet provider, CrowdNet predictor needs to
cope with redundant data instances that affect the classifica-
tion accuracy and the execution time. Therefore, to retrieve a
consistent effect, CrowdNet predictor cleans up the original
data over different rows of datasets for the high-quality data
management.

In CrowdNet predictor, we also utilize standard procedures
to improve the quality of large-scale data. Each classification
model needs different types of data instances for achieving a
better classification performance. In order to generally satisfy
the requirements of most classification techniques, all data
instances are converted into numerical data format with a
[0,1] or [−1,1] range by normalized functions, improving
the efficiency of complicated model training. There are two
popular methods to standardize numerical data instances [49]
as shown as below, 0-1 scaling of Equation (1) and Z-score
scaling of Equation (2),

X ′i = (Xi − Xmin)/(Xmax − Xmin), X ′ ∈ [0, 1] (1)

X ′′i = (Xi − µs)/σs (2)

In Equation (1), X ′i ,Xi,Xmin,Xmax represent each new value
after data transformation, each original value of a column,
the minimal value between all the data instances in the same
column with each original value, the maximal value between
all the data instances in the same column with each original
value, respectively. X ′′i ,Xi, µs, σs of Equation (2) stand for
each new value, each original value of a column, the expected
value in the same column with each original value, and the
standard deviation value in the same column with each orig-
inal value.

Since this method in Equation (1) guarantees that all the
new features will be not more than one and not less than
zero, it is applied to standardize our streaming data instances
from Android phones. And A. Kusiak has proved that the
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classification accuracy of massive data can be improved with
the specific feature bundles [50].

B. BASIC OVERVIEW OF CROWDNET METHODOLOGY
Radial basis function networks [51] are proposed to solve the
issues of nonlinear classifications or nonlinear approxima-
tion. In terms of the traditional NN algorithm that attempts to
reduce the global error rate through less iterative calculations,
it does not fit the exascale computation of millions of data
instances in Section II-D3. Thereby CrowdNet replaces the
kernel of NN method with the radial basis function to con-
solidate multiple techniques to a combined parallel method.
CrowdNet also utilizes a Gaussian kernel to finish the nonlin-
ear transformation of massive data instances, which improves
the training performance at scale.

In addition, CrowdNet is composed of three similar layers
compared to NN, input layer, hidden layer and output layer.
Like the traditional NN method, its input layers deal with the
original or reduced data for next layers, but its hidden layers
perform nonlinear transformation and data mapping in a new
space with the following Equation (3):

netj = exp(−
∥∥X − Cj∥∥2 /σ 2

j ) (3)

where netj,X ,Cj, σ represent the j-th neuron’s net value,
the input vector, the j-th neuron’s center position, and the
j-th neuron’s standard deviation, respectively. ‖.‖ denotes the
Euclidean norm and

∥∥X − Cj∥∥ stands for Euclidean distance
between the pattern and the center. CrowdNet utilizes center’s
values C and its standard deviation between input layers and
hidden layers. However, NN attempts to train the weightsW1.

The output layers of CrowdNet need to combine each
output values from hidden layers according to Equation (4):

o =
n∑
j=1

W × netj (4)

where o, j,W , netj represent the output value of output lay-
ers, the number of neurons from 1 to n, the vector of
the weights and the j-th neuron’s net value, respectively.
CrowdNet includes three steps: clustering centers, calculating
net values and standardizing outputs. Actually, the first step
demonstrates the method of how to cluster training centers
and select the closest center (normalizing the output) for
an unknown value. This step need to be finished by the
clustering algorithms before deploying CrowdNet transfor-
mation. Then, the second step given by Equation (3) is able
to calculate net values and according to the output func-
tion (4) the third step with standardizing outputs also can be
accomplished.

C. CALCULATE CROWDNET CENTERS
As discussed in Section V-B, a clustering algorithm is
required to divide massive data into several regions. For
brevity, K-means algorithm is used to separate a clus-
tering of data instances into K regions in Algorithm 2.

Algorithm 2 K-means Clustering for CrowdNet Centers
1: Input: Training dataset D, number of clusters k
2: Initialize k clusters randomly or Read k clusters cj
3: Set sumj = 0 and nj = 0 for j = {1, . . . , k}
4: while TRUE do
5: for xi ∈ D do
6: for j ∈ {1, . . . , k} do
7: jmin = arg min

∥∥xi − cj∥∥
8: sumjmin = sumjmin + xi
9: njmin = njmin + 1

10: Dj← xi
11: end for
12: end for
13: for j ∈ {1, . . . , k} do
14: cj = sumj/nj
15: end for
16: end while

Algorithm 2 explains how K-means finds a suboptimal parti-
tion for unknown data instances. In Algorithm 2, Line 2 ran-
domly chooses the data instances from large-scale datasets.
In line 3, sumj is the summation of all data points belonging
to the j-th center, nj denotes the total number of all data points
belonging to the j-th center. During iterative computation of
k clustering regions, additional variables, sumjmin and nj, are
used to temporally store intermediate results in Line 8. Here,
sumjmin denotes the minimum summation for xi. And then
K-means assigns the present data point xi to the region Dj
which is the closest centroid to xi.Meanwhile, it calculates the
relevant cluster statistics in Lines 5-12. Lines 13-15 update
centroids of the existing k clusters with the mean of current
dataset. Until all the centroids of k clusters rarely changes,
the program will be terminated normally.

D. SELECT THE KERNEL WIDTHS (σ )
To optimize the activation function of CrowdNet, we need
the centroid cj and the standard deviation σj to decide the
curve of the Gaussian Function. As discussed in Section V-C,
we have introduced how to calculate the centroid cj and will
explain how to effectively select the kernel width σj. Since
a very large or small σj, the kernel width [52], can lead to
numerical issues with gradient descent algorithms, we adjust
the kernel width dynamically based on different results of
Gaussian basis function.

We can achieve the kernel width by different setting
schemes [53]. In this study, to investigate the benefit from
traditional techniques, we utilize K-means method to calcu-
late the centroid cj. Hence, the kernel width σj can be set to
themean of Euclidean distances between data points and their
cluster centroids according to Equation (5):

σj =
1
nj

∑
x∈Dj

∥∥x − cj∥∥ = 1
nj

∑
x∈Dj

(xi − cij)2. (5)

In Equation (5), the values of the parameters nj,Dj, cj repre-
sent the number of data points belonging to the j-th cluster,
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the data collection of the j-th cluster, and the j-th clus-
tering center, respectively, which are retrieved from the
Algorithm 2.

E. GRADIENT DESCENT TO REDUCE ERROR RATE
CrowdNet iteratively reduces the error rate by gradient
descent [54] to obtain the minimal error in Equation (6)

TE =
n∑
i=1

k∑
j=1

(
ti,j − oi,j

)2 (6)

where ti,j is the target response of the i-th output from the j-th
neurons and oi,j is the actual response of the i-th output from
the j-th neuron. Actually, the value of ti,j is known and the
value of oi,j is achieved by Equation 4. The minimal error
is that the derivatives of clustering center cj, kernel width
σj and the output weight wj vanish. Therefore, an iterative
computation of gradient descent with the direction of the
negative gradient − ∂TE

∂w ,−
∂TE
∂c ,−

∂TE
∂σ

can solve this issue.
To further eliminate the errors with Gaussian basis func-

tion, the following updating rules are designed and imple-
mented in CrowdNet. The details of updating rules are shown
in Equations (7), (8), and (9):

1wj = −α
n∑
i=1

netj(xi)(ti,j − oi,j) (7)

1cj = −α
n∑
i=1

netj(xi)
xi−cj
σ 2j

k∑
j=1

wj(ti,j − oi,j) (8)

1cj = −α
n∑
i=1

netj(xi)
(xi−cj)2

σ 3j

k∑
j=1

wj(ti,j − oi,j) (9)

where α is the learning rate constant which is significant to
reach convergence [55]. Here we set the learning rate to a
small constant value to simplify the training program and
avoid overshooting the minimal errors. Algorithm 3 shows
the implementation of gradient descent with the constant
learning rate. The input values in Line 1 are achieved from
Algorithm 2. With the iterative computation, the three val-
ues, 1w,1c,1σ , are utilized to update the previous values
of W ,C, σ in Lines 6-9. And then the new errors will be
obtained from Lines 10-13.

VI. PERFORMANCE EVALUATION
In this section, we evaluate the accuracy of CrowdNet frame-
work on the Spark system and the performance of classifica-
tions with multiple computing nodes.

A. EXPERIMENT CONFIGURATION
Our experiments are executed on Apache Hadoop v2.6.0 and
Apache Spark v1.6.0. The configurations of Spark are shown
in Table 4. In addition, the ApacheMesos v0.27.1 [56] is used
for managing Spark running and dispatching resources.

Algorithm 3 Gradient Descent with Constant Learning Rate
1: Input: Training dataset D, α, TEmin, clustering centers

set C , kernel width set σ
2: Randomly choose the weight vectorW , initialize the tar-

get output vector TP and the input vector X with dataset
D

3: while TE > TEmin do
4: NET = EXP(−||X − C||2/σ 2)
5: OP = W ∗ NET
6: 1w = −α ∗ NET ∗ (TP− OP)
7: 1c = −α ∗ NET ∗ (X − C)/σ 2

∗W ∗ (TP− OP)
8: 1σ = −α ∗ NET ∗ (X − C)/σ 3

∗W ∗ (TP− OP)
9: W = W +1w,C = C +1c, σ = σ +1σ

Compute the new total errors TE
10: OP2 = W ∗ NET
11: ERR = TP− OP2
12: TE = sum(sum(ERR · ERR))
13: end while

TABLE 4. Apache spark configurations.

B. WEIGHT DISTRIBUTION OF KERNEL FEATURES
Figure 7 shows the weight distribution of 54 kernel features
from Number 3 to Number 56 in Table 1. Six task_state
features achieve small weight values which are less than 0.05.
The results of CrowdNet are gathered from 16 computing
nodes that are operated byApacheMesos, which indicates the
six task_state features are less relevant to malware detection
than others. For mem_info features, we can see according
to our CrowdNet method, 16 weight values are between
0.5 and 1.0 and 24 values are between 0 and 0.5. It can
be observed that the benefit of mem_info features is more
significant than other features in malware detection exper-
iments. To investigate 112 features’ support, we have also
collected the weight distribution of other kernel features.
Figure 8 describes the weight distribution of the remain-
ing kernel features from Number 57 to Number 114 shown
in Table 1, sche_info, signal_info and others. For sche_info,
CrowdNet achieves 4 values between 0.5 and 1.0 and 7 values
between 0 and 0.5. Compared to sche_info features, Crowd-
Net obtains 8 values between 0.5 and 1.0 and 12 weight
values between 0 and 0.5 for signal_info features. There are
2 values between 0 and 0.5 for others features. The non-
zero weight values are principal unit of neural networks. They
decide how much influence of input values works on output
values. Therefore, the weight values of all kernel features
show the relative importance to input values and classification
performance.
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FIGURE 7. Weight distribution of task_state and mem_info features: x-axis denotes the number and category of kernel features in Table 1 from number 3
to number 56 and y-axis denotes the weight value of these kernel features.

FIGURE 8. Weight distribution of sche_info, signal_info and others features: x-axis denotes the number and category of kernel features in table 1 from
number 57 to number 114 and y-axis denotes the weight value of these kernel features.

FIGURE 9. ROC curves of seven methods.

C. RECEIVER OPERATING CHARACTERISTIC
Figure 9 illustrates the ROC space of seven methods, DT, NB,
LR, SVM, NN, CNN and CrowdNet. Overall, AUC area of all
seven methods initially increases with the more false positive
rates, then cease to increase at the largest false positive rate.
The method owning the largest AUC area in Figure 9 the-
oretically makes the best classification performance. Here,
CrowdNet can be perceived as the first classifier and DT
can be the second classifier based on the results of Figure 9.
In contrast with previous results in Figure 4, CrowdNet pre-
serves the classification performance with the largest AUC
area. We also observe that the ROC curve of DT technique
as a reliable classifier increases more sharply and smoothly.
Compared to DT, CNN, SVM and LR methods, CrowdNet
has a larger AUC area. The traditional NN method only
achieves a lower discriminationwith a smaller AUCvalue and
NB classifier has the smallest AUC area than other methods.

Hence, the benefit of CrowdNet becomes more and more
obvious with different true positive rates and false positive
rates. To reflect the effect of CrowdNet, we experimentally
compare the execution time and classification performance
in Sections VI-D and VI-F.

D. EXECUTION TIME OF SEVEN METHODS
To better understand the performance of the seven popular
methods, we analyze the major overhead dominating the
execution time. The execution time of each method generally
changes with different sizes of datasets and different numbers
of computing nodes. Since the execution time is sensitive to
the size of data samples and the characterization of parallel
platforms, we have from 1GB to 8GB datasets concurrently
running on from 1 node to 16 nodes and separately compare
their results which can serve as guidelines for security practi-
tioners to select the one that best fit their system requirements
(8GB is the maximum size for our 12,750 apps and 16 is
the maximum number of computing nodes allocated to our
distributed tasks).

We first investigate DT method on from 1 computing node
to 16 computing nodes in Figure 10. Its execution time with

FIGURE 10. Execution time (min) of DT method.
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1GB dataset constantly stays at 0.4 minute while increasing
the number of computing nodes (workers) from 1 to 16.
As expected, training 2GB dataset consumes a double time
over training 1GB dataset. This is because more data samples
are chopped in the same segments and these segments are
assigned to the same computing workers. Since more com-
puting resources are allocated to each computing node for the
processing of 2GB dataset, the execution time over multiple
nodes is significantly shortened by faster CPUs and larger
memory. On the other hand, when the size of dataset increases
to 8GB, the execution time of CrowdNet in Figure 16 is
comparable to that of DT between 1 and 2 minutes. Figure 11
compares the execution time of LR method with different
sizes of datasets and different numbers of computing nodes.
Each node processes at least 125MB data when LR method
is working on the cluster concurrently. As we can see from
Figure 11, the execution time of LR method increases at
a much faster rate compared with CrowdNet method in
Figure 16. Since it takes a long time to eventually reach
convergence for our large-scale data, the execution time of LR
is significantly prolonged by the slow processes. To further
investigate the main factors of other methods, we system-
atically analyze the execution time of SVM in Figure 12.
The execution time of SVM is comparable to that of LR,
but is much longer than our CrowdNet. This is because
both techniques perform a probabilistic model and minimize
time cost based on likelihood ratio. Its execution time with
1GB and 2GB datasets varies slightly, but for 4GB and 8GB
datasets, the number of computing nodes as a potential factor
affects its execution time.

FIGURE 11. Execution time (min) of LR method.

FIGURE 12. Execution time (min) of SVM method.

Figure 13 reveals the execution time of NB for large-scale
data. NB consumes the least execution time between the
seven methods, but it delivers a poor accuracy performance.
This is because NB only needs to compute the frequency
of each feature instead of going through all the data sam-
ples. However, for quantitative data from Android apps NB

FIGURE 13. Execution time (s) of NB method.

does not incorporate feature characterizations. Meanwhile,
we have dissected the execution time of NN and CNN meth-
ods, shown in Figures 14 and 15 respectively. CNN and NN
outperform computing jobs in a comparable time period.
Compared to NN that accomplishes 8GB data processing
tasks of varying complexity with 16 nodes in 6.5 minutes,
CrowdNet strategically delivers a better performance, for
example, 1.7 minutes with 16 nodes. Like NN, CNN also
delivers a little lower execution time by 3.4 minutes with
16 nodes. Figure 16 shows the execution time of our Crowd-
Net with an increasing number of computing nodes. For 8GB
dataset, CrowdNet just needs at most 20 minutes to com-
plete the entire task by processing and combining metadata

FIGURE 14. Execution time (min) of NN method.

FIGURE 15. Execution time (min) of CNN method.

FIGURE 16. Execution time (min) of CrowdNet method.
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concurrently. Although CrowdNet initially consumes a little
longer execution time with 1 computing node, it eventually
alleviates contentions between resources and achieves even
more compelling execution time than other methods.

In summary, the execution time of the seven methods with
a small dataset (1GB Dataset) does not change much while
increasing the number of computing nodes (workers), since
only a computing node with 12 cores and 20GB memory
can process 1GB data computation. Obviously, 1 comput-
ing node increments gradually the overhead time with the
increase of the size of datasets from 1GB to 8GB. From
our experimental results and spark configuration, we can see
1 computing node (worker) can accomplish the computation
of 1GB dataset. Therefore, 2GB dataset can be processed by
2 computing nodes, denoted as: 2GB⇒ 2 workers, similarly,
4GB ⇒ 4 workers, 8GB ⇒ 8 workers. SVM and LR in
Figures 11 and 12 are of the same order of magnitude for
execution time due to iterations of linear computation.We can
see that NN and CNN deliver longer execution time than
CrowdNet in Figures 14 and 15. NB in Figure 13 performs the
poor prediction performance with the least execution time. In
contrast, CrowdNet and DT in Figures 16 and 10 preserve the
higher performance with less execution time.

E. OVERHEAD OF CROWDNET METHOD
Figure 17 shows the memory usage of CrowdNet method.
We can see that the CrowdNet method introduces additional
overhead of memory storage from 200s to 600s because of
loadingmassive data intomemory. However, the extra storage
cost does not claim resources for training and testing of our
massive dataset in Figure 18. In 600s CrowdNet requests 5%
memory resource to load our massive data to the parallel
memory from the disk. After 600s, CrowdNet continues to
calculate the cluster centers of massive data and select the
kernel width with about 2000% CPU resources and 15%
memory resources. In our experiments, we launch multiple

FIGURE 17. Memory usage of CrowdNet.

FIGURE 18. CPU usage of CrowdNet.

parallel tasks on different numbers of CPUs. Hence the high-
est CPU usage can run at 100% × #. of CPUs. To enhance
the reliability and accuracy of massively parallel process-
ing, CrowdNet iteratively trains the classification model in
memory and efficiently gathers the information of input
parameters. Due to numerical computation of massive data,
CrowdNet leads to 15% memory in use between 700s and
1100s in Figure 17. But when finishing this task, the memory
usage reduces to 12% for learning the classification model.
Meanwhile, to enhance parallelism and reduce execution
time, CrowdNet consistently causes high CPU usage between
600s and 1300s in Figure 18. After CrowdNet finally com-
pletes computational processes in 1300s, it frees up CPU
usage and avoids low computational efficiency. However,
we can find the memory usage in Figure 17 is not reduced to
0% because CrowdNet initially generates parallel in-memory
data instances. Thereby we have to fully clean up the memory
space by terminating the parallel computing processes after
1500s. CrowdNet briefly results in a little higher memory
usage and a little more complicated CPU usage.

F. CLASSIFICATION PRECISION
To achieve a better classification precision, we train and
test the prediction models with 8GB dataset and 16 com-
puting nodes. With a small number of iterative calculations,
the seven classification methods offer the comparable preci-
sion results based on different numbers of computing nodes.
Figure 19 reveals the precision of the seven techniques.
On average, DT, NB, LR, SVM, NN, CNN and CrowdNet
preserve the accuracy rates of 91%, 81%, 89%, 88%, 82%,
90% and 94%, respectively. It is obvious that CrowdNet
achieves a better precision with less computation overhead
compared to other six classifiers. It is because unlike the tra-
ditional methods that deal with the entire dataset, CrowdNet
strives to aggregate massive data samples and determine few
CrowdNet centers. By parallelizing the prediction jobs, all
tasks are able to concurrently work on different computing
nodes to reduce the I/O overhead. Although the massive
parallelism shuffles each task to its corresponding computing
node, the precision performance of each method is less
likely to be impacted by the characterization of distributed
computing. In contrast, CrowdNet associates discrete data
samples with each center that can save the intermediate

FIGURE 19. Precision comparison of DT, NB, LR, SVM, NN, CNN and
CrowdNet.
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results, thereby improving the efficiency at scale. Meanwhile,
while CrowdNet iteratively reduces the mean square errors
with gradient descent in parallel, it is likely to deliver subopti-
mal performance in aggregation operations because it avoids
overshooting the minimum. Therefore, it can be perceived
that CrowdNet is a good choice for anomaly detection in
Android.

VII. CONCLUSION
In this paper, we propose a CrowdNet framework to accu-
rately predict massive Android malware. It elaboratively
implements the collection, storage, and transferring of the
large-scale dataset and then efficiently deals with the original
data instances from the data provider and precisely predicts
malicious behaviors with multiple techniques. To the end,
this paper demonstrates the sensitiveness of DT, SVM, LR,
NB, NN, CNN and CrowdNet, of which CrowdNet can
preserve the best precision and eliminate the execution cost.
Moreover, our CrowdNet technique improves the classifica-
tion performance when the data size dramatically increases
and reduces the time consumption caused by frequent I/O
communications.
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