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ABSTRACT Currently, food quality has become a major concern for the food industry. To efficiently
detect food quality problems during the production process, food enterprises must build quality monitoring
systems. However, in a traditional quality monitoring system, data tampering and centralized storage have
become barriers to reliability. In addition, due to lack of sufficient automation, traditional quality monitoring
approaches are usually inefficient. Fortunately, blockchain is a promising technology that is tamper-proof
and decentralized. Moreover, smart contracts, which are executable codes on the blockchain platform, are
able to conduct transactions between mutually untrusted parties and are self-executing and self-verifying.
By combining smart contracts and quality evaluation models, this paper presents an intelligent quality
monitoring system for fruit juice production. This system has the characteristics of high automation and
high reliability. In this system, response surface models are established based on preproduction data, and
the optimal production condition for each stage is identified. During the actual production process, smart
contracts are executed to record production data on a blockchain. These data serve as the inputs for evaluation
models. Based on the evaluation outcome, smart contracts will decide whether the production process can
be resumed or not. To evaluate the feasibility of the presented system, a prototype version of the quality
monitoring system for flat peach juice production is implemented based on the Ethereum platform and
executed in the Remix IDE.

INDEX TERMS Quality monitoring, smart contracts, blockchain, evaluation models, ethereum.

I. INTRODUCTION
Due to the complexity of the relevant links involved in the
food production process, pollution or deterioration in any link
may directly influence the food quality. In recent years, food
quality incidents have occurred frequently. These incidents
not only endanger people’s health and consumer confidence
[1] but also have a strong adverse impact on food enter-
prises [2]. Many of these incidents, such as China’s tainted
milk scandal and clenbuterol event [3], [4], result from lack
of effective monitoring during the production process. As
a result, food quality concerns have renewed the focus on
quality monitoring inside food enterprises.

Since monitoring can be regarded as a subsystem that
is essential to food quality assurance, reliable and efficient
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food monitoring has become a prerequisite for food enter-
prise success [5]. To realize early food quality monitoring
and evaluation, some statistical methods based on aroma or
texture features [6]–[9], data mining [10]–[13] and machine
learning [14]–[17] have been proposed. For each of these
methods, aspects of the problem can bewell solved. However,
in a traditional food enterprise, the following two challenges
remain: (1) data tampering for the benefit of a department
or an individual [18]; and (2) centralized and opaque data
storage for mass production data [19]. These challenges have
become barriers to reliable and efficient quality monitoring
throughout the production process.

As a permanent and immutable record, a blockchain
is generated by superimposing encrypted data in chrono-
logical order [20]. With the characteristics of tamper-
resistance, traceability, decentralization and cryptographic
security, blockchain technology has become immensely
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FIGURE 1. System overview.

popular in the latest research on food quality assurance
[21]–[23]. Being an executable code on the blockchain plat-
form, a smart contract acts as a digital agreement among
participants. Because of the effective protection of rights and
reduction of time and economic costs, smart contracts have
also begun to be applied in food quality assurance over the
past two years [24]–[26]. Regrettably, the blockchain and
smart contract technologies discussed above mainly focus
on traceability for effectiveness supervision and information
retrieval, while quality evaluation and monitoring inside a
food manufacturer have not yet been considered. Due to
the tamper-resistance and decentralization of the blockchain
and the self-execution of smart contracts, the challenges dis-
cussed above can be solved in a traditional food enterprise.

In this paper, we propose a monitoring framework that
combines smart contracts and evaluation models for the auto-
matic evaluation of the quality of fruit juice samples1 gen-
erated in each production stage. The proposed framework
consists of three sequential execution modules, namely, opti-
mization production model establishment, production data
recording and food quality evaluation, which are illustrated
in Fig. 1. These three modules are respectively carried out
prior to the production process and during and after each
production stage. In the framework, production models are
initially established based on pre-production data, and the
optimal configurations are identifiedwith the regression anal-
ysis method. These optimal production configurations serve
as the standard in the production process. Then, after deploy-
ment, smart contracts record newly generated data at each
production stage on the blockchain. Next, another smart con-
tract evaluates these production data via partial least squares
regression (PLSR) and principal component analysis (PCA)
to measure the quality according to the data fitting degree. If
the outcome value is below a given threshold, the production
process is terminated in a timely manner by the smart con-
tract. Based on the records on the blockchain, the production
conditions at each production stage can be further optimized
through comparison with the optimal configurations.

The primary contributions of this paper can be summarized
as follows:

1In this paper, ‘‘samples’’ refers to the intermediates during a production
process, while ‘‘products’’ represents the final goods after a production
process.

(1) Based on the regression analysis method, the optimal
production model is established for key production
stages in fruit juice production. For the monitored data
generated in each production stage, we develop evalua-
tion models to check the sample quality with machine
learning approaches.

(2) We propose a smart-contract-based monitoring system
to evaluate the quality at each production stage. In this
system, smart contracts are employed to record produc-
tion data on a blockchain and invoke evaluation models.

(3) As a case study, a quality monitoring system for flat
peach juice is exhibited to show the feasibility of the
proposed system.

The remainder of this paper is organized as follows.
Related work is reviewed in the next section. Section III intro-
duces the preliminaries used in this paper. The framework
architecture is presented in Section IV. Section V describes
the implementation details in our framework and presents
a case study. Finally, the conclusions of this study are pre-
sented, and future research directions are discussed.

II. RELATED WORK
Although research of blockchain and smart contract applica-
tions in quality assurance and traceability has been increasing
steadily in recent years, there are almost no studies that
have directly applied them to food quality monitoring. In
this section, we will review the related works on traditional
food monitoring and blockchain technology in food quality
assurance.

A. FOOD QUALITY MONITORING METHODS
As an important feature, a flavour indicator, including aroma
or texture, is usually employed to evaluate food quality in
traditional monitoring approaches. The aroma quality is eval-
uated by using the PCA method, which is a critical method
for reducing the dimensionality of high-dimensional data
and widely used to evaluate the quality of juice products
during thermal treatment [6] or non-thermal sterilization [7].
Additionally, the texture attribute is analysed by several sta-
tistical and bioinformatics methods. For example, the texture
parameters of horse meat are determined for the analysis of
quality changes during frozen storage [8], and the impact of
pulsed electric fields (PEFs) on the flavour quality of turkey
breast meat is determined based on the change in the texture
attribute [9].

With the combination of new advanced intelligent tech-
nologies, such as data mining and machine learning, the effi-
ciency and precision of food quality monitoring have been
greatly improved. A food quality pre-warning system is pro-
posed by Wang and Yue [10] with association rule mining
and Internet of Things technologies for the timely moni-
toring of all the detection data of the whole supply chain.
Wang et al. [12] analyse the application of three typical big
data miming methods in food quality risk warning and select
the most suitable method. Ma et al. [13] employ a parallel
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support vector machine (SVM) in a big data platform to
realize dairy productions risk assessment. Bisgin et al. [16]
demonstrate a new SVM-based technique and provide a good
comparison of it with the artificial neural network (ANN)
model in the detection of pantry beetles in food products.
Based on an integration of the analytic hierarchy process
and extreme learning machine (AHP-ELM), Geng et al. [17]
establish a model to effectively deal with complex food
inspection data.

B. FOOD QUALITY ASSURANCE WITH BLOCKCHAIN OR
SMART CONTRACTS
Due to data transparency, blockchain enables companies to
understand useful information quickly. In addition, the data
immutability of blockchain ensures that the data are authen-
tic and that data tampering is impossible. Based on these
characteristics, blockchain technology has been widely used
in many areas, including the Internet of Things (IoT)
[27]–[31], finance [32]–[36], electronic medical records
[37]–[39] and energy [40]. Acting as a digital agreement
among participants, a smart contract is an executable code
on the blockchain platform. With the ability of effectively
protecting rights and reducing time and economic costs, smart
contracts have been applied in various traditional and emerg-
ing fields [41]–[43].

The employment of blockchain and smart contracts in food
quality assurance has begun to be studied in recent three
years. Wu et al. [21] design a combined private-public ledger
architecture that leverages distributed databases, blockchain
technology and the hybrid peer-to-peer communication
model to deliver independently validated product information
to all stakeholders in pseudo-real time. Nakasumi [22] pro-
poses a new blockchain scheme for information sharing by
combining blockchain with a homomorphic encryption solu-
tion. In this scheme, users are able to own and control their
production data without compromising security or limiting
the ability of companies and authorities to provide encrypted
transactions. Tian [23] establishes an agri-food supply chain
system based on RFID and blockchain technology. This sys-
tem realizes the traceability of trusted information throughout
the agri-food supply chain to help agri-food markets enhance
their food quality.

As a key feature of blockchain 2.0, smart contracts
allow transactions to be safely conducted between mutu-
ally untrusted parties based on the blockchain network. Due
to their self-execution and self-verification, smart contracts
have begun to be applied in food quality assurance in the past
two years. Mao et al. [24] provide a blockchain-based credit
evaluation system to strengthen the effectiveness of super-
vision of food quality. The system gathers credit evaluation
text from traders by smart contracts and analyses the gathered
text with a deep learning network. Based on blockchain and
EPC information services, a food quality traceability sys-
tem is presented by Lin et al. [25]. This system makes use
of on-chain and off-chain data to avoid data explosion and
utilizes smart contracts to prevent data tampering and the

exposure of sensitive information. Wang et al. [26] propose
a product quality management system in which all product
registration and transfer histories are perpetually recorded by
using smart contracts.

Although the approaches and platforms discussed above
can substantially promote food quality assurance, research
on the application of blockchain and smart contracts to the
quality monitoring field remains in the exploration stage,
especially for the production process inside a food enterprise.
In this paper, combining the advantages of blockchain, smart
contracts and evaluation models, we propose an intelligent
and reliable food quality monitoring system to automatically
monitor and evaluate the quality of fruit juice samples gener-
ated in each production stage.

III. PRELIMINARIES
In this section, wewill review the relevant background knowl-
edge that will be used in this paper, including data analysis
methods and blockchain and smart contract technologies.

A. QUALITY EVALUATION METHOD FOR FRUIT JUICE
PROCESSES
In general, a fruit juice process consists of multiple steps,
including raw material purchase, storage [44], crushing [45],
pressing, ultrafiltration [46], pasteurization [47], enzymoly-
sis [48], pouring and packaging. During the thermal and cold
treatments, especially storage, pasteurization, enzymolysis
and pouring, the quality of juice samples is highly likely to
be decreased substantially. In particular, the changes in the
characteristics of the flavour profile are often attributed to the
appearance of an off-flavour or the loss of a key aroma [49].

To thoroughly investigate the volatile compounds in fruit
juice, product samples are isolated and identified by using
gas chromatography-mass spectrometry (GC-MS) combined
with headspace solid-phase micro-extraction (HS-SPME) for
the routine authentication of characteristic volatiles in peach,
coconut, apricot, and other fruits [50]. In other studies,
GC-MS with HS-SPME is widely used for the analysis of
fruit volatile compounds in the monitoring of fruit qual-
ity [51].

Therefore, the investigation of changes in aroma com-
pounds of juice samples plays an important role in the quality
monitoring of fruit juice production [52]. Based on the large
quantity of volatile chemical compound data that have been
collected, several analytical methods have been developed for
analysing and exploiting the information contained in these
data.

To address high-dimensional and complex data, the PCA
dimensionality reduction method is regarded as an effective
technique for identifying correlations between characteristic
volatiles of juices and for quantifying the level of flavour
quality [53]. This method has been widely applied in the
field of food quality evaluation based on similarity degree.
Moreover, hierarchical cluster analysis (HCA) is a statistical
method for identifying relatively homogeneous clusters of
cases based on measured characteristics [54]. Starting with
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FIGURE 2. Four production stages in our system.

each case in a separate cluster, HCA combines the clusters
sequentially and reduces the number of clusters at each step
until only one suitable cluster remains. This approach has
been widely used to establish the identification model of
GC-MS for food quality [55]. Together with PCA, HCA can
extract effective information from the original GC-MS data
for the development of a PCAmodel, which has been adopted
to increase the data handling efficiency and avoid the missed
detection of characteristic volatiles [54]–[56].

As a technique for multivariate regression analysis, PLSR
is used to investigate the relationship between two data sets
by predicting one data set (Y ) from the other set (X ) [57]. The
PLSR model can be used to study the correlations of individ-
ual compounds with sensory descriptors and their contribu-
tions to the characterization of samples [58]. For example,
the GC-MS technique coupled with PLSR is an effective tool
that is commonly used to identify key volatiles of fruit juice
to quantify the level of flavour quality [59].

B. BLOCKCHAIN
As a decentralized, immutable and shared public ledger,
a blockchain is composed of add-on blocks that include
all transactions of the data and all execution outcomes
[60]–[63]. Each of these blocks is hashed and linked to
the next block; hence, these records constitute a secure,
immutable and tamper-proof chain [64]. These transaction
records are maintained by all network nodes. According to
the transaction participants, a blockchain can be a public, con-
sortium or private blockchain. As a completely decentralized
structure, a public blockchain allows any node to read or write
entries to it at any time. In contrast, in a consortium or private
blockchain, only some trusted nodes are involved in the deci-
sion to create a new block. Due to this feature, consortium and
private blockchains can be applied in identity authentication,
copyright management and data storage services.

C. SMART CONTRACTS AND ETHEREUM
As codes that can execute automatically on a computer,
smart contracts were proposed by cryptographer Nick Szabo

in 1997 [65]. During their early period of development, smart
contracts were regarded only as a design concept due to
the lack of trusted execution environments and digital tech-
nologies. Fortunately, blockchain technology can overcome
these disadvantages, which has enabled smart contracts to
become a highly prominent application in the blockchain
ecosystem [66]. According to predefined rules, a smart con-
tract will be automatically executed once it is deployed on a
blockchain.

Unlike Bitcoin, the Ethereum platform offers a Turing-
complete script language and enables users to design any
arbitrary smart contracts that can be precisely defined [67].
A smart contract in Ethereum can be written in a high-level
language, such as Solidity [68]. Afterwards, a Solidity pro-
gram is compiled into a low-level bytecode, which is called an
Ethereum virtual machine (EVM) code. To facilitate the pro-
gram development, developers can also create smart contracts
based on available programming languages, such as Java and
Python.

IV. SYSTEM MODEL
In this section, we will introduce a quality monitoring system
that is realized by regression analysis and smart contract and
evaluation technologies.

A. SYSTEM OVERVIEW
The monitoring system for fruit juice production proposed in
this paper includes three main modules: optimization produc-
tionmodel establishment, production data storage and sample
quality evaluation. These three modules are utilized prior to
the production process and during and after each production
stage.

As illustrated in Fig. 2, four main stages of the production
process are considered: raw material storage, pasteurization,
enzymolysis and delivery. In the system, several experi-
ments are conducted in the pre-production stage to determine
the optimal production conditions for each production stage
(Section IV-B). These conditions serve as the standard for
the subsequent production process. During each production
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TABLE 1. Example of raw material storage information stored by SC.

TABLE 2. Example of pasteurization information stored by PC.

stage, GC-MS data are the main elements preserved on the
blockchain. On the blockchain, these preserved data can-
not be altered and can be accessed by stakeholders in a
decentralized and trusted manner with no intermediaries. The
storage of data on the blockchain is realized by the first
four smart contracts in Section IV-C. After each production
stage, the obtained GC-MS data are evaluated by evaluation
models. This process is automatically executed by the quality
evaluation contract (QEC), which is the last smart contract
introduced in Section IV-C. According to the necessity
for unsupervised and supervised learning, PLSR or PCA is
used to establish a suitable evaluation model (Section IV-D).
Once the evaluation score is lower than the given threshold,
the smart contract QECwill create a notification message and
terminate the production process.

The remainder of this section will introduce the main
modules in our system.

B. OPTIMIZATION PRODUCTION MODEL
In each stage of the pre-production phase, the volatiles of
juice samples are monitored. Then, these volatiles are iso-
lated and identified by HS-SPME combined with GC-MS.
By taking the contents of volatile compounds and the sen-
sory evaluation results as response values, an experimental
Box-Behnken design is used to determine which experiments
should be conducted in the experimental region being studied.
The reaction function (y) and coded function (x) represent
sensory evaluation scores and production conditions, respec-
tively, for each stage. The variance for each assessed factor is
partitioned into linear, quadratic and interactive components.
Next, the optimal condition setting in each production stage
is identified by the response surface methodology (RSM).

C. SMART CONTRACTS
Our system includes five smart contracts in total: a storage
contract (SC), a pasteurization contract (PC), an enzymol-
ysis contract (EC), a finished product contract (FPC) and
a quality evaluation contract (QEC). The system manager
deploys these contracts to the blockchain and publishes their
contract addresses. The first four contracts are responsible
for recording production data during the production process,

while the last contract is responsible for evaluating the sample
quality after each production stage. In the recorded produc-
tion data, batch numbers are employed to precisely identify
the different samples.

The function of each contract is described below:

(1) Storage Contract (SC)
In the early storage stage, even if the fruit appearance
does not obviously change, changes in the levels of
volatile components in the fruit can still be detected.
Since these compounds affect the richness, fullness and
sweet taste of the fruits to be processed, it is neces-
sary to monitor and record the levels of volatile com-
ponents during raw material storage. This process is
automatically conducted by the storage contract (SC).
This contract stores the information of a batch of
raw materials by invoking function storageData. This
function preserves the batch number, raw material
name, storage temperature (◦C), storage duration (day),
GC-MS data, storage location and current time, which
are listed in Table 1. In this table, the GC-MS data are
stored in matrix form and are not presented due to space
limitations. In the last column, ‘‘No. 1’’ indicates that
this stage is the first stage in the production process.

(2) Pasteurization Contract (PC)
Pasteurization is used to kill bacteria and pathogens that
can spoil food and make people sick. However, charac-
teristic volatile components in fresh fruits are lost to a
certain extent during this process. Hence, it is necessary
to record the content of volatile components after the
pasteurization process. The function pasteurizationData
of the pasteurization contract (PC) is called to preserve
the batch number, sterilizing temperature (◦C), steril-
izing duration (min), GC-MS data, sterilizing site and
current time on the blockchain (see Table 2). In the last
column, ‘‘No. 2’’ indicates that this stage is the second
stage in the production process.

(3) Enzymolysis Contract (EC)
As a critical treatment in food processing, enzymol-
ysis treatment aims to improve the flavour quality
of food products by releasing the potential bound
volatiles and reducing the contents of compounds with
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TABLE 3. Example of enzymolysis information stored by EC.

TABLE 4. Example of finished product information stored by FPC.

unnatural aromas. After this procedure, the GC-MS
data will be automatically obtained. Then, the function
enzymolysisData of the enzymolysis contract (EC) is
invoked to store the batch number, enzymolysis temper-
ature (◦C), enzymolysis duration (min), enzyme concen-
tration (g/100 g), pH value, GC-MS data, enzymolysis
site and current time (see Table 3). In the last column,
‘‘No. 3’’ indicates that this stage is the third stage in the
production process.

(4) Finished Product Contract (FPC)
After the above three key production stages, several
steps remain in the production of the final product, such
as pouring and packaging. These stages will also affect
the final quality, which can be reflected in the levels
of volatile components. To record the finished product
information, the function finishedData in the finished
product contract (FPC) is invoked to record the batch
number, GC-MS data, pouring site, packaging site and
current time (see Table 4). In the last column, ‘‘No. 4’’
indicates that this stage is the last stage in the production
process.

(5) Quality Evaluation Contract (QEC)
The quality evaluation contract (QEC) is responsible for
building a bridge between the production data on the
blockchain and evaluation models off the blockchain.
Given the batch number and the production stage,
the function evaluate in QEC first obtains the GC-MS
data from the blockchain. Then, it will invoke the PCA
or PLSR method to evaluate the quality of the sample.
If the evaluation outcome does not reach the threshold,
a notification message will be created and the sub-
sequent production process will be terminated to pre-
vent further losses. Since production conditions are
also recorded on the blockchain, they can be adjusted
by comparison with the optimal conditions obtained
in the pre-production phase (Section IV-B). Otherwise,
the sample is regarded as qualified, and the production
process will be continued.

D. QUALITY EVALUATION MODELS
For each production stage, taking the GC-MS data under the
optimal conditions as the control group, evaluation models

for the quality of samples are constructed based on the current
GC-MS data. Since the quality levels in the first three produc-
tion stages are unlimited, the potential correlation between
them and the production conditions can be identified by an
unsupervised method, namely, PCA. Prior to this analysis,
the number of variables is reduced by usingHCAdendrogram
plots to identify the key compounds in the juice flavour.
Meanwhile, to evaluate the quality of production steps with
exact evaluation indicators, PLSR is employed to evaluate the
finished product in the last production stage.

The above evaluation models are used to calculate the
similarity between one batch of juice samples and the control
group under the optimal production condition. If the similar-
ity index is lower than a threshold, it is regarded as unquali-
fied at this stage. In this case, the current production condition
and the optimal production condition can be compared to
identify the difference for further optimization.

The relationship among the optimization production
model, smart contracts and evaluation models is illustrated
in Fig. 3.

FIGURE 3. Relationship among the optimization production model, smart
contracts and evaluation models.

V. SYSTEM IMPLEMENTATION
In this section, we will describe in detail the implementa-
tion of optimization production models, smart contracts and
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FIGURE 4. Implementation of our system.

quality evaluation models. Fig. 4 presents these models and
their relations intuitively.

A. OPTIMIZATION PRODUCTION MODEL
IMPLEMENTATION
In the implementation of the optimization production model,
RSM is employed to determine the optimal production con-
dition setting.

The contents of volatile compounds in each juice pro-
duction stage are measured by HS-SPME-GC-MS. A juice
sample is subjected to several production conditions that
are recorded by smart contracts as presented in Table 1
to Table 4. Meanwhile, the experiment region of treatment
conditions is determined based on preliminary experiments.
Box-Behnken central composite design is used to apply four
variables (three levels of each variable) to practical produc-
tion conditions. Reaction function (y) and coded function (x)
represent sensory evaluation scores and production condi-
tions, respectively. The variance for each assessed factor is
partitioned into linear, quadratic and interactive components:
Y = b0 +

∑j
i=1 bixj +

∑j
i=1 bijx

2
i +

∑ ∑j
i 6=j=1 bijxixj. The

RSMapproach takes time complexityO(t2s2+t3) [69], where
t is the number of production conditions for each sample and
s is the number of samples in the pre-production stage.

As an example, Fig. 5 shows the established RSM model
for the enzymolysis treatment of flat peach juice. The enzyme
concentration (A), pH value (B), temperature (C) and duration
(D) are regarded as the production conditions. Fig. 5 (a)
shows that the sensory evaluation score depends on the
duration of the enzymolysis treatment, as its linear effect
is positive. The effect of the pH value on the evaluation is
also significant, and its linear effect is negative. The sensory
evaluation score varies with the enzyme concentration and
the enzymolysis duration at constant temperature. Fig. 5 (b)
and Fig. 5 (c) show that the sensory evaluation of the juice
sample decreases almost linearly with duration at a con-
stant temperature and enzyme concentration. Furthermore,
Fig. 5 (d) shows that the enzyme concentration has a negative

FIGURE 5. Response surface of enzymolysis treatment.

linear effect on the sensory evaluation at a fixed temper-
ature and treatment duration. Then, after eliminating the
non-significant term, the optimized equation is obtained as
follows: Y = 32.70+ 1.81A− 0.48C − 0.56D− 0.65AB−
2.28AD− 0.70BC − 5.77A2 − 5.17B2 − 2.92C2

− 2.79D2.
Finally, the optimal conditions for the enzymolysis treatment
of a juice sample are identified by overlaying all the responses
as follows: a pH of 4 with an enzyme concentration of
0.4 g/100 mL at 60◦C for 50 minutes.

B. SMART CONTRACT IMPLEMENTATION
The smart contracts described in Section IV-C are imple-
mented and tested using Remix IDE http://remix.ethereum.
org/, which is a complete web-based development environ-
ment that offers rich features.

As this paper considers quality monitoring inside a fruit
juice manufacturer, we suppose that the fruits are of the
samematurity and satisfy the storage requirement. Therefore,
data recording starts from the raw material storage stage.
To achieve this, when a batch of raw materials is stored
inside a warehouse, relevant data are automatically captured
by devices and recorded on a blockchain by the storageData
function in SC. A pseudo-code implementation of the
storageData function is presented in Algorithm V.1. First,
this function checks whether the current operating account is
legal and whether this batch of raw materials is unregistered.
If so, relevant data are recorded on the blockchain. Otherwise,
the contract state reverts to the initial state and the trans-
action terminates. Since the functions pasteurizationData,
enzymolysisData and finishedData, which are implemented
in EC, PC and FPC, respectively, are similar to the function
storageData, their implementation details are omitted.
After the data for one production stage have been recorded

on the blockchain, the function evaluate in QEC is invoked to
evaluate the quality of the sample. Algorithm V.2 presents a
pseudo-code implementation of the evaluate function. With
the batch number batchNumber and the sequence number
of a production stage (seqNumber) as the search indices,
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Algorithm V.1 storageData()
Input: Batch number (batchNumber), raw material

name (rawMaterial), address of the message
sender (msg.sender), storage temperature
(storageTemp), storage duration (storageDur),
GC-MS data (GC −MSData), storage location
(storageLoc), authorization list (AL), current
time (now)

1 if msg.sender ∈ AL then
2 if batchNumber does not exist then
3 The variables batchNumber , rawMaterial,

storageTemp, storageDur , GC −MSData,
storageLoc, now are preserved on the
blockchain;

4 else
5 Revert contract state and show an error;
6 end
7 else
8 Revert contract state and show an error;
9 end

the related transactions are selected from the blockchain.
First, the GC-MS data for a sample are input into the quality
evaluation model to determine the degree of data fitting. The
PLSR model is used for the evaluation of a finished product
(seqNumber == 4), while the PCA model is employed for
other production stages. If the outcome value is lower than a
specified threshold, this batch of samples is regarded as not
satisfying the standard. In this case, the function will send
a message to terminate the production process. Otherwise,
a notificationmessage stating that this batch of samplesmeets
the standard is created and stored on the blockchain.

The time complexity for smart contract implementation is
O(mn), wherem is the number of samples and n is the number
of features for GC-MS data in each sample.

C. QUALITY EVALUATION MODEL IMPLEMENTATION
• Evaluation models with PCA

Samples at a production stage are first classified by HCA
based on measured characteristics so that the invalid samples
can be eliminated and the computational load can be reduced.
Then, the quality of the samples is evaluated by PCA to
obtain a standardized linear projection that maximizes the
variance in the projected space. The principal axes bm, where
m ∈ {1, . . . ,M}, and the obtained multidimensional data
vectors of volatiles {an}, where n ∈ {1, . . . ,N }, are the
orthonormal axes onto which the retained variance under
projection is maximal. The principal axes bm are given by the
largest associated eigenvalues λm of the sample covariance
matrix S =

∑
n(an − ā)(an − ā)T /N , where ā is the mean

value of the volatiles, such that Sbm = λmbm. The principal
components of the observed vector an are given by the vector
xn = BT (an − ā), where B = (b1, b2, . . . , bM ). Then,
the variables xm are uncorrelated such that the covariance

Algorithm V.2 evaluate()
Input: Batch number (batchNumber), sequence number

(seqNumber), authorization list (AL), threshold
value (thresholdValue), address of the message
sender (msg.sender)

1 if msg.sender ∈ AL then
2 Find the GC-MS data for the sample (as shown

in Table 4);
3 if seqNumber == 4 then
4 Invoke the PLSR model to obtain the evaluation

value eValue;
5 else
6 Invoke the PCA model to obtain the evaluation

value eValue;
7 end
8 if eValue < thresholdValue then
9 Send a message to terminate the production

process;
10 else
11 Create a notification message stating that this

batch of samples meets the standard;
12 end
13 else
14 Revert the contract state and show an error;
15 end

matrix
∑

n xnx
T
n /N is diagonal with elements λm. The quality

of the samples is evaluated by calculating the correlation of
the principal axes and the data vectors of volatiles.

Considering the pasteurization stage in flat peach juice
production as an example, the clustering analysis results are
divided into six major types of volatile components. HCA
is performed to discriminate among the volatiles quickly
and efficiently. A larger Euclidean distance corresponds to
a larger difference. The dendrogram reveals (Fig. 6) the
relationship among the volatile components. The six volatile
compounds are divided into two main clusters. The X -axis
corresponds to the differences among the volatiles, and the
Y -axis represents the Euclidean distance. When the
Euclidean distance is smaller than 10, all the volatile com-
pounds are divided into two categories: group 1 (ketones,
others, alkanes, aldehydes, and alcohols) and group 2 (esters).
The change in the ester content is found to be the main cause
of the deterioration in the flavour of the pasteurized samples.

Furthermore, PCA analysis is performed to further identify
the effects of thermal treatment on the characteristic volatile
compounds in flat peach juice. As shown in Fig. 7, two
flat peach juice samples are labelled as S0 and S1 (S0 is
the control group, while S1 is a sample to be evaluated).
The volatiles are labelled as N1-N14. Thus, the relationships
between the 14 volatile compounds and the samples can be
studied, and the interactions between the changes of condi-
tions can be identified. The first two principal components
(PC1 and PC2) are obtained from the PCA model, with a
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FIGURE 6. Dendrogram that was generated by HCA for the volatiles of flat
peach juice samples.

FIGURE 7. PCA model of a test sample and the control group.

cumulative variance of 87.052%. The X -matrix is composed
of two kinds of samples, whereas the Y -matrix consists of the
contents of volatiles. Moreover, sample S1 is located in the
lower-left part of the figure, while S0 is in the rightmost part.
Since the correlation between samples S1 and S0 is low, S1
is classified as unqualified. In addition, various compounds,
such as N1,N3,N4,N5,N8, and N9 are situated around S0,
which indicates that they have positive effects on S0. Hence,
these compounds are regarded as the main reasons for the
differences between two kinds of juice samples.
• Evaluation models with PLSR
As a technique of multivariate regression analysis, PLSR

is employed in our system to understand the relation-
ship between the production conditions and the changes
of volatiles by predicting the set of conditions (Y ) from
the set of volatiles (X ), where X = (x1, x2, . . . , xp) and
Y = (y1, y2, . . . , yq). In the PLSR, orthogonal X scores are
obtained by computing the loading weight of each volatile
compound. The main steps can be summarized as follows:

First, t1 and u1 are extracted as principal components, where
t1 and u1 are linear combinations of X and Y , respectively.
Then, the variables are centred on X0 and Y0, i.e., t1 = X0W1
and u1 = Y0C1, whereW1 is the loadingweight of t1 andC1 is
the loading weight of u1. In this step, the covariance between
t1 and u1 is maximized by solving max{Cov(t1, u1)} =
max〈X0W1,Y0C1〉 such that ||W1|| = 1, ||C1|| = 1. Then,
W1 and C1 are calculated by using the Lagrange equation,
where W1 = X ′0Y0Y

′

0X0 and C1 = Y ′0X0X
′

0Y0. Therefore,
the calculation of the first principal component is complete.
Furthermore, the regression equations of t1 and u1 are built
based on X0 and Y0, where X0 = t1p′1 + X1, Y0 = u1q′1 + Y

∗

1
and Y0 = t1r ′1 + Y1. Specifically, matrices p1 = X ′0t1/||t1||

2,
q1 = Y ′0u1/||u1||

2, r1 = Y ′0t1/||t1||
2 and X1,Y ∗1 ,Y1, respec-

tively, are the residual matrices of the regression equations.
The principal components will be calculated until the require-
ment is satisfied. Suppose the rank of X0 is A. Then, X0 =
t1p′1 + . . . + tAp′A and Y0 = t1r ′1 + . . . + tAr ′A + YA. Based
on these two equations, the regression equation can be easily
obtained. With this approach, the changes in the aroma qual-
ity of samples that were treated by various production con-
ditions are identified. In addition, the corresponding volatiles
of the samples and the impact of the production conditions
on their formation are investigated. Through these steps,
the sample quality can be evaluated with various production
conditions.

For example, in the last stage of flat peach juice production,
a test sample FPS1 is evaluated with FPS0 as the control
group. All variables are centred and scaled to 1/Sedv such
that each variable has unit variance and zero mean prior to the
PLSR analysis. The X -matrix is composed of 71 compounds,
whereas the Y -matrix corresponds to sensory attributes and
juice samples (Fig. 8). When the two PCs are considered,
79% of the volatile variables explain 73% of the variation
among the sensory data and FPS samples. All variances are
located between the inner (r2 = 0.5) and outer ellipses
(r2 = 1.0). Fig. 8 shows that the FPS sample appears
to be separated along PC1. The control group FPS0 is on
the left side, while FPS1, which was treated by enzymatic
hydrolysis, is on the right side of the plot. Sample FPS0,
which is situated in the left-lower part, significantly correlates

FIGURE 8. PLSR model of sensory attributes and volatiles for a test
sample and the control group.
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with the peach-like, floral and fruity attributes and strongly
negatively correlates with all of the unpleasant sensory notes
(cooked and unnatural). Finally, the potential relationships
among the volatiles, samples, and sensory attributes are iden-
tified. Meanwhile, the correlation between the control group
and test sample is low. According to this result, FPS1 is an
unqualified flat peach juice product and should be forbidden
to flow to the commodity market.

In the quality evaluation module implementation, three
methods, including the PCA, HCA and PLSR, are utilized.
The time complexities of these three methods are respectively
O(mn2+ n3) [70], O(m2) [71] and O(n3) [72], where m is the
number of samples and n is the number of features for GC-MS
data in each sample.

In this section, we give the implementation of the optimiza-
tion production model establishment, production data record-
ing and food quality evaluation. By utilizing the off-chain
models with on-chain data in combination, our system makes
use of the traceability of blockchain and auto-execution of
smart contracts to achieve reliable and efficient quality mon-
itoring inside a food manufacturer, which is greatly different
from existing work applying blockchain or smart contracts on
food quality assurance, including the product quality man-
agement system recording product registration and trans-
fer histories in [26], the blockchain scheme for information
sharing in [22], the agri-food supply chain system based on
RFID and blockchain in [23], the blockchain-based credit
evaluation system in [24], the food quality traceability system
based on the blockchain and the EPC information services
in [25].

VI. CONCLUSION
In this paper, we propose a reliable quality monitoring system
within a fruit juice production enterprise. Combining smart
contracts andmachine learning technologies, our system con-
sists of optimization production model establishment, pro-
duction data recording and food quality evaluations, which
are conducted throughout the production process. During
production, if the sample quality at a production stage is
designated as unqualified, then the subsequent stages are not
carried out to prevent additional losses. By combining the
off-chain models with on-chain data, our system can utilize
the traceability of the blockchain and the auto-execution
of smart contracts to achieve reliable and efficient quality
monitoring. Although the production stages in our system are
designed for fruit juice production, the proposed framework
and approaches can be easily extended to general food pro-
duction.

However, the search strategy in our system is still not
efficient enough. Hence, in future work, we plan to optimize
the storage structure of the data that are preserved on the
blockchain to increase the search speed. Moreover, modern
IoT devices, such as RFIDs and sensors [73], [74], can be
added to our system for the realization of a fully automatic
quality monitoring system.
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