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ABSTRACT The use of millimeter wave technologies offer a promising solution for dense small cell
networks, despite having to contend with challenging propagation characteristics. In particular, user-induced
effects can lead to significant channel variations depending on the user equipment (UE) usage mode which
in turn, can impact the quality of service. Estimation of UE operating conditions is therefore critical for
optimal radio resource management. We propose a new approach to user activity recognition which makes
use of both supervised and unsupervisedmachine learning. In particular, using information extracted from the
received signal strength (RSS), a common metric readily available from many receiver chipsets, we perform
a classification of user state (static or mobile relative to an access point) and UE mode of operation (voice
call, using an app or in pocket). To develop and then train our classification system, measured RSS data was
obtained using a custom 60GHzmeasurement system for a range of indoor office scenarios which considered
various UE to ceiling mounted access point configurations. In our approach, differentiation between static
and mobile states is performed in preprocessing using a k-means algorithm. Small-scale fading features
are then estimated from the RSS data and, using different feature scaling mechanisms, various supervised
learning approaches are applied to investigate the optimal classification accuracy for the considered use
cases in this work. We compare the classification performance of various window sizes and types, and show
that a sliding window length of 1s without overlap performs best for time series segmentation at 60 GHz
for the activities considered in this study. Among the different supervised learning approaches, the Decision
Tree (DT) classifier performs best for both the user static and mobile cases with an accuracy of 100% and
98.0%, respectively. For static cases, user orientation, i.e., line-of-sight (LOS), quasi-LOS, and non-LOS,
can also be classified and here the DT classifier also performs best with an accuracy of 98.2%, 97.6% and
100% for the voice call, using an app or in pocket use cases. Additionally, a feature ranking algorithm, called
ReliefF, is adopted to determine the small-scale fading features that have the most significant influences on
the classification accuracy and three different feature sets, namely Full, Reduced and Constrained sets,
are then proposed based on feature ranking results. This allows the proposed techniques to be deployed on
wireless platforms with different levels of processing capability.

INDEX TERMS Human activity recognition, millimeter wave, received signal strength, supervised learning,
unsupervised learning, user equipment, wireless networks.

I. INTRODUCTION
Millimeter wave (mmWave) technologies are set to play
an important role in supporting the explosive demands for
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mobile broadband services which will occur over the next
decade [1]. To help meet these requirements, the IEEE
802.11 Task Group ay (802.11ay) was formed in 2015 to
define physical andmedium access control layer amendments
whichwill enableWi-Fi devices to achieve 100Gb/s using the
significant bandwidth available in the unlicensed mmWave
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spectrum [2]. Capitalizing on the bandwidth available at
60 GHz and the short-range propagation characteristics,
mmWave technologies will help to facilitate network densifi-
cation [3]. However, these smaller network topologies, where
the access points (APs), or equivalently eNodeBs (eNBs)
in cellular systems, are typically positioned at lower eleva-
tion compared to conventional systems are particularly prone
to user-induced effects such as human body blockage and
shadowing. While understanding these effects is essential for
ensuring the success of future small cell deployments [4]
within indoor environments, the APs (or eNBs) are usually
placed at a height that is close to the ceiling in [5]–[8].

User-induced channel effects vary significantly with activ-
ity and user equipment (UE) operating mode and tend to
be more pronounced at mmWave frequencies [9], [10].
One way to guarantee the quality of service QoS) at the
user side and further evolve traditional wireless networks
towards smart networks is to utilize network radio resource
management (RRM) optimization techniques based on
identifying the UE use case (e.g., making a call, tex-
ting messages etc.) and the user activity (e.g., walking,
standing, sitting, laying down etc.) or whether the UE is
in a line-of-sight (LOS)/Non-LOS (NLOS) condition rele-
vant to the access point (AP) [11]–[15]. Furthermore, user
activity recognition also provides opportunities to optimize
emerging applications, such as smart home automation, enter-
tainment, healthcare, safety protection and well-being moni-
toring/management [16], [17].

One approach often employed in the literaturemakes use of
wearable sensors. The application of wearable sensors can be
broadly categorized into one of three groups namely: received
signal strength (RSS)/RSS Indicator (RSSI) or Radio Fre-
quency (RF) signal based; inertial sensor data based; and
finally the combination of the RSS/RSSI and inertial sen-
sor data based methods. Considering the RSS/RSSI-based
method, Geng et al. [18] proposed a RF based motion clas-
sification approach combined with some statistical measures
obtained from the RSS collected by on-body sensors. These
metrics included mean, variance, level crossing rate (LCR)
and fading duration, etc. A Support Vector Machine (SVM)
[19] was utilized in the classifier and an accuracy of between
82.7% and 90.4% was obtained for correctly identifying
human motions, e.g., standing, walking and running, etc. The
authors of [20] classified a series of human motions, such
as running, walking, sitting, sleeping, etc., using the RSS
data obtained from numerical simulation and measurement
campaigns at 403.5 MHz and 2.45 GHz. It was found that
the Back Propagation and SVM classifiers provided the best
classification accuracy of between 63.8% and 95.7%. Sim-
ilarly, in [21], Chi et al. proposed human activity recogni-
tion using monitoring middleware. This middleware, named
Harmony, utilized coarse-grained RSS measurements from
the radios of loT devices at 2.45 GHz and a state-transition
based Markov model was then applied to understand the
states and events including the daily, accident, fitness and
steady categories with an accuracy between 74% and 90%.

Now turning attention to the inertial sensor data based
method, in [22], an inertial sensor coupled with a super-
vised based approach to learning was proposed. Using data
collected by the tri-axial accelerometer and gyroscope of a
smartphone, a series of statistical features were extracted
from the time domain information, including the mean, stan-
dard deviation, and interquartile range as well as weighted
average, skewness and kurtosis in the frequency domain.
The authors of [22] proposed an online framework using
Naive Bayes (NB) [23] and K-Nearest Neighbors (KNN)
[24]. Both static user activities, e.g., standing, sitting, and
laying down and dynamic user activities, e.g., walking and
climbing up and down stairs were classified with an accu-
racy of up to 90.1%. In [25], a Single Layer Feedforward
Neural Network with same carefully chosen features as
in [22] was utilized to assist a Long Short-Term Memory
network. Three-dimensional linear acceleration, total accel-
eration and gyroscope data from a smartphone was used to
classify static and dynamic activities achieving an accuracy
as high as 97.7%. Studies on the combination of RSS/RSSI
and inertial sensor data based methods have included [26],
which used a combined RSS and inertial sensor approach
along with the Echo State Network to classify the daily user
activities at 2.4 GHz (within the frequency band defined
by the IEEE 802.15.4 standard), such as bending, cycling,
laying, and walking etc., with an overall accuracy of between
95.6% and 98.8%. In [27], the RSSI, Transmission Con-
trol Protocol TCP) throughputs, cellular based-station IDs
for Long-Term Evolution (LTE), together with acceleration
sensor data were analyzed as a means of recognizing dif-
ferent user transportation modes, e.g., static, walking, riding
a bicycle, on a bus or a train, etc. A convolutional neural
network (CNN) model was applied to the data, providing a
classification accuracy of between 77.0% and 96.5%. While
clearly proficient at estimating user activity, these sensor
based approaches do require supplementary sensors, data
analysis, and processing capability at the UE.

Another popular approach commonly used for activity
recognition in wireless networking is vision-based, typically
requiring video camera monitoring to recognize different
human actions. For instance, mmWave human blockage pre-
diction using RGB-D (depth) cameras was used to assisted
with handovers in [28]. A test-bed consisting of a Kinect
sensor [29] and IEEE 802.11 ad compliant WLAN devices
was constructed to estimate the position and velocity of
pedestrians, with the aim of avoiding throughput degrada-
tion by predicting potential human body blockage incidents.
Moreover, Okamoto et al. studied throughput estimation at
mmWave frequencies using images from an RGB-D cam-
era along with machine learning [30]. An online algorithm,
called adaptive regularization of weight vectors, was applied
to process the image depth, thus building a relationship
between image depth and unexpected throughput degrada-
tion. Although human blockage at mmWave frequencies has
been effectively avoided in these studies, the application of
video cameras is not always practical, for example when
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the necessary infrastructure is unavailable or where there
are privacy concerns. Furthermore, image processing can be
computationally expensive, which may mean that it may not
be able to adapt in response to the the real-time nature of
wireless communications.

Motivated by the need for accurate user activity recog-
nition in mmWave networks and some of the limitations
of the previously discussed work, we propose a combined
supervised and unsupervised approach that is able to rec-
ognize UE use case and user activity for indoor scenarios.
An extensive mmWave measurement campaign involving
different user states and some common UE use cases has
been conducted in an indoor officemeasurement environment
considering a ceiling-mounted wireless AP. Subsequently,
a series of small-scale fading features of the mmWave chan-
nel are correctly extracted after an unsupervised preprocess-
ing stage and various supervised classifiers are trained based
on the extracted small-scale fading features. We compare
the classification accuracy and computation performance of
different supervised classifiers, namely multi-SVM, Deci-
sion Tree (DT) [31], NB, and Ensemble Learning (EL)
[32]. Moreover, we investigate the influence of various RSS
segmentation window types and sizes on the classification
accuracy. Furthermore, by using a feature ranking algo-
rithm, called ReliefF [33], we determine the most significant
small-scale fading features which should be used to train the
supervised classifier at 60 GHz for UE usage identification.
Based on the feature ranking results, we demonstrate fea-
ture subsets with reduced dimensions which will be suitable
for implementation on platforms with differing processing
ability.

The remainder of this paper is organized as follows.
The proposed automated classification approach is presented
in Section II. The custom 60 GHz measurement system
and measurement scenarios are described in Section III.
A description of the measurement data and how it is pro-
cessed is given in Section IV. Section V firstly inves-
tigates the effects of choosing the correct window size
and type to provide the optimal classification performance
at 60 GHz. Afterwards, the results of applying the classi-
fication techniques to the empirical mmWave channel data
collected during our experiments are discussed and some
insights related to different subsets of the selected features
is also presented. Finally, the conclusions are summarized
in Section VI.

II. CLASSIFICATION METHODOLOGY
The proposed classification system is illustrated in Fig. 1.
There are five key stages which make up the system. These
are (1) data preprocessing, (2) data segmentation and label-
ing, (3) RSS feature extraction, (4) RSS feature scaling,
and (5) supervised learning based classification. After pre-
processing, the system segments the user state into either
static or mobile scenarios. The UE use cases for both static
and mobile can be classified after the supervised learning
based classification. In particular, for the user static scenario,

FIGURE 1. Flow diagram indicating the different stages of the proposed
classification system.

user orientation (LOS, QLOS, and NLOS) is additionally
classified.

Fig. 2 illustrates the geometry of the different measurement
scenarios. As can be seen, three common UE use cases are
considered in this study: (1) Call scenario, where the user
holds the UE at his right ear while imitating the action of
making a voice call; (2) App scenario, where the user holds
the UE with his two hands in front of his chest, replicating
the behavior of using an application; (3) Pocket scenario,
where the user keeps the UE in the right waist pocket of his
clothing. Consequently, the antenna boresight was oriented
outwards away from the user’s right ear, front chest, and right
waist pocket for the Call, App and Pocket scenarios, respec-
tively. In addition, in the static scenario, the LOS, QLOS
and NLOS cases are specified in terms of the orientation
angle relative to the direct geometric path to the wireless
AP, i.e. 0◦ for LOS, 90◦/270◦ for QLOS and 180◦ for NLOS
cases, respectively. The relationship between the orientation
angles (0◦, 90◦/270◦ and 180◦) relative to the wireless AP
and the user orientations (LOS, QLOS and NLOS) was inves-
tigated in [34], [35]. We have followed this convention for
the UE orientations in the measurement set-up within this
work.
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FIGURE 2. Geometry of measurement scenarios.

A. DATA SEGMENTATION AND LABELING
Windowing approaches are normally used for time-series sig-
nal segmentation in human activity recognition [36]. In this
work, sliding windows with overlap and without overlap have
both been applied in the data segmentation stage to investigate
the optimal window type for 60 GHz indoor scenarios. Given
that T is the sliding window size and the overlap ratio is
defined as p (0 ≤ p < 1), thus the overlap size is given by
T ∗ p. Suppose there are N available RSS segments in total
after the data segmentation process, the RSS vector R can be
defined as

R = [R1, . . . ,Rn, . . . ,RN ] , (1 ≤ n ≤ N ) (1)

where Rn is the RSS vector of the n-th segment, thus Rn can
be written as follows

Rn =
[
r1n , . . . , r

t
n, . . . , r

T
n

]
, (1 ≤ t ≤ T ) (2)

where r tn is the linear RSS value at time instant t in the
n-th segment. Afterwards, the labels are assigned in the data
labeling stage for later used by the supervised learning based
classifier. The label vector L is denoted as

L = [L1, . . . ,Ln, . . . ,LN ] , (1 ≤ n ≤ N ) (3)

where Ln is the assigned label for the n-th RSS segment.
It is relatively easy to assign the label, if only one activity
occurs during one segmentation window, however, if more
than one activity occurs within a segment, it becomes difficult
to allocate the corresponding label. In this work, since we are
more concerned about the current UE use case rather than the
previous state, the label is assigned based on the latter state
of the window segmentation, e.g., if the Call and App states
occur in succession within the n-th segment, then the label Ln
will be given as App.

B. K-MEANS PREPROCESSING
To extract the small-scale fading for analysis, the path loss
and large-scale fading must first be removed. Typically,

the path loss and large-scale fading components can be
acquired by applying a low-pass filter to the raw RSS data in
the linear scale. However, the correct length of the low-pass
filter depends on the actual user activities. For instance,
in the static case, the path loss and large-scale fading can
be assumed to be fairly constant, thus the length of low-pass
filter can be conveniently set as exactly the same as the
segmentation window size, However for the mobile case,
the path loss and large-scale fading components can vary
over time, thus following convention, we choose a length of
ten wavelengths for the low pass filter [37]. At 60 GHz, this
equates to a distance of 50 mm. The effective sampling rate of
the RSS measurement system used in this study was 1 kHz,
with a user walking speed of 1 m/s, the moving window size
is exactly 50 samples. Due to choices of different lengths of
low-pass filter window size, an initial decision on whether
the user is standing static or walking needs to be made. For
this purpose, unsupervised k-means clustering [38] is used.
More precisely, the variance of the small-scale fading (on a
logarithmic scale) in each segment and the cluster number of
2 are set as the inputs to the k-means algorithm.

An example of the output of the k-means preprocessing is
shown in the top part of Fig. 3 which uses a segmentation
window with no overlap (i.e., T = 1000 and p = 0) applied
to the raw RSS. From the output, it can be seen that accurate
state estimation can be achieved with approximately 99.8%
success, verifying that the static and mobile activities can
be accurately differentiated using this simple preprocessing
technique. A detailed discussion on selecting the segmenta-
tion window type and size will be presented in Section V-A.
Although a very high estimation accuracy was achieved at the
preprocessing stage, incorrect estimation was still observed
to occur. An example of this is illustrated in the bottom
part of Fig. 3. The incorrect estimation occurs in the 84th
segmentation element, as the segment element in fact consists
of both mobile and static states. The majority of this element
is dominated by the mobile state, however, as discussed in
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FIGURE 3. The output of k-means preprocessing with a segmentation window of size T = 1000 and no overlap p = 0 is shown at the top. Meanwhile,
an example of where the k-mean preprocessing failed to estimate the correct state is demonstrated at the bottom.

Section II-A, the label allocated to this element is based on
the more recent state, thus this type of incorrect estimation is
unavoidable.

After the static and mobile activities are differentiated,
the low-pass filter of correct window type and length will be
applied on each RSS segment based on the estimated user
activity. Thus the exact small-scale fading of the mmWave
channel can be extracted and the small-scale fading vector Sn
is obtained as

Sn = [s1, . . . , sn, . . . , sN ] , (1 ≤ n ≤ N ) (4)

where sn is the linear small-scale fading of the n-th segment
and sn can be expressed as

sn =
[
s1n, . . . , s

t
n, . . . , s

T
n

]
, (1 ≤ t ≤ T ) (5)

where stn is the linear small-scale fading of time instant t in
the n-th segment. Correspondingly, the small-scale fading of
the n-th segment in the logarithmic scale, denoted as yn, can
be calculated as

yn = 20 · log10(sn). (6)

C. SMALL-SCALE FADING FEATURE EXTRACTION
Six statistical features were extracted from the segmented
small-scale fading time-series in this work: 1) variance,
2) Rice K factor, 3) Nakagami m parameter, 4) channel
coherence time, 5) AFD, and 6) LCR. Details of each feature
in the n-th segment are shown as follows

1) VARIANCE

Var
[
yn
]
=

1
T − 1

T∑
t=1

∣∣∣∣∣∣ytn − 1
T

T∑
q=1

yqn

∣∣∣∣∣∣
2

(7)

where ytn is the logarithmic small-scale fading at the time
instant t in the n-th segment.

2) RICE K FACTOR
The probability density function (PDF) of Rice distribu-
tion [39] is defined by

p(sn|ν̂, σ̂ ) =
sn
σ̂ 2 exp

{
−
[
(sn)2 + ν̂2

]
2σ̂ 2

}
I0(

snν̂
σ̂ 2 ) (8)

where ν̂ and σ̂ are estimated Rice shape parameters. The Rice
K factor, which characterizes the ratio between the power
carried by the LOS component and the power contained the
scattered waves, is defined as

K(sn) =
ν̂2

2σ̂ 2 . (9)

3) NAKAGAMI m PARAMETER
The PDF of the Nakagami distribution [40] may be written as

p(sn; m̂, �̂) =
2m̂m̂

0(m̂)�̂m̂
(sn)2m̂−1 exp

[
−
m̂

�̂
(sn)2

]
(10)

where �̂ (�̂ > 0) is the estimated parameter controls the
spread and m̂ (m̂ > 0.5) is the estimated shape parameter,
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which represents the multipath fading severity and defined
by

m̂(sn) =
E2 [(sn)2]
Var

[
(sn)2

] . (11)

4) CHANNEL COHERENCE TIME
The time-series autocorrelation function (ACF) for time
lag i [41] is given by

Ri =
ci
c0
=

ci
Var [sn]

(12)

where ci is the autocovariance function of time lag i and
defined as

ci =
1
T

T−i∑
t=1

stn − 1
T

T∑
q=1

sqn

st+in −
1
T

T∑
q=1

sqn

 (13)

and the channel coherence time Tc is defined as

Tc(γ ) = i(Ri > γ ) · Ts (14)

where γ (0 < γ < 1) is a selected ACF threshold and Ts
represents the sampling time.

5) AFD
The AFD is defined as the average time duration of a fading
event [42]. The empirical AFD below a pre-defined thresh-
old δ may be written as

AFD(yn, δ) =
d
(
ytn < δ

)
N (ytn < δ)

(15)

where d denotes the overall time duration of fading events
below a threshold δ within the n-th segment, and N denotes
the total number of fading events within the n-th segment.

6) LCR
The LCR is defined by the average number of times per sec-
ond that a fading signal crosses a pre-defined threshold δ [42].
It is given by

LCR(yn, δ) =
N (ytn < δ)

T
. (16)

The rationale for choosing the RiceK factor and Nakagami
m parameter features is that both models have shown a good
fit to the small-scale fading observed in 60 GHz small cell
deployments [9]. Additionally, as shown in [43], the second-
order statistics, such as AFD and LCR, are highly correlated
to different UE use cases. Therefore, the UE use cases could
potentially be classified by exploiting the characteristics of
these statistical features. The Rice K factor and Nakagami
m parameter were estimated using maximum likelihood esti-
mation (MLE) performed in MATLAB, the first empirical
ACF threshold γ was selected to be 0.5, since the coher-
ence time is defined as the time over which the ACF is
above 0.5 [44]. A second ACF threshold γ of 0, indicating
the first time instance that the small-scale fading observed
to become entirely decorrelated, was also selected. It can be

seen from Fig. 3 that the majority of the small-scale fading
occurred in the range of −20 dB to 10 dB. Subsequently, δ
was set between [−20, 10] dB with a 1 dB step size. As a
result, the dimensions of the adopted statistical features were
N × 67 in the proposed approach.

D. SMALL-SCALE FADING FEATURE SCALING
During the exploratory data analysis, it was noticed that the
range of each feature’s values varies widely. If one feature’s
value has a much broader range than the others, it is very
likely that the object function’s distance of the classifier could
be dominated by this wide-range feature [45]. Additionally,
it is known that the gradient descent converges much faster
with feature scaling than without it [46]. For these reasons,
the values of all features were scaled before being used as
an input to a classifier. This scaling process is also known as
feature normalization. There are four different scaling mech-
anisms adopted in this work, namely: 1) min-max normal-
ization (min-max) [47], 2) mean normalization (mean) [48],
3) standardization (standard) [49], and 4) unit length scaling
(unit length) [50]. Each of the scaling mechanisms is defined
below where fj denotes the j-th extracted feature before nor-
malization, while f ′j denotes the j-th normalized feature:

1) MIN-MAX

f ′j =
fj −min(fj)

max(fj)−min(fj)
(17)

where max(fj) and min(fj) denote the maximum and mini-
mum value of the j-th extracted feature, respectively.

2) MEAN

f ′j =
fj − f̄j

max(fj)−min(fj)
(18)

where f̄j denotes the mean value of the the j-th extracted
feature.

3) STANDARD

f ′j =
fj − f̄j
Std(fj)

(19)

where Std(fj) denotes the standard deviation of the j-th
extracted feature.

4) UNIT LENGTH

f ′j =
fj∥∥fj∥∥ (20)

where
∥∥fj∥∥ denotes the l2-norm of the j-th extracted feature.

E. SUPERVISED LEARNING BASED CLASSIFIER
As shown in Fig. 1, the input provided to the supervised
learning based classifier are the scaled RSS statistical features
and the assigned data labels. It is noted that the order of the
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FIGURE 4. Floor plan for mmWave indoor measurement scenario.

input features is as described in Section II-C, i.e., starting
from the Var through to LCR. Furthermore, aiming to train
the corresponding classifier model, the data is partitioned
randomly into three parts, i.e., training, validation and test
data. Additionally, 10-fold cross validation [51] has been
performed to ensure that the trained classifier model is inde-
pendent of the unknown data set and avoids the problem
of overfitting or selection bias. In 10-fold cross validation,
the segmented data is randomly partitioned into 10 equal-size
sub-samples. Subsequently, a single sub-sample is retrained
as validating data, while the remaining 9 sub-samples are
used as training data. In this way, the cross-validation is
repeated 10 times and these results are averaged to produce a
unique estimation.

III. EXPERIMENTAL SET-UP
The custom 60 GHz wireless channel measurement sys-
tem used in this study was based on the HMC6000LP711E
transmitter (TX) and HMC6001LP711E receiver (RX) mod-
ules manufactured by Analog Devices. Both units fea-
tured an identical linearly-polarized antenna-in-package
with +7.5 dBi gain. The measured half power beam
width (HPBW) of the antenna is approximately 120◦ [52].
At the beginning of each set of measurements, the TX was
configured to transmit a continuous wave signal at 60.05 GHz
with an Equivalent Isotropically Radiated Power (EIRP)
of +10.9 dBm. The received signal power at the RX was
recorded using a v1.4 Red Pitaya data acquisition platform
at a sample rate of 96 kHz. Afterwards, the data was down-
sampled by averaging 96 consecutive samples to improve
the signal to noise ratio (SNR) performance, thus giving an
effective sampling rate of 1 kHz after downsampling.

The measurements were conducted in an open office area
(10.62 m× 12.23 m) [53], located on the first floor of the
ECIT Institute, Queen’s University Belfast, UK, as illustrated
in Fig. 4. The indoor office area consists of metal studded
dry wall with a metal tiled floor covered with polypropylene
fiber, rubber backed carpet tiles and metal ceiling with min-
eral fiber tiles and recessed louvered luminaries suspended

2.70 m above the floor level. It also contained a number of
soft partitions, cabinets, PCs, chairs and desks. During the
measurements, the RX board was placed above the ceiling
at the point indicated by the red circle (Fig. 4), with the
antenna boresight facing downwards, i.e., towards the floor,
emulating ammWavewireless AP. The TX boardwas fixed to
the inside of a compact acrylonitrile butadiene styrene (ABS)
enclosure, allowing the test user to carry the TX board as
they would a smart phone during the measurement process.
The test user was an adult male of height of 1.72 m and
mass 75 kg. Additionally, the horizontal, i.e., floor projected
distance between the mmWave AP and the test user was
always maintained at 3 m for the static scenarios and varied
from 0 m to 7 m for the mobile scenarios, respectively.

During the mobile scenarios, the user walked at a constant
speed of approximately 1 m/s along different paths (in both
directions), i.e., Path a, b, c, and d as shown in Fig. 4. The
lengths of Path a, b, c, and d are 10 m, 9 m, 9 m and 9 m,
respectively. The user alternated between each of UE use
cases (Call, App and Pocket) in a random manner. For the
static scenario, measurements were conducted in the gray
color-filled area indicated in Fig. 4 during which the user
stood stationary and randomly cycled through the UE use
cases. A digital camera was utilized to record the experiments
and generate the ground truth of the measurement as well as
the labels for the training data.

IV. DATA VALIDATION
To improve the robustness of the measurement results, each
of the aforementioned measurement scenarios were repeated
three times. Afterwards, all of the collected RSS data was
fed in to the data segmentation stage of the classification
system, as shown in Fig. 1. The overall measurement data
set consisted of approximately 570,000 samples, equivalently
570s length in time (210s for the mobile scenarios and 360s
for the static scenarios). This included the measurement data
for all the four mobile paths, i.e., paths a, b, c, and d , to make
sure that the small-scale fading for various user walking cases
was fully captured. In the static scenarios, the minimum
duration for each user orientation (LOS, QLOS and NLOS)
measurement was 10s to ensure that various physiological
effects such as breathing were adequately recorded. Subse-
quently, the data was randomly divided into three indepen-
dent sets, i.e., training (70%), validation (15%) and test sets
(15%). Additionally, the 10-fold cross validation (described
in Section II-E) was performed on the acquired data to make
sure that the problem of overfitting can be effectively avoided.

V. RESULTS AND ANALYSIS
A. EFFECTS OF VARIOUS WINDOW SIZES AND TYPES
After obtaining the measurement data from the mobile state
(including different walking paths) and static state (includ-
ing various user orientations), firstly the RSS data needs
to be segmented as described in Section II-A. Nonetheless,
choosing the optimal window type and size for the RSS
segmentation is a critical issue in the classification process.
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FIGURE 5. Effect of various window sizes and types upon classification
accuracy.

On one hand, a larger window size is needed for com-
plex activities but requires more computational resources.
On the other hand, a smaller window size enables a faster
recognition rate, but the limited information in the smaller
window may result in poorer classification performance.
Generally speaking, there is not a specific optimal window
type and size for activity recognition work, the selected win-
dow type and size is often dependent on the device and system
requirements [36].

The classification accuracy performance after k-means
preprocessing for different window types is presented
in Fig. 5. Specifically, the performance of various sliding
window sizes T without overlap (p = 0) and sliding windows
with different overlapping ratios for the T = 1000 case are
shown. As the RSS sampling rate in this work was 1 kHz,
the time duration of each segmentation window of T = 1000
is exactly T/1000 = 1s. The highest classification accuracy
obtained was 99.8% for T = 1000 and p = 0. Thus this
segmentation format was used to obtain the results presented
in the remainder of this paper. Additionally, themean normal-
ization described in Section II-D was observed to provide the
highest classification accuracy throughout all the considered
scenarios, thus it is also adopted in the sequel.

B. PERFORMANCE METRICS
A confusion matrix, also know as an error matrix, allows the
visualization of an algorithm’s performance in statistical clas-
sification problems. In a typical confusionmatrix, each row of
the matrix represents the instances in a predicted/output class,
while each column represents the instances in an actual/target
class. The diagonal cells correspond to ratios of observa-
tions that are correctly classified and the off-diagonal cells
correspond to ratios of incorrectly classified observations.
Additionally, the Recall, also called true positive rate (TPR)
and Precision, also called positive predictive value (PPV)
metrics are also provided in the confusion matrices given
in Tables 1 to 7. Recall is defined by the fraction of the
number of correct positive results and the number of positive
results that should have been returned, while Precision is
defined by the fraction of the number of correct positive
results and the number of all positive results predicted in the

TABLE 1. Confusion matrix for multi-class SVM classifier.

test set. The values of Recall and Precision are given by

Recall =
TP
P
=

TP
TP+ FN

(21)

Precision =
TP

P̂
=

TP
TP+ FP

(22)

where TP is the number of true positive samples, P is the
number of all actual positive results, FN is the number of
false negative samples, P̂ is the number of all predicted pos-
itive results and FP is the number of false positive samples.
Also, the overall accuracy of correctly classified classes is
given in the bottom right corner (boxed) of the confusion
matrix table, i.e., the cross-section of theRecall andPrecision
entries

Moreover, in order to consider both the Precision and
Recall of the test to compute the score of classification accu-
racy, theF-measure [54] andMatthews correlation coefficient
(MCC) [55] are commonly applied in the machine learning
field. The main difference between the F-measure and MCC
is that, MCC takes into account TP, true negative (TN), FP,
and FN even if the classes are of very different sizes, while the
F-measure does not include TN and performs better when the
sizes of classes are exactly same. In this work, since the time
the user spends in each UE use case may be slightly different,
we adopt MCC as the classification score for our proposed
recognition approach. The MCC under the multi-class case,
also called the RU statistic (for U classes), is generally
defined in terms of a U ×U -size confusion matrix V in [56]
and shown in Equation (23), as shown at the bottom of the
netx page. In Equation (23), Vuv corresponds to the element
of u-th row and v-th column in the confusion matrix V and
{u, u′, v, v′, z ∈ Z : 1 ≤ u, u′, v, v′, z ≤ U} = {1, 2, . . . ,U}.
The maximum value of MCC is always +1 and the mini-
mum value will be between −1 and 0 depending on the true
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TABLE 2. Confusion matrix for Decision Tree classifier.

TABLE 3. Confusion matrix for Naive Bayes classifier.

distribution. Consequently, an MCC of +1 represents a per-
fect prediction, 0 means no better than random prediction and
negative MCC values indicate a great disagreement between
prediction and observation.

TABLE 4. Confusion matrix for EL classifier.

C. UE USE CLASSIFICATION RESULTS
Following the approach described above and illustrated
in Fig. 1, classification results for different UE use cases using
each classifier were obtained and are given in Tables 1 to 4.
As we can see, the DT classifier outperforms all oth-
ers with an accuracy of 100% (MCC: 1.0) and 98.0%
(MCC: 0.9725) for both mobile and static activities, respec-
tively. The NB classifier performs worst in both mobile
and static cases, with an accuracy of 71.1% (MCC: 0.684)
and 59.2% (MCC: 0.6756). The reason for this is that
the statistical features we adopted in this work are poten-
tially highly correlated, whereas the assumption of the NB
classifier is that the features are non-correlated. Further-
more, for every classifier the accuracy performance for the
mobile activity is better than static activity. For example,
with the EL classifier (Table 4), the overall accuracy is
89.5% (MCC: 0.8329) in the mobile scenario, compared
to 87.8% (MCC: 0.7835) for the static scenario. The main
reason for this is that in the mobile scenario, the statistics
of small-scale fading are highly correlated with the UE use
cases [43], i.e., how the UE is handled by the user. How-
ever, in the static scenario, in addition to how the user is
handing the UE, user breathing and vibration effects cannot
be neglected at mmWave frequencies. Hence the statistics of
small-scale fading are more likely to be quasi-stationary or
non-stationary [57].

MCC =

∑
u
∑

v
∑

z(VuuVvz − VuvVzu)√∑
u(
∑

v Vuv)(
∑

u′|u′ 6=u
∑

v′ Vu′v′ )
√∑

u(
∑

v Vvu)(
∑

u′|u′ 6=u
∑

v′ Vv′u′ )
(23)
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TABLE 5. User orientation confusion matrix for the Call case.

D. USER ORIENTATION CLASSIFICATION RESULTS
The user orientation estimation results are provided
in Tables 5 to 7. Again, the DT classifier performs better
and is more robust than the other classifiers with an accuracy
of 98.2% (MCC: 0.9725), 97.6% (MCC: 0.9672) and 100%
(MCC: 1) for the Call, App, and Pocket cases, respectively.
Furthermore, the classification accuracy for the Call case
is higher than the App and Pocket scenarios. For example,
for the multi-class SVM classifier, the overall classification
accuracy for the Call case is 98.2% (MCC: 0.9793) and only
92.7% (MCC: 0.8894) and 85.4% (MCC: 0.7807) for App
and Pocket, respectively. A possible explanation for this is
due to the fact that in the Call scenario, the user was holding
the UE very close to the ear position at a higher elevation,
with the antenna boresight facing away from the body, thus

TABLE 6. User orientation confusion matrix for the App case.

more strongly differentiating between the LOS, QLOS and
NLOS cases than those in the App and Pocket scenarios.
It is also interesting that the App and Pocket scenarios are
difficult to recognize under QLOS conditions. For example,
in the confusion matrix of the EL classifier in Table 6 and
Table 7, the precision of QLOS is 62.5% (App) and 88.9%
(Pocket), while the precision of LOS is 72.7% (App) and
93.8% (Pocket) and the precision of NLOS is 64.3% (App)
and 93.8% (Pocket), respectively. This indicates for the App
and Pocket scenarios, the differences between QLOS and
LOS/NLOS are not always clear as the antenna boresight
is facing towards the floor in the App case and the UE is
positioned at a lower elevation in the pocket in the Pocket
case.
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TABLE 7. User orientation confusion matrix for the Pocket case.

E. COMPUTATIONAL COST
Another significant issue for human activity recognition in
mmWave networks is the computational cost for training
and validating the machine learning model. Table 8 shows
the time taken to train and validate models for the various
classifiers. The workstation used in this study featured an
Intel(R) Core(TM) i7-6700 CPU operating at 3.40 GHz with
16.0 GB of RAM. Table 8 shows that the DT and multi-SVM
classifiers outperformed the other classifiers when consid-
ering computational time (0.09s and 0.28s, respectively),
while the EL and NB classifiers were most computationally
costly (with times of 2.60s and 3.76s respectively). Taking
the accuracy and computational performance into account,
the DT classifier is undoubtedly the best choice for mmWave
UE use case recognition, while the multi-SVM classifier has

TABLE 8. Computational time for training and validation.

acceptable performance, it is slightly more computationally
expensive, and the NB classifier always performs worst, both
in terms of accuracy and computational speed.

F. FEATURE RANKING AND SELECTION
1) FULL FEATURE SET
Despite satisfactory classification accuracy being achieved by
the supervised learning classifier, it is also useful to check the
ranking of the adopted small-scale fading features, i.e., which
of these features contributes most during the classification
stage. As described in Section. II-C, the dimension of the
adopted features is N × 67 and for the purpose of brevity,
this feature set is denoted as Full feature set herein.
In order to produce the ranking of the Full feature set,

we utilize the ReliefF algorithm described in [33]. The Reli-
efF algorithm is based on KNN and the main concept behind
ReliefF is that for the feature f , ReliefF searches for k (here
k stands for the k nearest neighbors in KNN) near hits from
one particular class, i.e., the closest inter-class instances,
and k near misses from each different class, i.e., the closest
intra-class instances. Afterwards, the differences between the
intra-class’s and inter-class’s distance are compared, then
the weight of feature f will be increased if the inter-class’s
distance is larger than the intra-class’s and vice versa. Finally,
the rank of various features will be produced based on the cor-
responding weights, with positive and larger values of weight
receiving the highest rankings. ReliefF is a good choice in
domains with strong inter-dependencies between features for
multi-class classification problem [33]. Since the value of k is
user-defined and affects the ranking results, various k values
were carefully investigated and then chosen so that the feature
ranking results reached were stable and thus reliable.

The first ten feature ranking results of the Full feature
set for the UE use case and user orientation classification
are provided in Tables 9 and 10. In Table 9, for the mobile
scenarios, the Nakagami m parameter and RiceK factor rank
first and fourth, respectively, indicating that m and K values
vary for different UE use cases and thus could be used to clas-
sify UE use cases for mobile users at mmWave frequencies.
It is interesting to note that the LCR values between −2 dB
and +2 dB are all within top nine ranks, indicating that the
main differences between the small-scale fading observed for
the mobile Call, App and Pocket cases occur close to the
zero threshold level (i.e., mean). Nonetheless, for the static
scenarios, both the Nakagami m parameter and RiceK factor
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TABLE 9. Ranking of Full feature set for UE use case classification in the
mobile and static scenarios.

TABLE 10. Ranking of Full feature set for user orientation classification
in the static scenarios.

are not in the top ten rank, while the Tc(γ = 0), Tc(γ = 0.5)
and Var take the top three places. In Table 10, it can be seen
that the Var is ranked within top five features to classify
the user orientation for all three UE use cases in the static
scenarios. Moreover, different ranges of the threshold δ for
LCR and AFD are observed for the various UE use cases, e.g.
under the App case, δ is between−1 dB to+4 dB for the first
ten ranked features, while δ is between −13 dB and +4 dB
for the Pocket case. The reason for this is that the UE was
positioned at a lower elevation for the Pocket case, thus the
shadowing resulted in a more significant difference between
the LOS, QLOS and NLOS scenarios than that under the App
case.

2) REDUCED FEATURE SET
As seen in Tables 9 and 10, it can be concluded that the
Nakagamim parameter and RiceK factor are crucial features
when classifying UE use cases for the mobile scenarios. Also
that Var, Tc(γ = 0.5), Tc(γ = 0), as well as LCR and AFD
with δ between −2 and +2 dB play important roles when
classifying UE use cases and user orientations for the static
scenarios. Therefore, aiming to reduce the complexity and
computation resources required for the classification system,

Var, the Rice K factor, the Nakagami m parameter, Tc(γ =
0.5), Tc(γ = 0), and LCR and AFD with δ between −2 and
+2 dB are selected from the Full feature set to form a new
feature set, denoted the Reduced feature set. Consequently,
the dimension of the adopted features is reduced to N × 15.
As shown in Section V-C to V-E, the DT classifier provided
the best accuracy and computation performance, thus it is
chosen to investigate the performance of the Reduced feature
set.

The confusion matrix of the Reduced feature set for the
DT classifier is provided in Table 11. Compared to the Full
feature set performance for the DT classifier in Tables 2, 5, 6
and 7, as expected, the classification accuracy of the Reduced
feature is decreased, e.g. for mobile scenarios, the UE
use classification accuracy dropped slightly from 100%
(MCC: 1.0) for the Full feature set to 94.7% (MCC: 0.9245).
Significantly, it can be observed the feature reduction has a
larger impact on the user orientation classification perfor-
mance of the App and Pocket cases compared to the other
cases, e.g. the classification accuracy declined significantly
from 92.7% (MCC: 0.8894) to 83.8% (MCC: 0.7361) for the
App case.

3) CONSTRAINED FEATURE SET
Though the Full and Reduced feature sets have provided
favorable classification accuracy, it is noted that the Rice
K factor and Nakagami m parameter need to be estimated
using MLE. The process of obtaining maximum likelihood
estimates is usually computationally expensive, thus it may
not be favorable for UE usage identification in real time
communications. Therefore, Var, Tc(γ = 0), and LCR(δ =
0) were further selected to form a Constrained feature set.
As a result, the dimension of the Constrained feature set is
limited to N × 3.
The confusion matrix of the Constrained feature set for

DT classifier is shown in Table 12. Intuitively, it is inter-
esting to observe that compared to the Reduced feature set
performance in Table 11, the feature reduction in the Con-
strained feature set has a greater impact on the UE use case
classification performance in the mobile case than the static
case. For example, the UE use case classification accuracy
for the mobile case deteriorates from 94.7% (MCC: 0.9245)
to 86.8% (MCC: 0.8546) while the classification accuracy
decreases from 89.8% (MCC: 0.8509) to 87.8 (MCC: 0.8282)
in the static case. This further verifies the significance of the
RiceK factor, the Nakagami m parameter as well as the LCR
and AFD values around the zero threshold level during the
UE use case classification process in the mobile case, which
corresponds to the ranking result in Table 9. Moreover, it can
be seen that for the Constrained feature set, the classifica-
tion performance deteriorates under the App and Pocket use
cases, e.g. compared to the Reduced feature set performance
in Table 11, the classification accuracy under the Pocket use
case declined substantially from 82.9% (MCC: 0.743) to
70.7% (MCC: 0.5689). This is in contrast to theCall scenario
where the classification accuracy is maintained at 92.9%
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TABLE 11. Confusion matrix of Reduced feature set for DT classifier.

(MCC here is between 0.8925 and 0.8974). Since the Rice
K factor and Nakagami m parameter are not within the top
ten ranks in Table 10, it can be inferred that in addition to the
zero threshold level, the LCR and AFD must be considered
over wider ranges in order to achieve a higher UE orientation
classification accuracy for the App and Pocket use cases.

TABLE 12. Confusion matrix for Constrained feature set for DT classifier.

G. PERFORMANCE COMPARISON WITH PREVIOUS WORK
A performance comparison between this work and previous
RSS/RSSI-based user activities/usage recognition work is
provided in Table 13. Due to the much shorter wavelengths
which exist in mmWave bands and the more profound effect
that the human body has on signal propagation at these fre-
quencies, a higher resolution of user activities/usage can be
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TABLE 13. Performance comparisons of RSS/RSSI-based user activities/usages recognition works.

achieved. This can be seen from Table 13, as compared to
previous work which considered traditional Wi-Fi or LTE
bands along with multiple APs, in this study only a single
centralized mmWave AP was used, yet a much higher classi-
fication accuracy was obtained, e.g., the classification of UE
use usages can be achieved with an accuracy between 98.2%
and 100%, while the user orientations can also be estimated
with high accuracy (between 97.6% and 100%).

VI. CONCLUSION AND FUTURE WORK
In this work, we have presented a novel supervised and unsu-
pervised learning approach to automatically recognize user
states and UE use cases based on the extraction of RSS statis-
tical features for mmWave indoor scenarios. Extensive mea-
surements were performed using a custom 60 GHz wireless
measurement system for realistic indoor scenarios involving
a UE and a ceiling mounted wireless AP. It was established
that, for the considered activities, a sliding window length
of 1s without overlap was the best choice for time series
segmentation at 60 GHz. A range of supervised machine
learning algorithms were applied and the results showed that
the DT classifier outperformed all other classifiers with an
accuracy of 100% and 98.0% for mobile and static scenarios,
respectively. For a static user, their orientation could also be
correctly estimated using the DT classifier with an accuracy
of 98.2%, 97.6% and 100% for the Call, App and Pocket use
cases, respectively. Also, the computational time required for
the DT classifier to reach a decision was much lower than
the others considered. Furthermore, the small-scale fading
features used in this study were ranked during the training
stage and it was found that, when it is desired to classify
UE use cases under mobile conditions, the Nakagami m
parameter, RiceK factor, and LCR around the zero threshold
level contributed the most useful information. In the static
scenarios, variance, channel coherence time and LCR/AFD
were found to provide the greatest influence. Additionally,
it was demonstrated that the orientation of a static user can
be recognized by exploring the differences of the variance,
channel coherence time and LCR/AFD. Finally, consider-
ing the requirements of a real time wireless communication
system, we compared the system classification performance

for the Full, Reduced, and Constrained feature sets. It was
determined that feature reduction had a pronounced impact
on the user orientation classification performance for the App
and Pocket use cases, with the accuracy decreasing from
92.7% to 75.7% and 85.4% to 70.7% for the App and Pocket
use cases, respectively. In contrast, the feature reduction was
observed to have a lesser effect when classifying the UE use
cases in both mobile and static scenarios.

Although the results obtained here show much promise
for using the RSS as a UE usage mode classifier, many
open research challenges remain which should be explored
in the future work. One drawback of supervised learning is,
the model has to learn from the labeled training data and,
compared to an unsupervised learning approach, the labeling
process usually requires extra labor or computational costs.
Therefore, it is recommended that completely unsupervised
learning approaches, such as self-organizing map (SOM),
should be investigated. As observed in this study, the inter-
change between user states and UE usage scenarios can lead
to inaccurate labeling of the data. Therefore using a vari-
able window size or type based on different user activities
as introduced in [36], could be advantageous for practical
deployment of the techniques proposed in this paper. It is
worth highlighting that the use of a variable window size
or type could also be extended to inform feature selection,
e.g., as highlighted in [36], a larger size of window is often
required when a smaller number of feature sets are selected,
and vice versa. In addition, since the primary objective of the
work undertaken in this study was to understand the potential
of using the RSS to classify UE usage in the presence of
the operator, future work should also take into account other
factors which can affect the RSS such as pedestrian activity
in the vicinity of the target UE.
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