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ABSTRACT Low latency networking is gaining attention to support futuristic network applications like
the Tactile Internet with stringent end-to-end latency requirements. In realizing the vision, cut-through (CT)
switching is believed to be a promising solution to significantly reduce the latency of today’s store-and-
forward switching, by splitting a packet into smaller chunks called flits and forwarding them concurrently
through input and output ports of a switch. Nevertheless, the end-to-end latency performance of CT switching
has not been well studied in heterogeneous networks, which hinders its adoption to general-topology
networks with heterogeneous links. To fill the gap, this paper proposes an end-to-end latency prediction
model in a heterogeneous CT switching network, where the major challenge comes from the fact that a
packet’s end-to-end latency relies on how and when its flits are forwarded at each switch while each flit is
forwarded individually. As a result, traditional packet-based queueing models are not instantly applicable,
and thus we construct a method to estimate per-hop queueing delay via M/G/c queueing approximation,
based on which we predict end-to-end latency of a packet. Our extensive simulation results show that the
proposed model achieves 3.98–6.05% 90th-percentile error in end-to-end latency prediction.

INDEX TERMS Computer networks, cut-through switching, end-to-end latency, M/G/c queueing model,
queueing analysis, performance evaluation.

I. INTRODUCTION
With the advent of the 5G era, low latency has emerged as a
key performance indicator (KPI) due to its essential role for
soon-to-come immersive applications. For instance, the tac-
tile Internet is expected to support remote haptic interactions
requiring very low end-to-end latency of a few millisec-
onds [1]. In addition, virtual reality (VR) will require only
14 ms margin for computing and communication delay [2].
Moreover, industrial automation should forward packets end-
to-end within 0.25–10 ms [3], while applications for robotics,
telepresence, health care, and smart grid demand 1–10 ms
latency [4]–[6].

The end-to-end latency in the network consists of transmis-
sion delay, queueing delay, processing delay, and propagation
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delay [7]. Among them, we focus on alleviating per-hop
packet transmission and queueing delays, since processing
delay is insignificant with today’s computing-resource-rich
high performance switches, and propagation delay is deter-
mined by the physical characteristics of the link thus not con-
trollable. Especially, transmission delay does not scale well
with the number of hopswhen store-and-forward (SF) switch-
ing is adopted, because a packet should be fully received
before it can be forwarded to the next hop. Since SF switching
is a de facto standard in most networks including the Internet,
we should seek for an alternative switching mechanism for
low-latency applications.

Cut-through (CT) switching, which was initially pro-
posed in the late 1970s in [8] but has been used only in
well-structured networks like data center networks (DCN)
and Network-on-Chip (NoC), has recently been re-visited
by [9] to reveal its potential to achieve low end-to-end latency
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FIGURE 1. Store-and-forward vs. cut-through switching (R1, R2, R3
denote router indices).

even in general-topology networks. In contrast to SF switch-
ing, CT switching can achieve minimal per-hop transmission
delay by simultaneously forwarding a being-received packet
via flit-ization, which is a process to split a packet into small
chunks called flits (Fig. 1). More specifically, a packet is
flitized at the source router (or at the gateway router of a
CT switching domain) and each flit is forwarded individually
(but in order).1 The first flit of the packet should contain the
full routing information so that a CT switch can determine its
forwarding path, and the remaining flits of the packet follow
the same path. In this way, the CT switch doesn’t need to wait
until the whole packet is received, thus reducing the per-hop
transmission delay significantly.

Although CT switching can significantly reduce transmis-
sion delay, it may not be easy to satisfy the low-latency
requirements2 without an accurate end-to-end latency pre-
diction model. For example, admission control is impera-
tive in guaranteeing quality-of-service (QoS) by allowing
as many packet flows as the network can handle to sat-
isfy any delay requirements, for which accurate end-to-end
latency estimation is necessary. That is, with a proper end-
to-end latency prediction method, a network operator can
foresee the end-to-end latency performance after accepting a
new flow. Unfortunately, however, no such method has been
developed for CT switched networks with a random topol-
ogy, since existing works on CT switching have considered
deterministically-structured networks usually with homoge-
neous links [10], [11].

To fill the gap, this paper proposes an end-to-end latency
prediction model for general-topology CT switching (GCS)
networks. We first investigate how the end-to-end latency in
the GCS network can be broken down into per-hop transmis-
sion and queueing delays. Based on the analysis, we present
the method to predict each delay component of the end-to-
end latency. In particular, we develop a method of predicting
queueing delay by approximating the queueingmodel of GCS
to the M/G/c queueing model.

The rest of the paper is organized as follows. Section II
overviews related work, and Section III introduces the system
model considered in this paper. Section IV proposes our end-
to-end latency prediction model, and then Section V presents

1In this paper, we use the terms ‘router’ and ‘switch’ interchangeably.
2The requirements include the average end-to-end latency and the packet

delivery ratio (the portion of packets delivered in time), as introduced in [9].

the prediction accuracy of the proposed method via extensive
simulations based on an existing network topology. Finally,
Section VI concludes the paper.

II. RELATED WORK
A. QOS PROTOCOLS FOR LOW LATENCY SERVICES
One of the popular approaches to achieve low latency is to
design a QoS protocol. There have been various quality of
service (QoS) protocols proposed for low latency services in
computer networks [12]. IntServ (Integrated Services) [13]
reserves per-flow network resources via the Resource reSer-
Vation Protocol (RSVP) [14] to guarantee minimal QoS for
each flow, resulting in low and inflexible network utilization.
DiffServ (Differentiated Services) [15], on the other hand,
classifies packets into different QoS classes according to
which the service level of each packet is determined, leading
to coarse QoS provisioning. Furthermore, network slicing
enables a network operator to tailor its network to the needs
of low latency applications [16].

The GCS network considered in this paper achieves low
latency performance in distinctive ways from the aforemen-
tioned approaches. Specifically, the GCS network neither
reserves network resources nor categorizes packets into QoS
classes. Instead, it achieves low end-to-end latency via fliti-
zation of each packet to alleviate per-hop transmission delay.
Moreover, the GCS network does not require any logical
separation of network resources as is the case in network
slicing.

B. CUT-THROUGH SWITCHING IN THE LITERATURE
CT switching has been used in data center networks (DCN)
[17] and Network-on-Chip (NoC) [18]. Most DCN switches
support CT switching for low latency data transfer, while CT
switching in NoC is implemented in the form of wormhole
switching, a variant of CT switching with some implemen-
tation difference. Topologies of DCN and NoC, however,
are homogeneous and well-structured in general, and hence
existing analytic methods to predict end-to-end latency in
DCN andNoC cannot be directly applied to theGCS network.

There have been just few work on CT switching in
general-topology networks. Myrinet [19] is a high speed
gigabit LAN built upon CT switching, and Autonet [20]
adopts CT switching to accomplish per-hop packet for-
warding within 2 ms. In addition, Time-Triggered Ether-
net [21] routes all time-triggered messages via CT switching.
As described, CT switching has been usually adopted for
time-sensitive networks with stringent latency requirements.

Unfortunately, however, there exists no analysis on
end-to-end latency prediction in heterogeneous CT switching
network. Among the work related to end-to-end latency anal-
ysis, quasi cut-through switching (QCTS) [10] assumed over-
simplified network conditions like uniform link capacities,
while general cut-through switching (GCTS) [11] assumed
matched link capacities between directly connected nodes.
On the contrary, this paper assumes amore generalizedmodel
with heterogeneous links and random topology.
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C. NETWORK CALCULUS
Network calculus [22] is one of the approaches that can be
used for the network delay analysis. For instance, it has been
used to model QoS parameters in wireless networks [23],
[24]. Although network calculus can analyze the end-to-end
latency based on a more realistic system model than queue-
ing theory can [25], it can only estimate the latency bound
(i.e., not the latency itself) thus limiting its usage.3 To avoid
such problems, this paper adopts queueing theory as amethod
to estimate the end-to-end latency.

III. SYSTEM MODEL
This section introduces the baseline architecture of the
GCS network considered in this paper.

A. THE GCS NETWORK ARCHITECTURE
This paper considers a GCS network consisting of CT switch-
ing switches to serve latency-sensitive services. Each packet
is assumed to be flitized at its source router where it is
initially generated, forwarded through intermediate routers in
the form of flits, and re-assembled into the original packet at
the destination router. The considered model can be encoun-
tered in many real scenarios, e.g., DCN with heterogeneous
links, a CT switching domainwithin the 5G network core, etc.
We also suppose that link capacity is roughly proportional
to the traffic intensity going through each link so that links
at the network core have larger capacity than those at the
network edges, which is reasonable when a network service
provider (NSP) provisions its network according to per-link
utilization. In addition, according to the link capacity sugges-
tion, we assume that each edge link rates are similar to each
other with small variance.

We assume each router in the GCS network consists of n
input links, n input queues, n output links, n output queues,
and a crossbar switch with speed-up of n. Assuming suffi-
ciently large queue sizes, queuing overflow is not consid-
ered.4 In addition, the switching latency in the crossbar switch
(which is in the order of hundreds of nanoseconds [26]) is
ignored because it is usually much smaller than the end-to-
end latency requirements of low latency services [1]–[6].

This paper assumes Poisson packet arrivals at the source
router while assuming a general (i.e., arbitrary) packet length
distribution. In addition, we assume the packet length distri-
bution is independent of the packet arrival process. Since this
paper is the first attempt to built an analytical framework for
end-to-end latency prediction in the GCS network, we believe
the considered traffic model will become the cornerstone
of the future research activities while still providing useful
intuitions. In such a view, generalizing the packet arrival
process is left as our future work.

3For example, when flow admission control is performed based on the
upperbound of latency, many flows can be rejected unnecessarily leading to
network under-utilization.

4Note that we will empirically show that this assumption is reasonable in
Section V-A.

FIGURE 2. Flitization of a packet.

We also assume the NSP of the GCS network has a
method to collect traffic information from its network, e.g.,
through software-defined networking (SDN) protocols [27].
For example, the SDN controller can collect information
from each CT switching including packet arrival rates, packet
length distribution, and per-flow routing path, which can be
further distributed to selected switches so that they can utilize
them for their flit scheduling and forwarding. In [28], it has
been shown that using SDN helps to monitor and supervise
network traffic easily.

B. CUT-THROUGH SWITCHING METHODOLOGIES
In the GCS network, each packet is split into same-sized
flits at its source router, where the flit size is denoted by
Sf (bits). The flits are classified into three categories: head
flit, intermediate flit, and tail flit, as shown in Fig. 2. Among
them, the head flit includes an IP packet header so that the
switch can determine the routing path upon the arrival of a
head flit, and the tail flit is zero-padded to have the same flit
size as others.

Every flit has a 3 byte long flit header which includes the
flit preamble, the packet identifier, and the flit’s sequence
number. The flit preamble (0.5 bytes) is used to identify the
existence of a flit. The packet identifier (2 bytes) indicates
which packet the related group of flits are belonging to. The
flit sequence number (0.5 bytes) implies the ordered index
of the flits from the same packet. Note that Sf should be
larger than 63 bytes because the head flit must include an
IP header, whose maximum size is 60 bytes with the options
field.

The GCS network is assumed to be operated on a synchro-
nized slotted time structure, where the time slot size Ss is
determined as

Ss = Sf /r∗ (sec), (1)

where r∗ (in bps) is the least common multiple of all the link
rates in the GCS network. Note that time synchronization
among switches can be done by existing protocols like the
Precision Time Protocol (PTP) [29].
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C. FLIT SCHEDULING MECHANISM
In this paper, a session is defined as a logical connection
established between two edge routers (a source router and
a destination router) for packet flow. Note that in the SDN
architecture, forwarding decisions are flow-based, instead of
destination-based, and the decisions are made by the SDN
controller [27]. Therefore, we assume that the SDN controller
determines the routing path of a session, and that the packets
belonging to the same session follow the same path.

We consider Per-Session Bottleneck link Rate (PSBR)
based scheduling for CT packets. The PSBR of a session i,
denoted by γi, is the minimum link rate among the links on
the session i’s route such as

γi = min
l∈Li

rl (flits/slot), (2)

where i is the session index, Li is the set of link indices on
session i’s route, and rl is link l’s rate. We assume that the
SDN controller notifies the switches involved with a session
of the session’s PSBR in advance. Therefore, a switch can
identify the PSBR of a packet by obtaining the session-related
information (e.g., source and destination addresses) when the
packet’s head flit arrives.

The psuedo-code of the PSBR-based scheduling algorithm
is described in Algorithm 1. At each packet arrival/departure,
the queue checks whether a new packet can be served
(lines 12–20 and 29–38). After a completion of packet trans-
mission (line 27), if a queued packet can be served (line 33),
the packet’s counter is set to the maximum counter value
plus 1 to keep the periodicity of ongoing flit transmissions
(line 34). On the other hand, if a newly arriving packet can
be served immediately (line 17), it means that the server
of the queue is not fully utilized yet and thus the packet’s
counter is set to 0 (line 18) to avoid a possible unnecessary
scheduling delay. Each counter decrements by 1 at each time
slot (line 41). The server transmits the flit of the packet
with the minimum counter value, which must be zero or less
(lines 23–24), while updating its counter by adding the recip-
rocal of its PSBR (line 26). Note that a collision between the
packets with the same minimum counter value is resolved
by FIFO at line 23, where argmin gives the set of packets
with the minimum counters and min returns the oldest packet
among them. Such counter-based scheduling ensures each
packet can be transmitted at its PSBR.

To better understand PSBR-based flit scheduling, let us
consider an example shown in Fig. 3, where there exist two
packets in an output queue, each belonging to one of the
two distinct sessions with PSBR of 1/3 and 1/4, respectively.
Assume the outgoing link rate is 1 (flits/slot), and the head flit
of packet 1 arrives at time t = 0 while that of packet 2 arrives
at time t = 1. With PSBR-based scheduling, the router
sends the first flit of packet 1 at t = 1 and the second flit
of packet 1 after 3 slots later, to follow the PSBR of 1/3.
Similarly, the router sends the first flit of packet 2 at t = 2
and the second flit of packet 2 after 4 slots.

Algorithm 1 PSBR-Based Scheduling at an Output
Queue

1 t ← 0; // time slot index
2 K ← ∅; // set of queued packets
3 S ← ∅; // set of serving packets
4 k ← 0; // number of accumulated packet arrivals
5 while t ≥ 0 do
6 if n packets arrive then
7 K ← K ∪ {k + 1, ..., k + n};
8 for w← k + 1 to k + n by 1 do
9 bw = FindPSBR(w) ; // PSBR of packet w
10 end
11 k ← k + n;
12 while K 6= ∅ do
13 km← mink ′∈K k ′; // oldest queued packet
14 if

∑
s∈S bs + bkm > rl then

15 break;
16 end

/* start to serve packet km */
17 S ← S ∪ {km};
18 ckm ← 0; // set the scheduling counter
19 K ← K \ {km};
20 end
21 end

/* find the oldest packet among those with the min.
counter */

22 cmin← mins∈S cs;
23 s∗← min{argmin s∈S cs};
24 if cmin ≤ 0 and the slot is idle then
25 start to transmit the oldest flit of packet s∗;
26 cs∗ ← cs∗ + 1/bs∗ ; // update the counter
27 if the flit is the tail flit then
28 S ← S \ {s∗};

/* serve a new packet among queued */
29 while K 6= ∅ do
30 km← mink ′∈K k ′;
31 if

∑
s∈S bs + bkm > rl then

32 break;
33 else
34 ckm ← maxs∈S cs + 1;
35 S ← S ∪ {km};
36 K ← K \ {km};
37 end
38 end
39 end
40 end
41 cs← cs − 1, ∀s ∈ S; // decrement all the counters
42 t ← t + 1; // go to the next slot
43 end

The switch running the algorithm needs to know the PSBR
of every session going through it, for which the SDN con-
troller can collect all the link rates in the network and dis-
tribute them to the switches beingmanaged. Hence, how often
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FIGURE 3. An example of PSBR-based flit scheduling.

such collection and distribution may incur determines the
practicality of running the algorithm. Fortunately, link rates
change only occasionally due to the installation/replacement
of links, link failures, etc., thus preserving the practicality.

The motivation behind choosing the PSBR-based schedul-
ing scheme is as follows. First of all, our scheme is flow-based
scheduling, which is popular for scheduling in DCN and
NoC [30], [31]. Unlike in DCN and NoC, however, it is
inevitable for a GCS network to have a bottleneck link on
an end-to-end routing path due to heterogeneous link rates.
In such a case, the flits arriving at the bottleneck link
faster than it can handle should lead to excessive queuing
while unnecessarily consuming the network resources in the
upstream routers. Hence, it is reasonable to force every router
in a routing path to forward flits at the PSBR so that the
remaining resources can be shared by other sessions. Note
that such a bottleneck-rate driven forwarding strategy is
commonly found in classical congestion control, e.g., leaky
bucket traffic shaping, so as to reduce end-to-end latency.

To further clarify the aforementioned motivation, an exam-
ple is provided in Fig. 4. Let us consider the network shown
in Fig. 4(a), where there exist two packets at R1 destined to R3
and R4 respectively as illustrated in Fig. 4(b). Under the FIFO
scheduling, the blue packet is blocked until the red packet
is completely transmitted from R1 as seen from Fig. 4(c),
which is not desirable since l2 is much slower than l1. That is,
the ‘I’ flit of the red packet can be sent at slot 5 (not at slot 2)
from R1 with no penalty, since the transmission of the red
‘H’ flit at R2 takes four slots. Hence, our scheme in Fig. 4(d)
transmits each flit by its PSBR so that the blue packet’s flits
can be transmitted much earlier than in Fig. 4(c) resulting in
smaller end-to-end latency (8 slots vs. 10 slots).

We should admit that there can be better schedul-
ing schemes for a GCS network than the PSBR-based
scheme. This paper, however, tries to provide a novel and
generic methodology to analyze the end-to-end latency in
CT switching networks, which would become a corner-
stone of the further development in this field. Nevertheless,
the proposed model may need to be fine-tuned to a given
(non-PSBR-based) scheduling scheme.

IV. END-TO-END LATENCY PREDICTION METHOD
In this section, we propose a prediction method for the end-
to-end latency in the GCS network. For better readability,
the major notations introduced in this section are summarized
in Table 1.

FIGURE 4. A motivating example of adopting the PSBR-based scheduling.

TABLE 1. A summary of notations.

A. END-TO-END LATENCY BREAKDOWN ANALYSIS
We first investigate the factors contributing to the end-to-
end latency. We define the end-to-end latency as the time
interval between ts and td , where ts is the time when a head
flit starts to be queued at the source router’s output queue
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FIGURE 5. An example of the end-to-end latency breakdown analysis.

and td is the time when a tail flit arrives at the destination
router. It is assumed that the processing delay in flitization
is negligible compared to transmission and queueing delays,
as is generally true in modern routers. Therefore, we try
to break down the end-to-end latency into queueing delays,
transmission delays, and propagation delays.

To develop a basic understanding of the end-to-end latency
in the GCS network, suppose a simple example of a three-hop
network as depicted in Fig. 5(a). Then, Fig. 5(b) shows
an end-to-end flit forwarding procedure of a packet in the
considered network, where H , I , and T denote the head flit,
an intermediate flit, and the tail flit of the packet, respectively.
Note that we assume PSBR is one in this example.

We assume the head flit is initially output-queued at router
R0 during DQ0

q slots (due to multiplexing with other packet
flows, etc.). After that, it is transmitted during Di,1t,f slots

and traverses link l1 consuming Dl1p slots. When the head
flit arrives at router R1, it is queued for DQ1

q slots, and
subsequently the head flit is transmitted during Di,2t,f slots.

After spending Dl2p slots for propagation, it arrives at router
R2, which is the last router prior to the destination. After
the queueing of the head flit for DQ2

q slots, all the flits are
transmitted during Di,jt slots and traverse link l3 consuming
Dl3p slots. Based on this observation, the end-to-end latency
of packet j of session i in the GCS network, denoted by Di,je2e,

can be generalized as

Di,je2e =
n−1∑
k=1

Di,kt,f + D
i,j
t +

n−1∑
k=0

DQkq +
n∑

k=1

Dlkp , (3)

where routers 0, 1, . . . , n are on the routing path of the ses-
sion i in the order of the indices, lk is the link index,D

Qk
q is the

queueing delay of the head flit at the output queue of router k ,
Di,kt,f is the transmission delay of the head flit from router k−1

to k , Di,jt is the delay in transmitting all the flits of packet j
at the last hop including per-flit transmission delay and the
inter-flit wait-time to satisfy the given PSBR, and Dlkp is the
propagation delay through the link lk connecting routers k−1
and k . Note that Eq. (3) still holds for PSBR 6= 1, since PSBR
only affects Di,jt .
Each term in Eq. (3) can be further derived as follows. First,

Dlkp (slots) is the time interval between when the first bit of the
head flit leaves router k − 1 and when it arrives at router k ,
and thus it is determined as

Dlkp = Llk /clk , (4)

where Llk (meters) is the physical length of link lk and clk
(meters/slot) is the travelling speed of a signal through lk .
Note that Dlkp is deterministic since Llk and clk do not vary.
Next, Di,kt,f (slots) is the time required to transmit all the bits
of the head flit, thus obtained by

Di,kt,f =
1
rlk
, (5)

which is also deterministic. In addition, Di,jt (slots) is the
entire time to transmit all the flits of a packet at the last hop
including the pausing intervals due to PSBR, which is given
as

Di,jt =
ni,jf − 1

γi
+

1
rln
, (6)

where ni,jf is the number of flits of packet j. Given session i,

Di,jt is random since ni,jf is randomly varying with packets.

Lastly, DQkq is the time interval between when the head flit
is firstly queued at queue Qk and when the head flit starts to
be transmitted, which is stochastic by nature. Conventional
approaches to estimate queueing delays, however, cannot be
directly applied to our problem. Suppose a flit is a schedu-
lable job of the queueing model. Under the PSBR-based
scheduling, job inter-arrival times are highly dependent on
each other for the jobs (i.e., flits) belonging to the same
packet. That is, we need a queueing model that can describe a
hierarchical structure between packets and flits, which has not
been developed so far. In the following section, we propose a
method to resolve this issue.

Finally, the expected end-to-end latency E[Di,je2e] can be
derived by replacing ni,jf in Eq. (6) with E[ni,jf ] and D

Qk
q in

Eq. (3) with with E[DQkq ]. E[ni,jf ] is easily obtained from the

packet length distribution per packet, while E[DQkq ] is still
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unknown. The following section IV-B will discuss how we
can approximate E[DQkq ] by tailoring a traditional queuing
model to our problem.

B. M/G/C-BASED APPROXIMATE QUEUEING MODEL
As discussed in Section IV-A, we need a new queueing model
for the head flit’s per-hop queueing delay. To do so, we treat
the head flit as a schedulable job whose service time is the
whole packet service time transmitting from the head flit to
the tail flit of the packet they belong to. That is, all the flits of
a packet are considered as one logical job at a given queue,
although they may be in fact transmitted to the outgoing link
at different times intermittently. More formally, the service
time for packet j of session i is defined as nf ,j/γi (slots) where
nf ,j is the number of flits of packet j. Accordingly, a job arrival
occurs when the head flit of a new packet arrives.

Then, assuming Poisson packet arrivals at source routers
as mentioned earlier in Section III, we further conjecture
that the head-flit arrival at intermediate routers follows the
Poisson process as well. The conjecture is based on the
assumption that the packet arrivals at intermediate routers
may be independent of the packet length distribution, if the
Kleinrock independence approximation assumption [32] can
still be applied to the GCS network. Although there is a
lack of relevant studies to confirm the conjecture, later on
in Section V we will provide some experimental evidence to
support it.

In addition, under the PSBR-based scheduling, each queue
can be approximated to a multi-server queue. As assumed
in Section III, the link rate is smaller at network edges than
at the network core, and the edge link rates are roughly
similar to each other with small variance. Then, most sessions
would have their bottleneck link rates as their edge link rates,
and thus their PSBRs become similar. As a result, when the
sessions multiplexed at an output queue have similar PSBRs,
the queue approximately acts like a multi-server queue with
c servers, each with identical service rate of RQ (flits/slot),
the average value of PSBR of all sessions passing through the
queue, where c is roughly given as the output link rate divided
byRQ. Note that c will be more rigorously determined in the
sequel.

Based on the aforementioned discussions, we approximate
an output queue in the GCS network to a M/G/c queueing
model. Then, we adopt the M/G/c queueing delay approxi-
mation scheme in [33] to derive the head flit’s approximate
queuing delay. Note that since the original M/G/c queueing
model is a continuous-time model while our system oper-
ates in discrete-time with time slots, we adjust the M/G/c
queueing model accordingly in the sequel to cope with the
slotted nature. Fig. 6(a) depicts the logical concept of the new
queueing model under the PSBR-based scheduling scheme,
and Fig. 6(b) illustrates how a real queue is approximated to
an M/G/c queue.

We start with defining some notations for a given out-
put queue Qk . Let pQkq (x) denote the probability mass

FIGURE 6. The concept of the proposed queueing model.

function (PMF)5 of the queueing delay DQkq , VQk (x) denote
the waiting time distribution of delayed packets such as

VQk (x) = P(DQkq ≤ x|D
Qk
q > 0), (7)

and pQkw denote the delay probability defined as

pQkw = P(DQkq > 0). (8)

Then, the cumulative distribution function (CDF) of DQkq ,
denoted by FQkq (x), can be expressed as

FQkq (x) = P
(
DQkq ≤ x

)
= P

(
DQkq = 0

)
+ P

(
0 < DQkq ≤ x

)
= (1− pQkw )+ VQk (x) · pQkw . (9)

In addition, we denote by λQk the head flit arrival rate
(in flits/slot) and by SQk the (random variable of) service time
(in slots) of each job in our queueing model. Moreover, cQk is
the approximate number of servers, which is determined as

cQk =
⌊
rQk
RQk
+

1
2

⌋
, (10)

where rQk is the outgoing link rate, and 1/2 is to round up
the value inside the floor operation (called round half up).
Then, the traffic intensity ρQk at queue Qk , which is defined
as the ratio of time a server is occupied to the time the server
is available [34], is obtained by

ρQk =
λQkE[SQk ]

cQk
, (11)

5We consider PMF instead of probability density function since time is
discretized into slots.
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following the traffic intensity formula of the conventional
multi server queueing model [34].

Now, according to [33], VQk (x) can be approximated to
V
Qk (x) such as

V
Qk (x)

= (1− ρQk ){1− (1− FQkeq (x))
cQk }

+ λQk

∫ x

0
V
Qk (x ′){1− FSQk

(
cQk (x − x

′)
)
}dx ′, (12)

where FQkeq is defined as

FQkeq (x) =
1

E[SQk ]

x∑
t=0

(
1− FSQk (t)

)
(13)

and FSQk is the CDF of SQk . Note that the summation in
Eq. (13) is to consider the nature of slotted time. Note that
Eq. (12) can be evaluated by numerical methods like the
rectangle method [35]. In addition, pQkw can be approximated
to pQkw [33] such as

pQkw =

(
λQkE[SQk ]

)cQk
cQk !(1− ρQk )

p0, (14)

where

p0 =

cQk−1∑
j=0

(
λQkE[SQk ]

)j
j!

+

(
λQkE[SQk ]

)cQk
cQk !

(
1− ρQk

)
−1 . (15)

Using Eqs. (12) and (14), FQkq (x) can be approximated to
F
Qk
q (x) such as

F
Qk
q (x) = (1− pQkw )+ V

Qk (x) · pQkw . (16)

Finally, the end-to-end latency distribution can be esti-
mated as follows. Let pie(x) be the PMF of Di,je2e for session i.
Remind that the terms Dlkp and Dit in D

i,j
e2e are deterministic

whereas the other two terms are random. Let pni,jf
(x) be the

PMF of ni,jf . Then, the PMF of Di,jt , denoted by pit (x), can be
derived as

pit (x) = P
(
Di,jt = x

)
= P

(
1
γi
(ni,jf − 1)+

1
rln
= x

)
= P

(
ni,jf = γi

(
x −

1
rln

)
+ 1

)
= pni,jf

(
γi

(
x −

1
rln

)
+ 1

)
. (17)

Assuming the independence among queues, we can obtain
pie(x) such as

pie(x) = P
(
Di,je2e = x

)
= P

(
n−1∑
k=1

Di,kt,f + D
i,j
t +

n−1∑
k=0

DQkq +
n∑

k=1

Dlkp = x

)

= P

(
Di,jt +

n−1∑
k=0

DQkq = ẋ

)

FIGURE 7. An example scenario for zero queueing delay.

= pQ0
q (ẋ) ∗ pQ1

q (ẋ) ∗ · · · ∗ pQn−1q (ẋ) ∗ pit (ẋ)

≈ pQ0
q (ẋ) ∗ pQ1

q (ẋ) ∗ · · · ∗ pQn−1q (ẋ) ∗ pit (ẋ) = pie(x)

(18)

where ẋ = x − (
∑n−1

k=1D
i,k
t,f +

∑n
k=1D

lk
p ), ∗ denotes convo-

lution, pQkq (x) is an approximation of pQkq (x) which can be
obtained from the approximate CDF in Eq. (16), and pie(x) is
an approximation of pie(x).
Based on the analysis, various end-to-end latency met-

rics can be estimated. For example, the average end-to-end
latency of session i, i.e., E[Di,je2e], can be estimated as

E[Di,je2e] =
∞∑
x=1

xpie(x) ≈
∞∑
x=1

xpie(x). (19)

In addition, the packet delivery ratio (PDR) of session i,
defined as the ratio of packets satisfying their delay require-
mentDireq (which is themaximum allowed end-to-end latency
of session i’s packet), is obtained by

PDRi = F ie(D
i
req) ≈ F

i
e(D

i
req) (20)

where F ie(x) is the CDF of the end-to-end latency of session i
and F

i
e(x) is its approximation obtained from pie(x).

C. ZERO-FORCING THE QUEUEING DELAY
IN SPECIAL CASES
There exists a special case where the queuing delay in cer-
tain queues is always zero due to a topological issue in
heterogeneous CT switching networks. To understand the
phenomenon better, let us consider the tandem queue with
two connected routers in Fig. 7, where the link rate of router
R2’s output link l2 is higher than or equal to that of router
R1’s output link l1. Considering the fact that the flit size is
fixed, it is apparent that the transmission delay of each flit
transmission at R2 is always smaller than that at R1. As a
result, the flits transmitted by R1 will never be queued at
R2 resulting in no queueing delay at R2. Therefore, we need
to manually set the queueing delay in such routers to zero.
In Section V-C, we will show the efficacy of the proposed
zero-forcing technique via simulations.

The following theorem formally states the aforementioned
case.
Theorem 1: In cut-through switching networks, when two

tandem queues Q1 and Q2 are given where packet flows
are moving from Q1 to Q2, the queueing delay at queue Q2
becomes always zero if the link rate rlout of its output link lout
is equal to or higher than rlin , the link rate of its input link lin.
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Proof: Suppose the kth flit arrives atQ2 at t0 (slot) when
Q2 is empty. Since the queue is empty, the flit is not queued.
Then, the kth flit leaves Q2 at t1 = Sf /rlout + t0, and the
(k + 1)th flit can arrive at Q2 when t2 ≥ Sf /rlin + t0. Since
Sf /rlin ≥ Sf /rlout , the (k + 1)th flit will never be queued
at Q2. By the mathematical induction, no flit will be queued
at Q2. �

D. DISCUSSION
The end-to-end latency prediction for each session should
be performed whenever there is any expected change in the
stochastic behavior of delay components. As explained ear-
lier, given session i, the stochastic nature of Di,jt is invariant,
while Dlkp and Di,kt,f are deterministic. Hence, Di,je2e related to
Qk needs to be re-estimated only if the stochastic properties
of DQkq is changed, which happens when any session passing
through Qk is added to or removed from the GCS network.

More specifically, suppose session η is established
(or removed), router k is on the routing path of the session,
and Qk is the output queue in router k through which session
η passes. Then, every other session i also passing through
Qk is affected by the change. Therefore, the SDN controller
needs to re-estimate Di,je2e for each session i, for which the
SDN controller needs the traffic information (e.g., packet
arrival rate & packet length distribution) of session η and all
sessions passing throughQk . To do so, the traffic information
of session η is reported to the SDN controller by the source
router at the session’s establishment, which is combined with
previously acquired traffic information of all other sessions
passing through Qk to re-obtain Di,je2e for each i.
On the other hand, CT switching could be less reliable

in error-prone networks since a packet cannot be recovered
at the destination if one or more flits (of the packet) are
received in error. In such a case, the source can retransmit
only those flits in error or may retransmit the whole flits
of the packet, depending on which retransmission strategy
is used. Our proposed model can be slightly modified to
address such a situation, by increasing packet arrival rate at
the source as much as retransmission’s contribution. Then,
a packet’s average end-to-end latency after retransmissions
can be obtained by combining the average number of retrans-
missions with our model’s predicted end-to-end latency of a
single packet transmission (without retransmission). It should
be noted, however, per-flit error probability is much smaller
than per-packet error probability and thus the true impact of
error on CT switching should be further investigated. Since
the aforementioned issues deserve a separate research effort,
we leave it as our future work.

V. PERFORMANCE EVALUATION
In this section, we evaluate the accuracy of the proposed
end-to-end latency prediction model, where the accuracy is
assessed by the error in predicting the latency, which is
defined as

error :=
sim.value− pre.value

sim.value
· 100 (%) (21)

FIGURE 8. Modified RedCLARA topology.

where sim.value and pre.value denote the simulated latency
and the predicted one by our model, respectively.We consider
the average error and the 90th percentile error as performance
measures, while simulating various flit sizes and traffic inten-
sities. In addition, a simulation run lasts for 4 million slots,
while the first 1 million slots are excluded from the accuracy
assessment considering the time it takes to converge to the
steady state. Finally, per-session routing path is obtained by
running Dijkstra’s algorithm, which is commonly applied to
all simulation scenarios.

The simulated network topology is a modified version
of RedCLARA, an academic data network established in
Latin America [36]. Fig 8 illustrates the simulated topology
which consists of 71 nodes (among which 30 nodes are
at the network edge) and 76 links with varying capacity
such as 100 Mbps (colored in blue), 200 Mbps (colored
in green), or 400 Mbps (colored in red). Link lengths are
assumed uniformly distributed for simplicity. Since each link
is bi-directional and connected to two routers, there exist
152(= 76 · 2) output queues. We associate each of the output
queues to (i) a queue index from 1 to 152, and (ii) a label in
the form of OQ#A-B where A is the index of the router where
the output queue resides and B is the index of the router the
outgoing link from router A is connected to. In addition, each
router at the network edge is considered as a source router
of 20 sessions,6 whose destination router is also chosen from
the edge routers. Fig. 8 shows the network topology used in
the simulation, with router indices specified.

In the simulations, packets follow the Poisson arrival pro-
cess where the arrival rates of all the sessions are uniformly
distributed as described in Table 2. In addition, we consider a
modified Internet packet length distributionmodel as follows.
According to [37], [38], the packet length distribution in
the Internet presents a U-shaped pattern shown in Fig. 9(a).
In GCS networks, however, small size packets like 40 Bytes
won’t be the target for flitization since concurrent trans-
mission over multiple hops by CT switching is beneficial

6Note that assuming a larger number of sessions than 20 may give us
better prediction results, due to the nature of the Kleinrock independence
approximation.
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TABLE 2. Simulation configurations: six scenarios.

FIGURE 9. The packet length distribution used in simulations.

for long packets as analyzed in [9]. Therefore, we mod-
ify the original distribution in Fig. 9(a) to the one shown
in Fig. 9(b), by excluding the packets smaller than 400 Bytes
and re-normalizing the distribution.

We tested six types of simulations with varying network
traffic intensity and flit sizes. The flit size configuration
affects the performance of the network, since too small flits
may cause more flitization overhead (due to flit header at
each flit) whereas too large flits may result in excessive zero
padding at the tail flit. To capture the effect, we varied the
flit size Sf as 100, 200, and 300 bytes. In addition, two
traffic intensities are considered for the simulations – light
vs. heavy traffic. Table 2 summarizes the configuration of the
simulations.

A. QUEUE SIZE VARIATIONS
We first present the simulated results of the maximum queue
size at each queue in Fig. 10, to experimentally verify the
validity of our assumption in Section III-A, i.e., no queueing
overflow. As seen, the queue size is effectively upperbound
by a certain threshold in the order of a few KB to dozens of
KB. Considering that state-of-the-art routers have the buffer
size in the order of hundreds of KB to tens of MB [39], [40],
our assumption of no queueing overflow seems reasonable.

B. POISSON HEAD FLIT ARRIVALS
This section investigates whether the head flit arrivals at
intermediate routers indeed follow the Poisson process, as we
assumed in Section IV-B. To do so, we measure the distri-
bution of head flit inter-arrival times in all the intermedi-
ate routers, leading to a total of 352 distributions examined
considering six simulation scenarios. Among them, it turns
out 308 cases (87.5%) very accurately follow the Poisson
distribution and 41 cases (11.6%) show distributions fairly
similar to the Poisson distribution, while only 3 cases present

FIGURE 10. Per-queue maximum queue size observed.

distributions different from Poisson. As a result, we exper-
imentally confirm that head flit arrivals follow the Poisson
distribution not only at source routers but also at intermediate
routers.

As an example, we show the distribution of two selected
output queues OQ#2-1 and OQ#49-51, each located at a
core router under the simulation scenarios 2 and 5 (i.e.,
light and heavy traffic respectively, but moderate flit size
for both). Fig. 11 presents the sample distributions of their
head flit inter-arrival times compared to the exponential dis-
tribution,7 where each exponential distribution is fitted to the
corresponding sample distribution via the minimum mean
squared error estimation. As shown, the head flit inter-arrival
times at the chosen routers are distributed almost exactly as
exponential.

7Exponentially distributed and independent inter-arrival times instantly
mean Poisson arrivals.
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FIGURE 11. Head flit inter-arrival time distributions at OQ#2-1 and
OQ#49-51.

FIGURE 12. OQ#26-87: Head flit inter-arrival time distributions and its
related traffic flows.

The aforementioned three non-exponential cases, in fact,
result from the same output queue OQ#26-87 under the
scenarios 4 to 6, which are shown in Fig. 12. The reason
is that OQ#26-87 does not satisfy the necessary condition
of the Kleinrock independence approximation assumption as
explained in the following. Fig. 12(d) illustrates the track of
sessions related to OQ#26-87, where each edge is a link, each
node is a router, and both width and color of an edge implies
the number of sessions going through the link. As can be
seen, most traffics come from one dominant input link (the
one between routers 2 and 26), and thus OQ#26-87 resembles
linearly connected tandem queues.

C. QUEUEING DELAY PREDICTION
This section evaluates the accuracy of the M/G/c-based
approximate queueing model and the validity of the
zero-forcing technique. Although Section V-B has shown
that the head flit arrivals follow the Poisson process at the

FIGURE 13. Queueing delay distribution at two source routers.

FIGURE 14. Prediction error in the average queueing delay at all source
routers.

intermediate routers, it does not guarantee the independence
between packet arrivals and service times. Therefore, we need
to investigate the prediction accuracy both at source routers
and intermediate routers.

We start with investigating the queueing delay prediction
results at the source routers. First, Fig. 13 compares the
prediction result by the proposed method with the simulated
result in terms of the queueing delay distribution at two source
routers (OQ#89-32 and OQ#73-40) regarding Sim. 2 and 5.
In addition, Fig. 14 illustrates the prediction error of the
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FIGURE 15. Prediction error in the average queueing delay at all
intermediate routers.

average queueing delay at all 30 source routers for Sim. 1
through 6, respectively. As can be seen from both figures,
the proposed method predicts the queueing delay very accu-
rately. Specifically, we define a metric AQerr to evaluate the
average performance such as

AQerr =

∑
q∈Q |PEAq|

|Q|
(%), (22)

whereQ is the set of given queues and PEAq is the prediction
error in the average queueing delay at queue q. Then, AQerr
in Fig. 14 ranges from 1.287% to 2.004% (which is obtained
by setting Q as the set of queues in the source routers).
Next, we also present the error in queueing delay prediction

at all the intermediate routers, as shown in Fig. 15. While
most of the prediction errors tend not too severe, there exist
six outliers (queue indices 6, 12, 30, 45, 56, 58) with consid-
erable errors in most simulation scenarios. The outliers have
a common feature that the sum of input link rates is smaller
than or equal to the output link rate to which the input links
are destined. It should be noted, however, the contribution
of such cases to the end-to-end latency is insignificant in
our simulations since the queueing delay in those six queues
are quite small compared to others. Additionally, the queue
index 142, presents a relatively large error in Sim. 2 and 3.,
which is because the queue is in fact OQ#26-87 shown earlier
in Fig. 12, the special case not following Poisson arrivals.
Note that we leave it as our future work to further investigate
how to alleviate the aforementioned outliers.

TABLE 3. AQ
err for the intermediate routers excluding the six outliers.

FIGURE 16. The queues to apply the zero-forcing technique shown in
blue arrows.

FIGURE 17. Average queueing delay at the queues with zero expected
delay.

Excluding the six outliers with indices 6, 12, 30, 45, 56, 58,
we measured AQerr of Fig. 15 as shown in Table 3, whereQ is
now the set of queues in the intermediate routers excluding
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FIGURE 18. End-to-end latency distribution: proposed(labeled as
‘Prediction’) vs. simulated(labeled as ‘Simulation’).

the outliers. We can notice that the errors are larger than the
ones at source routers, ranging from 15.5% to 24.1%. Nev-
ertheless, we will later see in Section V-D that the proposed

TABLE 4. Latency prediction accuracy by the proposed method.

model still produces reasonably accurate results when pre-
dicting the end-to-end latency, due to the following reasons.
As we analyzed in Section IV-A, the queueing delay is just
one of various delay components contributing to the end-
to-end latency. Indeed, we discovered from our simulations
that the intermediate routers with less accurate prediction
only partially contribute to the accumulated queueing delay.
Therefore, the queueing delay prediction errors at intermedi-
ate routers are tolerable when it comes to predicting the end-
to-end latency.

Regarding the proposed zero-forcing technique, Fig. 16
depicts the queues with zero expected queueing delay as a
blue arrow (an arrow from node A to B implies OQ#A-B),
while Fig. 17 presents the measured average queueing delay
at such queues (63 out of 152 queues). As clearly seen, all the
results present zero delay as expected, which shows that the
proposed zero forcing scheme is correct and appropriate.

D. END-TO-END LATENCY PREDICTION
Using the proposed end-to-end latency prediction model,
we predict the end-to-end latency distribution of all packets
and compare it with the empirical distribution obtained by
simulations. Fig. 18 presents the results for simulations 1
through 6. As summarized in Table. 4, the error in the average
end-to-end latency prediction ranges from -4.43% to -7.65%.
In addition, the 90th percentile errors are distributed from -
3.98% to -6.05%. Overall, the proposed method turns out to
be quite accurate in latency prediction, showing its efficacy
as a basic building block in designing and managing future
ultra-low latency applications in the GCS network.

VI. CONCLUSION
In this paper, we have considered packet flitization based
CT switching to achieve extremely low end-to-end latency
in general-topology networks. Then, we have proposed
an approximate queueing model to predict the end-to-end
latency in such networks, with which low-latency man-
agement like end-to-end session admission control can be
realized. The proposedmodel is built upon the PSBR schedul-
ing mechanism, which is a latency-friendly flit scheduling
method, and also upon a delay approximation technique for
M/G/c queueing. Via extensive simulations, we have shown
the accuracy of the proposed model in various network sce-
narios, revealing its potential as a useful analytical tool for
general-topology CT switching networks.
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In the future, we would like to develop a session admission
control mechanism exploiting the proposed latency predic-
tion model, to further show the efficacy of the developed
queueing model in fulfilling the low-latency requirement.
In addition, we plan to investigate the impact of transmission
error on CT switching’s flit forwarding, considering per-flit
error probability and selective flit retransmissions.
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