IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 28, 2019, accepted January 2, 2020, date of publication January 13, 2020, date of current version January 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965982

Electrical Impedance Myography Applied to
Monitoring of Muscle Fatigue During
Dynamic Contractions

L. K. HUANG“12, L. N. HUANG 2, Y. M. GAO"“2, Z. LUCEV VASIC"“3,
M. CIFREK“3, AND M. DU'“1.4

ICollege of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China

2Key Laboratory of Medical Instrumentation & Pharmaceutical Technology of Fujian Province, Fuzhou 350116, China
3Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

#Key Laboratory of Eco-Industrial Green Technology of Fujian Province, Wuyi University, Nanping 354300, China

Corresponding author: Y. M. Gao (fzugym @ gmail.com)

This work was supported in part by the National Natural Science Foundation of China U1505251, in part by the Project of Chinese
Ministry of Science and Technology 2016 YFE0122700, an in part by the Project of S&T Department of Fujian Province 201810011.

ABSTRACT Muscle fatigue, as a common physiological phenomenon, has attracted much attention in
the fields of rehabilitation and athletic training. A wearable technology for monitoring the muscle fatigue
anytime and anywhere is urgently needed. In this paper we apply Electrical impedance myography (EIM)
technique, usually used for non-invasive detection of neuromuscular diseases with the four-electrode array,
for evaluation of the local muscle fatigue status via the variation of electrical impedance. An equivalent
multilayer inhomogeneous 3D finite element model of human arm was built in order to optimize the
four-electrode configuration to improve EIM detection sensitivity. Current density in muscle layer and
differential potential of induction electrodes were selected as the evaluation indexes for optimization. Then
the in vivo experiments of dynamic contraction with different maximal voluntary contractions (MVC) were
performed on the biceps brachii muscle of eight healthy volunteers. The results showed that muscle resistance
(R) decreased almost 8 €2 from the completely relaxed muscle to exhaustion, which is the same trend as for the
median frequency (MF) of measured surface electromyography (sSEMG) signals. The model and experiments
in this paper indicate the feasibility and efficiency of EIM for detection of muscle fatigue using wearable
devices.

INDEX TERMS Electrical impedance myography, muscle fatigue, optimized electrode configurations, finite

element method, surface electromyography.

I. INTRODUCTION

The continuous movement of muscles gradually reduces
their work capacity, maximum contraction force and output
power [1]. This physiological phenomenon is known as a
muscle fatigue and is closely related to changes in muscle
microstructure [2]. If muscle fatigue is not properly handled,
it can cause muscle strain and seriously affect the daily lives
of people or, especially, the physical exercise of athletes.
However, most of the existing muscle fatigue detections
are conducted in hospitals or rehabilitation centers and the
patients cannot detect muscle fatigue anytime and anywhere
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or perform self-measurement at home. A wearable device that
can monitor muscle fatigue at any time would be very useful
for exercise rehabilitation, muscle disease diagnosis, sports
training, and other fields.

Several indicators, such as muscle oxygen saturation [3],
lactic acid concentration [4], ultrasound image entropy [5],
and surface electromyography (sSEMG) [6], [7], are used for
muscle fatigue evaluation. Among these indicators, SEMG
is the most common and widely used [8]-[10]. The ampli-
tude and spectrum characteristics of SEMG, which has the
advantages of non-invasiveness and simple operation, can
directly reflect the progressive process of fatigue [11], [12].
However, SEMG has small amplitude (order of microvolts),
wide frequency variation range, and is prone to interference
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from other physiological signals and electromagnetic noise.
Furthermore, the acquisition circuit and digital signal pro-
cessing are complicated, thereby making SEMG integration
into wearable devices difficult.

Electrical impedance myography (EIM) is a new non-
invasive bioelectrical impedance technique based on the
four-electrode array [13]. This technique evaluates the health
status of a local muscle by applying a high-frequency,
low-intensity alternating current to the muscle of interest.
EIM can also be used in clinical diagnosis and efficacy evalu-
ation of various neuromuscular diseases [14]. During muscle
fatigue, the lactic acid content of muscle cells in muscle
fibers increases, thus slowing down the conduction speed
of electrical signals in muscle fibers [15]. The EIM method
detects changes in impedance due to muscle abnormalities or
muscle fatigue, and can ultimately provide an assessment of
muscle fatigue. Compared to the traditional SEMG approach
for muscle fatigue assessment, the detection parameters
(R, reactance, phase) of EIM signals have many advantages:
large EIM signal amplitude, controllable frequency, and sim-
ple pretreatment procedure. Therefore, EIM could be used
as a new, low complexity and high feasibility method of
real-time muscle fatigue monitoring, which can easily be
integrated with various wearable devices.

In early EIM studies this technique was mainly involved
in the clinical diagnosis of neuromuscular diseases and
the preliminary evaluation of non-neuromuscular diseases.
Wang et al. [16] studied neuromuscular diseases in the legs of
mice via finite element modeling. Li e al. [17] researched the
difference of EIM parameters between patients with spinal
cord injury and normal patients. Jafarpoor et al. [18] inves-
tigated the effects of muscle size and subcutaneous fatness
on EIM parameters. In addition, Orth and Le et al. con-
ducted relevant research on the EIM parameters after muscle
fatigue [19], [20], which explained a relation between the
EIM parameters of biceps brachii muscle and the degree of
muscle fatigue in static contraction mode. The aforemen-
tioned research findings contribute to the possibility of using
EIM for muscle fatigue evaluation. The existing research of
biceps brachii muscle fatigue indicates the following three
shortcomings:

1) The present results show that the optimization on elec-
trode configuration could improve EIM detection effi-
ciency. However, the present studies are less concerned
with electrode configuration and lack in corresponding
model analysis and evaluation.

2) Only the static contraction process was explored, and
the change of EIM parameters in dynamic contraction
mode was not studied.

3) Only the EIM method was used to evaluate muscle
fatigue, and no comparison was made with other rec-
ognized methods.

This paper aims to conduct model and experimental
research on muscle fatigue by using the EIM method due to
its easy integration into wearable devices. By establishing a
three-dimensional (3D) model of the entire arm, the optimal

VOLUME 8, 2020

electrode configuration was obtained using a finite element
simulation. The variation in EIM parameters under dynamic
contraction were investigated and compared with sSEMG mea-
surements to verify the feasibility and rationality of using
EIM parameters as a muscle fatigue evaluation index. The
results of this study provide technical support and theoretical
guidance for the development of wearable equipment for
the evaluation of the degree of muscle fatigue. The rest of
this paper is organized as follows. In Section II a 3D arm
simulation model for optimization of EIM electrode configu-
ration is described, together with measurement setups for in
vivo EIM and sSEMG dynamic contraction measurements. The
results are presented in Section III. Optimal EIM electrode
configuration was calculated and used in the EIM and sSEMG
measurements of muscle fatigue. Two evaluation parameters
(proposed EIM parameter R and standardly used median fre-
quency of SEMG signals) obtained in the in vivo experiments
were compared. Finally, Section IV presents the conclusion
of this study.

Il. METHODS

A. ESTABLISHMENT OF ARM SIMULATION MODEL
Structure of the volunteers’ arm is shown in Fig. 1 (a) which
from the website (https://www.medical-artist.com/anatomy-
images/illustrations-of-muscles/). From the perspective of
human anatomy [21], [22], the complex structure of the
human body is reasonably simplified and a 3D arm model
consisting of four layers (bone, muscle, fat, and skin)
is constructed. The developed geometric model is shown
in Fig. 1(b). The upper and lower arms are modeled as two
elliptical cylinders joined seamlessly in the elbow joint, right
part being the upper and left part being the lower arm. The
long half-axis a, and the short half-axis b, (n = 1,2, 3) at
three cross-sections (wrist, elbow, and shoulder) are marked
in the Fig. 1, together with the measurement principle and
the positions of EIM electrodes. here x and y represent
the spacing between the successive electrodes and section
o represents the cross-section at the midpoint between the
induction electrodes.

In order to get the geometric model parameters, physio-
logical parameters of eight volunteers were measured: BMI,
fat rate, muscle rate, bone mass were measured using the
PICOOC Latin Smart Body Scale (PICOOC Inc., Beijing,
China) and circumferences of the volunteer’s arm were
measured manually. Results are presented in Table 1 [23].
Experiment numbers 1-4 were female volunteers and
5-8 were male volunteers. Parameters BL, LAC, EC, and
UAC in Table 1 stand for brachium length, lower arm
(wrist) circumference, joint circumference (elbow), and
upper arm (shoulder) circumference, respectively. Brachium
length (BL) was measured as a distance between the wrist and
the armpit of the volunteers. Using the average (AVG) and
standard deviation (SD) of physiological parameters of eight
volunteers in Table 1, the long and short semi-axis of each
tissue layer was calculated based on the arm circumference in
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FIGURE 1. (a) lllustration of the real human arm. (b) Human body 3D arm
model has four layers (bone, muscle, fat, and skin), and section «
represents the cross-section at the midpoint between the induction
electrodes.

TABLE 1. Physiological parameters of eight volunteers.

BMI Fat Muscle  Bone BL LAC EC UAC
(%) (%) (kg) (em) (cm) (cm)  (cm)

17.01 14.00  80.50 2.10 4500 15.00 20.50 22.00
19.65 2340  72.50 2.10 46.00 15.00 20.00 23.00
16.60 2090  74.60 2.00 48.00 14.00 20.50 21.50
21.40 29.00  66.90 220 4500 16.00 21.00 25.00
2120 17.20  78.60 250  46.00 16.00 24.50 26.00
21.40 15.10  80.50 280 48.00 17.00 2450 26.50
2790 25.60  70.70 320 46.00 18.00 24.50 28.00
17.70 1330  82.10 220 4500 1550 21.00 22.00
AVG 2036 19.81 75.8 239  46.13 1581 22.06 24.25
SD 3.40 0.05 0.05 0.39 1.17 1.17 1.91 2.29

o I B Y

joints and the proportion of bone, muscle, and fat. In addition,
anatomical data show that the average thickness of human
skin is 1~2 mm [24], so the thickness of skin layer is defined
as 1.5 mm in this paper. Calculated equivalent geometric
parameters of each layer are shown in Table 2 [23].

When measuring EIM parameters of biceps brachii mus-
cle, the human body acts as an electric medium; therefore,
the electrical conductivity o and relative permittivity &, of
each layer of the human body should be defined in the
simulation model. In a muscle tissue, after depolarization
induced by an external excitation source, the electric current
will propagate in all directions, but the propagation speed
will vary based on the muscle fiber orientation. Therefore, the
conductivity and relative permittivity of the muscle tissue are
set to be anisotropic. The muscle electrical properties were
obtained from the measurements of electrical conductivity
and relative permittivity of gastrocnemius muscle in mice at
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TABLE 2. Equivalent geometric tissue parameters at three cross-sections
of the human arm.

Tissue layer Wrist Elbow joint Shoulder
aj(cm) bi(ecm) a(cm) by(em) az(cm) by(cm)
Bone 0.59 0.56 1.22 0.93 0.63 0.60
Muscle 2.15 1.61 3.21 2.14 3.49 2.61
Fat 2.74 2.04 4.07 2.70 4.45 3.32
Skin 2.89 2.19 422 2.85 4.60 3.47

Harvard Medical College [16]. The skin, fat, and bone are
set to be isotropic, and the parameters are derived from the
Gabriel model [25].

B. ELECTROMAGNETIC MODELING OF EIM ELECTRODES
CONFIGURATION

Results of EIM measurement depend on the EIM electrodes
configuration on the skin. In this section, the AC/DC mod-
ule in COMSOL Multiphysics 5.2a simulation software is
used to find the optimal configuration of EIM electrodes in
EIM method by using finite element method. Discussions
are made on the ways to optimize distance between the EIM
electrodes and use minimal excitation signal for maximal
measured potential difference. This optimal configuration
provides good precondition for the front-end signal detection
system of a wearable device.

The governing equations of the EIM finite element method
are based on the Maxwell’s equations because they can
describe the nature of the electromagnetic field acting on
organisms. In the frequency range from 1 kHz to 1 MHz,
the human body acts as the transmission medium for coupling
and propagation of exciting current signals, which meet the
quasi-electrostatic field conditions [26]. Therefore, we use
the simplified Maxwell’s equation, as shown in Eq. (1), [27]:

VI[AVV] =0, (D

where A = o + jwe is the complex conductivity of biological
tissue, and V is the applied voltage.

When the signal is injected to the electrode on the model
surface, the voltage is constant Vj, as shown in Eq. (2),
according to the Dirichlet boundary conditions [28]:

V = Vi @

The conditions of current and voltage continuity must be
satisfied at boundaries between all adjacent layers, as well
as at the boundary between the skin layer and electrodes,

as shown in Eq. (3):
Vi=Vi_
T (=234, 3)
Ji=Ji-

where V;_1 and V; are voltages in adjacent layers, J;—1 and J;
are current densities in adjacent layers, the subscript i repre-
sents tissue layers, and values are 2, 3, and 4, respectively.
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The following steps are necessary when evaluating the
potential difference and current density at EIM induction
electrodes: set up a suspension potential in AC/DC mod-
ule, input 1 mA current signal to the arm model, set up
a boundary probe to detect the potential between the two
inner EIM electrodes, and calculate voltage Vps.. Moreover,
two integral functions of current density are defined, and the
integral domain is set for calculating overall current density
generated at the induction (outer) electrodes and applied to
the arm, J,,, as well as for calculating current density in
muscle tissue, Jyyuscle- In many early studies, the 50 kHz
signal frequency was sufficiently sensitive for neuromuscular
diseases detection [29], [30]; therefore, in this paper we will
also focus on the 50 kHz EIM signals.

From the perspective of a wearable device, higher potential
difference between the induction electrodes leads to a higher
voltage detection at the receiving end. In addition, if the
signals injected into the human body can flow through the
muscle layer, then the measured EIM parameters can accu-
rately reflect the muscle characteristics and the requirements
and objectives of this research can be achieved. Therefore,
in this paper electrode configuration will be optimized based
on two parameters, which should be as high as possible: 1) the
ratio of current density in the muscle layer and the current
density in the whole arm (J,;;5¢7e/Jarm) and 2) the potential
difference achieved at the voltage electrodes (Viense). The
optimal electrode distance was obtained by measuring the
length of the biceps brachii of each volunteer and according
to the finite element modeling analysis. According to the
simulation platform in Fig. 1, the electrodes attached to the
skin surface in our model are obtained by Boolean operation.
References [31], [32] show that the distance between the
electrodes is mainly set in three ratios of y: x: y in Fig. 1(b)
1:1:1, 1:2:1, and 1:3:1, according to the size of the biceps
brachii muscles of healthy adults. The distance between the
two internal EIM electrodes was set to x = 24 mm, as shown
in Fig. 1. The distance between the external and internal
electrodes (y in Fig. 1) is different and is set to 8 mm, 12 mm,
and 20 mm. Although according to the ratio of 1:1:1, y should
be set to 24 mm, the maximum value of y was set to 20 mm
because of the limited length of a volunteer’s biceps brachii
muscles.

C. EIM AND EMG IN VIVO MEASUREMENTS

This study was approved by the First Affiliated Hospital of
Fujian Medical University and the Fujian Provincial Key
Laboratory of Medical Devices and Medical Technology.
Informed consent was obtained from the volunteers prior to
the measurements.

For obtaining the optimal electrode configuration the fol-
lowing two evaluation indicators were used: 1) ratio of current
density in the muscle layer and current density in the arm
(Jmuscte! Jarm) and 2) potential difference between the voltage
electrodes (Viense). This configuration will also be applied in
the following in vivo experiments to establish a foundation
for the measurements accuracy testing.

VOLUME 8, 2020
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FIGURE 2. Diagram of MVC measurement: (a) Front view, (b) Side view.

TABLE 3. MVC data of eight volunteers.

Number 1 2 3 4 5 6 7 8

MVC (Nem) 28.7 302 364 29.1 57.0 488 645 62.0

Before the in vivo experiment, the maximal voluntary con-
traction (MVC) of each volunteer was tested. In the exper-
iment, different contraction strengths (such as 20% MVC,
40% MVC, 60% MVC) are used to indicate different contrac-
tion states of muscles. The MVC of eight healthy volunteers
was measured using the Biodex System 4 multi-joint muscle
strength assessment training system (minimum passive move-
ment speed: 0.25 degrees/s, minimum passive motion torque:
0.5 ft-1b (0.68 Nm), minimal isotonic motion torque: 0.5 ft-1b
(0.68 Nm)) developed by the U.S. BIODEX Company. The
test process is shown in Fig. 2. Volunteers sit on matching
seats that can be adjusted in height and direction and their
upper body posture is kept still by the adjustable restraints.
The volunteers had to hold the torque device obtaining the
90° elbow joint that aligned with the center of the power shaft
and to perform the maximal isometric contraction. Three
measurements of MV C for each volunteer were taken in total,
with a one minute break after each measurement. Finally,
the average of the three measurements was calculated and
used as the MVC of the right arm. The MVC values for each
participant are shown in Table 3.

The MVC data of volunteers in Table 3 were further used
in a dynamic muscle contraction experiment (lower arm flex-
ion) shown in Fig. 3, for which the experimental investi-
gation of muscle electrical impedance changes was carried
out. In many studies, resistance R is the first parameter to
change during muscle contraction [19], [20] while reluctance
and phase experience minimal changes. Therefore, this paper
mainly discusses R parameters of in vivo experiments.

A block diagram and photography of a lower arm flex-
ion experiment are shown in Figs. 3 and 4, respectively.
EIM measurement setup consists of a signal generator (Rigol
DG4162), constant current source, four electrodes placed on
biceps brachii muscle, Agilent 1141A differential probe, and
Agilent MSO7054A oscilloscope.

In the experiment, the AC voltage signal with a frequency
range from 1 kHz to 1 MHz and 1 V amplitude is gener-
ated and fed to the constant current source. The constant
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Agilent 1411A
differential probe

FIGURE 4. EIM human experiment scene.

current source is built around a current feedback amplifier
AD844 and operational amplifier OP27 and is used to con-
vert AC voltage signal into constant 1 mA current signals.
The current signal is then loaded into the biceps brachii
muscle by four side-by-side electrodes of the same size.
When placing the electrodes, a position of the volunteer’s
biceps brachii muscle belly was determined and used as a
reference, The four electrodes were placed symmetrically
along the direction of the arm with the biceps brachii mus-
cle belly as the center. The configuration of the electrodes
was obtained by electromagnetic modeling. According to
results in Table 5, physiotherapy electrodes made by Shang-
hai Litu Medical Equipment Co., Ltd were selected as in vivo
experimental electrodes. Their conductivity and relative
permittivity are 5.0 x 10° S/m and 1.0 [33], respectively,
and their size is 40 mm x 10 mm. The coupling volt-
age signal measured between the voltage electrodes at the
receiving end is displayed by the oscilloscope in real-time
to obtain the impedance parameters. The Agilent 1141A
differential probe was used for connecting the electrodes on
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TABLE 4. Jiyuscle/ Jarm and Vsense with different electrode spacings at
50 kHz.

y=8mm y=12mm y=20mm
Jnscte! Jarm 90.14% 90.58% 91.06%
Vsense 0.064 0.055 0.042

the body and the oscilloscope in order to solve the common-
ground problem between the receiving and the transmitting
electrodes [25], [26].

Volunteers were asked to perform repeated lower arm flex-
ions until exhaustion while holding a dumbbell with weights
of of 20%, 40%, and 60% of their MVC. One dynamic
contraction cycle starts with the arm naturally drooping at
180° elbow angle. During one contraction cycle the elbow
angle decreases from 180° to 45° and then increases back
to 180°, as in Fig. 3. EIM parameters were sampled during
this muscle fatigue process at the half-cycle point (45°), every
10 cycles.

At the same time, eight healthy volunteers also participated
in the measurements of surface EMG signals during dynamic
contractions. EMG signals were acquired in real-time using
the Trigno Lab wireless surface EMG acquisition system
produced by the Delsys Company, USA. In the experiment,
the EMG wireless sensor was adhered to the skin using Delsys
adhesive to ensure full contact between the sensor and the
skin. EMG sensor was placed on the center of the muscle
belly away from the tendon and muscle edge, along the
longitudinal muscle fibers and the sampling frequency of the
EMG was set to 1 kHz. Measured sSEMG signals were used
for verification of EIM muscle fatigue estimation.

IIl. RESULTS

A. ELECTRODE CONFIGURATION SIMULATION RESULTS
Results of simulations described in II. METHODS. B are
presented in Table 4. In all three cases, the electrode can
effectively inject the current into the muscle layer, which
conforms to the research content of muscle fatigue. It is
shown that at the 50 kHz frequency, current flowing through
the muscle layer accounts for more than 90% of the over-
all current in the arm. The value of Jygcie/Jarm increases
with the space between exciting electrodes, while the mod-
ulus of voltage V., decreases. The difference between the
shortest (8 mm) and longest (20 mm) distances is less than
1 %, and the modulus of V., parameter is the largest for
y =8 mm.

The current density at o cross-section, in the middle
between the electrodes, is shown in Fig. 5. It can be seen
from the current density distribution diagram in Fig. 5 that
when y = 8 mm, the current density of the muscle layer is the
largest.

In overall, the optimal electrode spacing setting for the
excitation electrode is y = 8 mm. The larger the potential
difference, the greater the current density in the muscle layer,
which is conducive to the detection of the sensing electrode
of the wearable device.
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L.

y=8 mm y=12 mm

FIGURE 5. Central cross-sectional current density distribution for three

different electrode spacings at 50 kHz.

TABLE 5. Jiauscle/ Jarm and Vsense with different electrode materials at
50 kHz.

Aluminum Silver Physiotherapy
electrode electrode electrodes
Tnscte! Jarm 88.01% 89.27% 90.14%
Viense 0.059 0.061 0.064
®  200MVC
X 409%MVC
55 - A 6005MVC
"""" Linear 60%WVIVC
be, Lincar 40%MVC
T S Linear 60%VVC
L 4k R T !
\l\ ~X L Sy
\i‘ - _>_(‘ - - g
s % ~-
Eas | ®r -, e
~ i prayeYs ¥ —-0.0426x + 52.272
Ta. y=_0084x+513s3  R=0.989
4 R? - 0.9539
40 -
¥ =-0.1255x + 49.629
R! =0.0017
35 L L L J
0 50 100 150 200

Cycle count

FIGURE 6. Dynamic contraction experiments of muscles under different
weight-bearing conditions (20%, 40%, and 60% MVC). The down trend of
R (50 kHz) in the muscles of Volunteer 1 from complete relaxation to
extreme fatigue.

On the premise of the above experimental results, in order
to study the effect of different electrode materials on
the experiment, three more common electrode materials
(aluminum electrode, silver electrode, physiotherapy elec-
trode) [33] were selected as the research objects. The exper-
imental results obtained through simulation under the same
conditions are shown in Table 5. As can be seen from Table 5,
the Jmuscie!/Jarm and Viense parameters of the physiotherapy
electrode is the largest, so the physiotherapy electrode is
selected as the electrode for subsequent in vivo experiments.

B. EXPERIMENTAL RESULTS OF EIM APPLIED TO MUSCLE
FATIGUE

Fig. 6 shows the relationship between R parameters and con-
traction time of biceps brachii muscle under different loads
(20%, 40%, and 60% MVC) at 50 kHz measured on the
volunteer 1. The muscle R data at different load levels show a
linear decreasing trend with the increase in contraction time.
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TABLE 6. Average value of three parameters (without fatigue R,
exhaustion R, drop-out value R) in muscle dynamic contraction
experiments of 8 volunteers under the different load levels.

Without fatigue R~ Exhaustion R Drop-out value R

(«) () )
20%MVC 53.92 46.00 7.92
40%MVC 52.09 44.16 7.93
60%MVC 50.22 42.10 8.12
Average - - 7.99

B Without fatigue
] Exhaustion

60 Drop-out value

40
S 30
_

204

T
20%MVC

40%MVC

60%MVC

Different level of load

FIGURE 7. The average R and drop-out standard deviation value of eight
volunteers in dynamic contraction experiments (volunteer’s biceps from
without fatigue to exhaustion) under the different load levels.

Moreover, it is evident that the slope of the linear fit line is
different for different loads.

Using the experimental platform in Fig. 4 for dynamic con-
traction experiments under different load levels, the average
resistance and drop-out values of 8 volunteers before and after
fatigue were obtained, and the results are presented in Table 6.
The average R and drop-out standard deviation of eight
volunteers was calculated before and after muscle fatigue
experiment (under different load levels), and the results are
shown in Fig. 7.

The R values of 8 volunteers before (without fatigue)
and after fatigue (exhaustion) were significantly different
(p < 0.01). It can be seen from Table 6 that the drop value of
R of eight volunteers during the dynamic muscle contraction
experiment was about 8 2. It can be obtained from Fig. 7 that
the standard deviation of the eight volunteers is about 1.9 €.

C. EXPERIMENTAL RESULTS OF SEMG APPLIED TO
MUSCLE FATIGUE

Classical frequency-domain index for evaluating muscle
fatigue from measured EMG signals, often used as reference
value, is a median frequency (MF) [34]. Using the experi-
mental method described in Section II.C, the EMG signals
were measured for different loads in dynamic contraction
scenes and then processed in MATLAB. The obtained MF
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FIGURE 8. MF and linear fitting curves of volunteer 1 in the muscle
dynamic contraction experiment for different load levels.

and linear fitting curves under loads of 20%, 40%, and 60%
MVC, respectively, are shown in Fig. 8. Fig. 8 shows that
higher muscle load level will result in more rapid decline of
MF and will speed up the muscle fatigue process.

By comparing Fig. 6 and Fig. 8, it is found that both
the frequency domain index (MF) of SEMG and the EIM
parameter index (R) show a downward trend. In the dynamic
contraction experiment, these two parameter values continue
to decrease as the fatigue level increases. Therefore, in this
paper the frequency domain index (MF) of SEMG is used
as the comparison index. A comparative analysis of the two
parameters will be conducted in the next section to ensure
the rationality and feasibility of the EIM parameter (R) for
muscle fatigue evaluation.

D. COMPARATIVE ANALYSIS OF EIM AND SEMG MUSCLE
FATIGUE PARAMETERS

EIM and sEMG signals were acquired simultaneously dur-
ing dynamic contractions until the exhaustion. Achieved
number of contractions cycles decreased with an increas-
ing load. The experimental data are shown in Fig 9 for
(a) 20% MVC, (b) 40% MVC, and (c) 60% MVC load
and include both muscle fatigue index (MF) calculated
from SEMG signals (blue) and measured R measured using
EIM electrodes (red). In order to facilitate comparison of
changes in R parameters and the MF at different load lev-
els, the number of cycles obtained in Fig. 6 and Fig. 8 is
normalized.

Fig. 9 shows that the absolute values of the linear fit slope
are higher for the heavier load, that is, the decline speed is
fast. In addition, the linear fit equation of the MF and R
parameters shows that the decline slope of R linear fit line
for each load is nearly 2/5 that of the MF. Thus, the decrease
rate of the R is not as fast as the decrease of MF, but a
considerable consistency is observed in the decline regularity
of the two curves. Therefore, EIM is feasible for muscle
fatigue evaluation, and the rationality of this approach was
verified.
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FIGURE 9. Curve trend chart of MF and R under different loads during
dynamic contractions for: (a) 20% MVC, (b) 40% MVC, (c) 60% MVC.

IV. DISCUSSION
It can be seen from Table 4 that when the electrode distance
is larger, the Jyyscie/Jarm value will be large. The reason for
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this phenomenon may be that the Jyyscie/Jarm 1S determined
by the size of the muscle layer and its conductive properties.
When the injected constant current signal flows through the
arm model, the larger the electrode spacing, the proportion of
circuit density occupied by the muscle layer is greater, which
is consistent with the results in [35], [36]. The current den-
sity value in the middle cross-section reaches the maximum
when y = 8 mm. This finding is due to the small distance
between excitation electrodes, which results in the closeness
of the middle cross-section to the excitation electrode and
consequently in a high current density. The modulus of Ve
decreases with the increase in the distance between exciting
electrodes. The cause may be that a large distance between
the electrodes results in an additional electrical signal loss on
the human body. Therefore, a potential difference detected on
the induction electrode leads to a small modulus of V.

The MVC of each volunteer is different. In the subsequent
experiments, the corresponding weight of the dumbbell is
set according to the MVC of different volunteers. Different
load levels make volunteers’ EIM parameters (R) change with
different trends. In Figure 6, it can be seen that under different
load levels (20% MVC, 40% MVC, 60% MVC), the R param-
eters decreases with increasing fatigue level, and the heavier
the muscle load, the faster the decline. The difference in the
slope of the R value under different weights is relatively large,
which may mean that the muscle R parameters could be used
for the recognition of the fatigue state caused by different
loads in a given period. At the same time, it can be found that
there are obvious differences of the R under different load
levels. The reason may be that the muscles undergo many
physiological and morphological changes from the resting
state to the contracted state after they begin to contract.
During exercise, an increase in muscle blood flow enlarges
the cell membrane volume [37], thereby reducing the number
of cell walls. At the same time, the cell wall will resist along
the direction of muscle fibers, and when the muscle is under
load, it will produce an opposite contraction to maintain its
original strength level. The greater the force exerted on the
muscles under the same conditions, the higher the amount
of heat required, so it will stimulate more blood flow and
activate more muscle fibers, resulting in increased muscle
conductivity and decreased R.

Baidya and Ahad in [38] used the genetic algorithm and
the finite element model of EIM to optimize the electrode
configuration of EIM. Their optimal electrode configuration
is: the optimal electrode spacing between the excitation elec-
trodes is 33 mm, the optimal electrode spacing between the
induction electrodes is 7 mm, and the surface area of the elec-
trodes is 7 mm x 7 mm. However, their optimized electrode
configuration may not be suitable for in vivo experiments on
the biceps because of its limited muscle length. The optimal
electrode configuration obtained by finite element analysis
in this paper is: the optimal electrode spacing between the
excitation electrodes is 8 mm, the optimal electrode spacing
between the induction electrodes is 24 mm, and the surface
area of the electrodes is 40 mm x 10 mm. The optimized
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electrode configuration was applied to volunteers’ biceps for
in vivo experiments.

V. CONCLUSION

EIM is a novel and non-invasive electrical impedance tech-
nology, which can monitor the characteristics of bioelectrical
signals for long-term and use them for continuous evalua-
tion of the muscle function status. In the muscle dynamic
contraction fatigue experiment, the subjects are considered to
reach the semi-fatigue point when the measured R parameters
decrease by approximately 4 2. With the further R decrease
approaching 8 €2, the muscle fatigue is considered to reach
its limit. Thus, the subjects can adjust their exercise intensity
according to the magnitude of R decline to avoid muscle
fatigue or the damage caused by excessive exercise.

In this paper, the finite element analysis method is used to
simulate the bone weight, muscle size, fat thickness, electrode
spacing and electrode shape of the individual arm to obtain
the optimal electrode configuration method and improve the
detection efficiency of EIM. In addition, by comparing the R
parameter of the EIM with the MF parameter of the SEMG,
it is shown that the decline laws of the two have strong
consistency, so it is feasible and reasonable to use EIM as
an evaluation index of muscle fatigue.

EIM provides a novel method for muscle fatigue evaluation
from bioelectricity phenomenon and contraction mechan-
ics. This technology can solve the problem of SEMG and
other evaluation methods, since it has potential for long-term
clinical application. However, this article only discusses the
changes in the R parameters of the arm muscles. In the future,
it is necessary to study the changes in reactance and phase
during the fatigue process. At the same time, these laws can
be used to study muscle fatigue in other muscles in the human
body, such as in the legs and abdomen.
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