
Received December 23, 2019, accepted January 2, 2020, date of publication January 13, 2020, date of current version January 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2966044

FPGA Implementation of L1/2 Sparsity Constrained
Nonnegative Matrix Factorization Algorithm for
Remotely Sensed Hyperspectral Image Analysis
MOSTAFA GUDA , SAFA GASSER, MOHAMED S. EL-MAHALLAWY , (Member, IEEE),
AND KHALED SHEHATA
Department of Electronics and Communication Engineering, Arab Academy for Science, Technology and Maritime Transport, Cairo 11799, Egypt

Corresponding author: Mostafa Guda (mostafa.guda@student.aast.edu)

ABSTRACT Remotely sensed hyperspectral images provide data of the earth’s surface components. The
data provided is collected through airborne devices such as satellites with the capability to collect large
amounts of data to be sent to ground stations for processing. The main disadvantage of this scenario is the
limited bandwidth connection between the airborne devices and the ground station on Earth which affects the
information sending and real time processing. A possible solution is to include an on-board data processor.
Field-Programmable Gate Arrays (FPGAs) are excellent target platform that allows the design reconfig-
urability, powerful computing and high performance levels. One of the most commonly used techniques
in hyperspectral data analysis is linear spectral unmixing. In the last decade, L1/2 sparsity constrained
Nonnegative Matrix Factorization (NMF), a linear spectral unmixing algorithm, and its extensions have
been heavily studied to unmix the hyperspectral images and recover their material spectra. L1/2 regularizer
is proven to have much better results in terms of sparsity and accuracy than other regularizers yet, to the
best of our knowledge, has not been implemented. In this paper, we present an FPGA design for the L1/2
sparsity constrained NMF (L1/2-NMF) algorithm. The proposed design is tested on both synthetic and real
data sets and implemented on Altera Family FPGAs. Implementation results show that the proposed design
successfully unmixes the data with maximum frequency of 52.6 MHz and a speedup factor of 3.9 for the
synthetic data set and a frequency of 104.32 MHz and a speedup factor of 1.14 for the real data set. The
implementation results are compared to the simulation results and ground truth signatures using Spectral
Angular Distance (SAD) measure. Calculations show that the implementation results have comparable SAD
values to the simulation results.

INDEX TERMS Field-programmable gate arrays (FPGAs), hyperspectral unmixing, L1/2 nonnegative
matrix factorization algorithm (NMF).

I. INTRODUCTION
The launch of earth observation satellites has enhanced the
field of remote sensing considerably in the past few years.
Remotely sensed images cover many applications such as
mineral exploration, military surveillance and environmental
monitoring [1]. A common problem that surfaces is the exis-
tence of mixed pixels in the captured image. This problem
occurs due to the low spatial resolution of the sensor and the
captured surface variability when capturing a hyperspectral
image [2]. This problem is handled via spectral unmixing

The associate editor coordinating the review of this manuscript and

approving it for publication was Xian Sun .

algorithms. The spectral unmixing algorithms aim to decom-
pose a mixed pixel into a collection of material spectra named
end-members and each end-member’s contribution in the
pixel which is named the fractional abundance [3]. The idea
of spectral unmixing is explained more in figure 1 [4].

Mainly, two types of spectral mixture models are used to
describe the mixture in a pixel: linear and non linear mixing
models [5]. In the literature, most of the existing approaches
that solve the unmixing problem are based on the linear mix-
ing model [4]. The linear mixing model based approaches are
classified into geometrical and statistical approaches [6]. The
geometrical approaches are based on the fact that the pixel
observations of a hyperspectral image are confined within

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 12069

https://orcid.org/0000-0001-5789-2597
https://orcid.org/0000-0002-0354-5976
https://orcid.org/0000-0002-0038-9816


M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

FIGURE 1. Explanation of spectral unmixing concept [4].

a simplex and its vertices represent the end-members [7].
Finding the simplex vertices is the solution to the unmixing
problem.

In [8], the authors introduce the Pixel Purity Index (PPI)
algorithm which aim to find the purest pixel through repeated
projection onto a random unit vector and finding the end-
members through automatic unmixing [9]. In [10], the author
introduces the N-FINDR algorithm which targets finding
the maximum volume simplex inscribed within the data set
through non-linear inversion. In [11], the authors propose
Automated Morphological End-member Extraction (AMEE)
which tries to find the pure pixels in the data through
combining the spatial and spectral information of the data.
The authors then use mathematical morphology, a technique
applied to the spectral domain while reserving the spatial
characteristics of the data. The authors provide Spectral
Angular Distance (SAD) results that are comparable to the
SAD values of the PPI and N-FINDR algorithm. In [12],
the authors introduce the Vertex Component Analysis (VCA)
algorithm. VCA algorithm, like other geometrical based

approaches, assumes the presence of pure pixels in the data
and repeatedly projects the data onto a a subspace orthogonal
to the subspace spanned by the already determined end-
members. The algorithm stops when all end-members are
found. The VCA algorithm provides results better than PPI
algorithm and better than or similar to N-FINDR algorithm.
VCA algorithm has less complexity than PPI and N-FINDR
algorithm. In [13], the authors introduce the Orthogonal
Bases Algorithm (OBA) which utilize the same concepts of
the N-FINDR algorithm while replacing the volume matrix
calculation with Gram-Schmidt iterative orthogonalization.
The authors provide SAD results that are comparable to
PPI, N-FINDR and VCA algorithms. Despite providing good
results in extracting end-members from the hyperspectral
image, the geometrical based approaches depend on the
assumption of having a pure pixel in the data. This assump-
tion can not always be true due to the low resolution of the
data and the highly mixed featured of the target image [1].

The statistical based approaches overcome the weakness
of the geometrical based approaches. The statistical based

12070 VOLUME 8, 2020



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

approaches do not assume the presence of a pure pixel of
each end-member in the data. The statistical based algorithms
utilize the statistical features of the data. One of the most
common algorithms based on the statistical approach is Iter-
ated Constrained End-member (ICE) [14]. The authors in [14]
handle the unmixing problem as an optimization problem and
propose an objective function to beminimized.Most recently,
the authors in [15] proposed an unmixing method based
on Gaussian Mixture Model (GMM), super-pixel segmen-
tation (SS) and low-rank representation (LRR). The authors
provide SAD results comparable to SAD results in [16]–[18].
In [19], the authors provide a comparison of VCA, PPI
and Optical Real-time Adaptive Spectral Identification Sys-
tem (ORASIS) algorithm [20] for mineralogical unmixing
of hyperspectral data. ORASIS algorithm is a collection of
stepwise algorithms working together to produce a set of
end-members that may not be included in the data set. The
four stages of ORASIS algorithm are prescreener, basis selec-
tion, end-member selection and unmixing. The authors use a
highly mixed synthetic data with maximum purity of 0.48%,
AVIRIS dataset of Cuprite, Nevada and Hyperion dataste of
the Dost-Bayli area, Ardabil. The authors show that ORASIS
outperforms both VCA and PPI algorithms.

One of the most widely used statistical approaches to solve
the unmixing problem is Non-negative Matrix Factorization
(NMF) [21], [22]. NMF approximates the data as the multi-
plication between two non-negative matrices. The first matrix
contains the end-members and the second matrix contains the
fractional abundances [23]. NMF algorithm results lack high
accuracy because of the non-convexity of its objective func-
tion. Researchers in the literature add regularizing terms to
the objective function to force certain constraints and improve
the accuracy of the NMF algorithm. In [1], the authors
introduce the MinimumVolume Constrained NMF algorithm
(MVC-NMF) which exploits the fact that the simplex volume
determined by the end-members is the minimum among all
possible simplexes that circumscribe the data scatter space.
The authors compare their SAD results to VCA algorithm
and prove thatMVC-NMF algorithm outperforms VCA algo-
rithm. In [24], the authors propose a modified version of
the MVC-NMF algorithm where they apply the first stage
of (ORASIS) algorithm in order to reduce the large data
set size. This modification overcomes the shortcoming of
MVC-NMF in dealing with large data. The authors test the
modified technique on both a set of noisy synthetic data
and Hyperion image of Dost-Bayli located in the Ardabil
province in northwestern Iran. In [25], the authors introduce
Constrained NMF (CNMF). The authors add a regulariza-
tion term to enforce smoothness constraint over the end-
members matrix. The authors compare CNMF SAD results
to that of NMF and CNMF has better SAD values. In [26],
the authors introduce Piecewise Smooth NMF with Sparse-
ness Constraint (PSNMFSC). Piecewise smoothness corre-
sponds to smooth variation of the data while sparseness is a
property of hyperspectral data where each pixel is a mixture
of some end-members of the total number of end-members

in the scene. The authors compare the SAD results of PSN-
MFSC to VCA and MVC-NMF algorithms. The experiments
show that PSNMFSC has the best results compared to VCA
and MVC-NMF. In [6], the authors introduce Abundance
Separation and Smoothness Constrained NMF (ASSNMF).
The abundance separation constraint minimizes the mutual
information between the abundance distributions of different
end-members while the abundance smoothness constraint is
added based on the fact that minimum abrupt changes happen
and variations occur within the image. The authors com-
pare ASSNMF algorithm with four other algorithms namely
CNMF, PSNMFSC, MVCNMF and VCA. The authors find
ASSNMF to have superior SAD results. In [27], the authors
introduce double abundance characteristics constrained NMF
(DAC2NMF). The authors measure the smoothness levels
of each pixel pair according to the similarities between
them by taking advantage of the spectral information of the
data. The authors also avoid incorrect smoothness constraints
by assigning zero smoothness level to the pixels not sim-
ilar to the observed pixel. The authors also add a separa-
tion constrain to prevent over-smooth results. The authors
compare DAC2NMF algorithm to MVC-NMF, ASSNMF,
L1/2-NMF [3] and GLNMF [28]. The SAD results of
DAC2NMF algorithm are comparable to the four aforemen-
tioned algorithms.

Many authors focus on the sparsity based constraints and
its extensions. Sparseness refers to using a few end-members
out of the whole present number of end-members in the scene
to represent the pixel. In [29], the author add a sparseness
constraint based on L1 norm to utilize the sparse distribution
of data. In [30], the authors propose a newmethod to calculate
the sparseness measure and integrate it in the NMF cost
function named NMF-SMC. The authors compare their SAD
results to those of VCA and MVC-NMF. The results show
that NMF-SMC outperforms both VCA and MVC-NMF
algorithms. In [31], the authors introduce NMF with Data-
Guided Constraint (DGC-NMF). The authors propose esti-
mating the abundance map of the data by using unconstrained
NMF as a first step. The authors use both L1/2 and L2 regular-
izers to control the sparsity over the abundances. The authors
use the L1/2 regularizer to control sparsity over pixels with
high sparsity levels. The authors use the L2 regularizer to con-
trol sparsity over pixels with low sparsity levels. The authors
compare the DGC-NMF algorithm to VCA, unconstrained
NMF, L2-NMF and L1/2-NMF algorithms. The authors show
that DGC-NMF has comparable SAD results to the previ-
ously mentioned algorithms. In [32], the authors introduce a
linear hyperspectral unmixing method based on L1-L2 spar-
sity and Total Variation (TV) regularization (L1-L2SUnSAL-
TV). This algorithm forces strong sparsity through calculat-
ing the difference between the first and second norms. The
algorithm also incorporates spatial correlation information
by adding a TV constraint to force spatial smoothness. The
authors compare (L1-L2SUnSAL-TV) to six other methods
among them are Sparse Unmixing model via variable Split-
ting and Augmented Lagrangian (SUnSAL), collaborative

VOLUME 8, 2020 12071



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

SUnSAL (CLSUnSAL) and Sparse unmixing using Spec-
tral a Priori Information (SUnSPI). The authors show that
(L1-L2SUnSAL-TV) outperforms the other algorithms in
comparison. In [33], the authors introduce bilateral filter
regularized L2 sparse NMF (BF-L2 SNMF).The authors add
a L2 regularizer to enforce sparseness. The authors also add
a bilateral filter regularizer to utilize the correlation informa-
tion between the abundance vectors. The authors show that
BF-L2 SNMF SAD results are comparable and sometimes
better than VCA, L1/2-NMF and GLNMF algorithms. L1/2
regularizer is better in sparsity representation than L1 and L2
regularizers [3], [34]. In [3], the authors introduce the L1/2-
NMF algorithm. The authors add an L1/2 regularizer to the
objective function to enforce sparsity over the abundances.
The authors compare the L1/2-NMF algorithm SAD results to
VCA, MVC-NMF, L1-NMF and PSNMFSC algorithms. The
authors show that L1/2-NMF outperforms the algorithms in
comparison. In [28], the authors introduce Graph-regularized
L1/2-NMF algorithm (GLNMF). The authors add graph reg-
ularization constrain where a nearest neighbour graph is built
to incorporate the internal structure information of the data.
The authors compare the SAD results of GLNMF algorithm
to VCA, MVC-NMF and L1/2-NMF. The authors show that
GLNMF results are superior and more noise tolerant. In [2],
the authors introduce iterative half-thresholding L1/2-NMF
(HTL1/2-NMF). The HTL1/2-NMF takes advantage of the
a priori known sparseness information and integrate it in
optimization of the algorithm to adaptively adjust the regu-
larization parameter through while the algorithm is iterating.
The authors compare the SAD results of HTL1/2-NMF to
VCA, L1-NMF and L1/2-NMF algorithms. The authors show
that HTL1/2-NMF provides more accurate and much sparser
results.

A problem that arises with hyperspectral unmixing is the
limited bandwidth of the channel between the satellite and
the earth station [35]. One solution to this problem is the
addition of an on-board processing resource to reduce the size
of the data transmitted to the Earth station [36]. An advan-
tage of on-board processing is instead of sending the whole
hyperspectral image, the resulting features (end-members and
abundances), which are much smaller in size, are transmitted
to the ground station. In recent years, many researchers con-
tributed to the implementation of the hyperspectral unmixing
algorithms on different target platforms. In [37], the authors
implement the VCA algorithm on NVIDIA Fermi GPU. The
authors state that the design is faster than the MATLAB
and C versions of the algorithm. GPUs have a significant
disadvantage in on-board processing as they are limited in
temperature, memory and energy consumption [37]. In [38]
the authors implement a modified version of the VCA algo-
rithm (MVCA) on Nvidia GPU using Open Computing Lan-
guage (OpenCL). The proposed MVCA implementation has
a speedup factor of 115 when compared to a sequential
implementation of the VCA algorithm. In [39], the authors
use a systolic array-based FPGA implementation of the PPI
algorithm on a Xilinx Virtex-II XC2V6000-6 FPGA. In [40],

the authors implement the VCA algorithm on a low cost
Xilinx Zynq board with a Zynq-7020 System on Chip (SoC)
FPGA based on the Artix-7 FPGA programmable logic.
The authors in [36] implement the NFINDR algorithm on
Virtex-4 XC4VFX60 FPGA. The authors state that the imple-
mentation of the NFINDR algorithm is superior in compu-
tational time compared to an equivalent C software version.
In [41] the authors implement the Hysime algorithm used for
estimating the number of end-members in the hyperspectral
image [42]. The Hysime algorithm is implemented on a
Virtex-7 XC7VX690T FPGA. In [43] the authors implement
Fast Automatic Target Detection algorithm (Fast-ATGP) on a
Xilinx Virtex-7 XC7VX690T FPGA.

Field-Programmable Gate Arrays (FPGAs) are the most
common and most suitable resource for on-board process-
ing of hyperspectral unmixing algorithms [41]. FPGAs have
smaller size and weight while having also lower power con-
sumption compared to other platforms like Graphical Pro-
cessing Units (GPUs) and multicore processors [44], [45].
FPGAs are also suitable for being used in satellite
payload as we currently have FPGAs with increased resis-
tance to space ionizing radiations [46]. FPGAs also pro-
vide the ability of changing their functionality through
reconfiguration [41], [47].

Despite outperforming the PPI, NFINDR and VCA algo-
rithms [3], L1/2 NMF algorithm is not yet implemented on
any target platform. This paper presents, to the best of our
knowledge, the first FPGA based architecture L1/2 NMF
algorithm. The paper provides real-time synthesis results,
comparison with MATLAB simulation results and ground
truth spectra.

The rest of the paper is organized as follows: in section II
we discuss the mathematical approaches of the linear mixing
model (LMM) and the L1/2-NMF algorithm. In section III
we introduce the proposed FPGA implementation of the
L1/2-NMF algorithm. In section V we discuss the implemen-
tation and simulation results. Finally we conclude our paper
in section VI.

II. MIXING MODELS AND L1/2-NMF ALGORITHM
A. MIXING MODELS
Mixing models are classified to linear and non linear mod-
els [5]. The linear mixing model (LMM) is valid when
end-members follow a discrete distribution where each end-
member does not interfere with other end-members [48].
Under the linear mixing model, it is assumed that the end-
members are mixed linearly as stated in equation 1

X = AS + E (1)

where X ∈ RL×N is the hyperspectral image, L is the number
of bands and N is the number of pixels. A ∈ RL×K is the end-
members signature matrix and K is the number of estimated
end-members in the image. Each column of the matrix A rep-
resents an end-member spectrum. S ∈ RK×N is the fractional
abundances matrix. On the other hand, the non linear mixing
models add a non linear part to the linear mixing model in

12072 VOLUME 8, 2020



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

equation 1 as follows;

X = AS + µ(A, S, b)+ E (2)

The termµ(.) defines an additive non linear term that depends
on the end-member matrix A, the abundance coefficients in S
and additional non linearity coefficients b which adjusts the
amount of non linearity in the pixel.

B. L1/2-NMF ALGORITHM
The L1/2-NMF algorithm follows the LMM. The only known
term in equation 1 is the hyperspectral image X. In order to
find A and S we perform L1/2-NMF to minimize the distance
between X and AS. Many methods can be used to measure
such difference. The algorithm uses the Euclidean distance
method and it is given as follows:

f (A, S) =
1
2
‖X − AS‖22 + λ‖S‖1/2 (3)

where

‖S‖1/2 =
K ,N∑
k,n=1

sn(k)1/2 (4)

and

λ =
1
√
L

∑
l

√
N − ‖xl‖1/‖xl‖2
√
N − 1

(5)

‖S‖1/2 represents the sum of the element-wise square root of
the elements of the matrix. λ is a factor that weighs the con-
tribution of the L1/2 regularization term. In order to solve the
cost function in equation 3 multiplicative iterative algorithm
is used to estimate A and S. When applied, the values in A
and S are updated as follows:

A ← A. ∗ XST ./ASST (6)

S ← S. ∗ ATX ./
(
ATAS +

λ

2
S−

1
2

)
(7)

where (.)T represents matrix transpose and.* and./ represent
element-wise multiplication and division, respectively. S−

1
2

is the element-wise inverse square root of S.
In order to ensure the full additivity constraint for the

fractional abundances is achieved, both matrices X and A are
augmented with a row of constants as follows:

Xf =
[
X
δ1TN

]
Af =

[
A
δ1TK

]
(8)

where δ is a positive factor that controls the achievement
of full additivity constraint. δ value is in the range between
10 and 20 to balance between convergence rate and accuracy
of the estimation. Another important problem is dividing by
zero in the term S−

1
2 . Any zero value is replaced by a small

value to avoid trivial results [3].
The algorithm stops the optimization process if one of

two conditions is met. The first condition is a set number of
iterations. The second condition is the distance between the
current iteration and the previous one is less than a certain

FIGURE 2. L1/2-NMF algorithm flow chart.

value ε. Figure 2 shows the flow chart of the L1/2-NMF
algorithm. The L1/2-NMF algorithm can be summarized as
follows [3]

L1/2-NMF Algorithm

1: Estimate the number of end-members (k) using
preprocessing algorithm. The authors used Hysime
algorithm [42].

2: Estimate the weight parameter λ according to the spar-
sity measure over X using equation 5.

3: Initialize A and S where A,S ∈ [0, 1].
4: Rescale each column of S to unit norm.
5: While i < max. iterations do

(a) fold = f(Af , S) using equations 3 and 8
(b) Update A using equation 6
(c) Update S using equations 7 and 8
(d) fnew = f(Af , S)
(e) if fold - fnew > ε then

i = i+ 1
fold = fnew
Goto (b)
else
break
end while

VOLUME 8, 2020 12073



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

FIGURE 3. Hardware architecture of L1/2-NMF algorithm.

FIGURE 4. Cost function module architecture.

III. PROPOSED FPGA IMPLEMENTATION OF THE
L1/2-NMF ALGORITHM
This section describes the detailed implementation of the
L1/2-NMF Algorithm. As shown in Figure 3, the proposed
hardware architecture of the L1/2-NMF Algorithm contains
an off-chip memory to save the augmented hyperspectral
image, memory controller to select the data from the required
addresses and the system main modules namely Cost Func-
tion Calculation Module, Update A Module and Update S
Module implementing equations 3, 6 and 7 respectively.

A. COST FUNCTION CALCULATION MODULE
Figure 4 shows the architecture of the Cost Function Calcu-
lation Module. We divide the cost function to two main sub-
blocks. The first sub-block is represented by ‖Xf − Af S‖22.
The second sub-block represents the L1/2 norm calculation
of the abundances matrix S represented by ‖S‖1/2. After cal-
culating the first term, we multiply the resulting value by half
then add the result to the multiplication of the second term
by λ. The value of λ is calculated on an external processor and
passed to the FPGA. The resulting value of the cost function
calculation is saved in a shift register. While the algorithm
is iterating, the value of the previous iteration is shifted to
the second location inside the register. We take the difference
between the current iteration and the previous one then pass
the result to a comparator. The comparator compares the
subtraction result with the predefined value ε to check the first
stopping condition. If the subtraction value is greater than the
value of ε then the iterations counter is incremented and the
algorithm starts the next iteration. If the subtraction value is
less than or equal to the value of ε then the algorithm stops
iterating.

As shown in Figure 5, we start the calculation of the
cost function by implementing the multiplication of the

FIGURE 5. Stage 1 of calculating the norm of Xf − Af S.

FIGURE 6. Stage 2 of calculating the norm of Xf − Af S.

augmented matrix Af by the abundances matrix S. Both
matrices are initialized and implemented as RAM blocks.
Two control blocks are used to control the read,write
processes, the addresses generation and the multiplication
process. Control block 1 controls the writing addresses gener-
ation and the read and write enables. Control block 2 is used
to generate the required reading addresses, the multiplication
enable and the accumulation enable. The multiplication pro-
cess here is a matrix multiplication process which is divided
into a multiplier and an accumulator in our proposed design.
We perform the element-by-element multiplication and pass
the result to the accumulator until the vector-by-vector mul-
tiplication is completed.

Figure 6 shows the next stage of calculating the cost
function. The output of stage 1 is subtracted from the cor-
responding value in the augmented matrix Xf . The resulting
subtraction value is then squared and passed to an accumula-
tor. This process continues until all values are covered to cal-
culate the first term of the cost function equation ‖Xf−Af S‖22.
In addition to the previouslymentionedmodules, we have two
control blocks. The first block controls and synchronizes the
subtraction, squaring, and accumulation processes with each
output of the first stage. It also has the read enable sent to the
off-chip memory. The second block generates the required
addresses to read from the off-chip memory.

The second term of the cost function equation ‖S‖1/2
is implemented as shown in Figure 7. The L1/2 term is
implemented as in equation 4. The square root module is
implemented in three blocks as shown in Figure 8. Altera
floating point square root IP is used along with two converters
from fixed point to floating point and vice versa. The square
root module needs 40 clocks to perform the operation.

B. UPDATE A MODULE
In this section, we illustrate the hardware implementation
of the module given by equation 6. As shown in Figure 9,
equation 6 can be broken down to numerator and denomina-
tor terms. Each of the terms is handled separately then the

12074 VOLUME 8, 2020



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

FIGURE 7. L1/2 norm calculation module architecture.

FIGURE 8. Square root module architecture.

FIGURE 9. Update a module architecture.

FIGURE 10. Stage 1 of denominator term calculation.

element-by-element division and multiplication operations
are performed at the end. The numerator term is divided by
the denominator term and the output is multiplied using and
element-by-element multiplier by the end-members matrix
A. Two control blocks are used for generation of required
reading addresses, read enable, division and multiplication
enables. The numerator term values are divided by the
denominator term values in an element-by-element operation.
Next, the division result is multiplied by the corresponding
value in the end-members matrix A. The resulting values are
saved into A RAM block with the same dimensions of the
end-members matrix A.

We start by implementing the matrix multiplication (SST )
as shown in Figure 10. We use two RAM blocks representing
the abundances Matrix and its transpose. In addition, a con-
trol block is used for read and write control signals, write
addresses and read enable. Another control block is used to
generate the read addresses, multiplication and accumulation
enables.

Next, we multiply the result of stage 1 by the matrix A as
done is stage 1. The result of stage 1 is saved in a memory
element and accessed through control signals. Both matrix
multiplication processes are broken down to a multiplier and
an accumulator as shown in Figure 11.

FIGURE 11. Denominator term calculation architecture.

FIGURE 12. Numerator term calculation architecture.

FIGURE 13. Element-by-element divider module architecture.

FIGURE 14. Update S module architecture.

As shown in Figure 12, The numerator term is imple-
mented in the same manner as the denominator using the
off-chip memory, a randomly initialized memory element,
a control block with control signals for multiplier, accumu-
lator, read and write processes and another control block for
reading addresses.

Next we implement the element-by-element division of the
numerator and the denominator terms. For this module we
use a floating point divider as the fixed point divider outputs
are quotient and remainder while the floating point divider
output is a rational number. As shown in Figure 13, the divider
module contains a fixed point to floating point converter,
the floating point divider and a floating point to fixed point
converter.

C. UPDATE S MODULE
This section illustrates the hardware implementation of the
module given by equation 7. The matrices X representing the
image and A representing the end-members are augmented
as in equation 8. As in the previous module in section III-B,
we break down the equation to a numerator term and

VOLUME 8, 2020 12075



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

FIGURE 15. Numerator term calculation architecture.

FIGURE 16. Stage 1 of implementing the denominator first term.

FIGURE 17. Calculation of the denominator first term.

denominator terms as shown in Figure 14. The resulting val-
ues of the numerator and denominator terms are passed to the
element-by-element divider. The divider result is multiplied
by the abundances matrix S and the result is saved into a
RAM block with the same dimensions as the abundances
matrix S. Two control blocks are used for generation of
required reading addresses, read enable, division and multi-
plication enables. The resulting value are saved into A RAM
block with the same dimensions of the abundances matrix S.

We start by implementing the matrix multiplication
between the transpose of the augmented end-members matrix
AT
f and the augmented matrix Xf as shown in Figure 15.

As previously mentioned, the matrix multiplication is broken
down to a multiplier and an accumulator.

The denominator has two terms. The matrix multiplication
ATf Af S, is implemented through two stages. Figure 16 shows
the first stage implementing the matrix multiplication ATf Af .
The end-members are saved in two RAM blocks with dimen-
sions L by K and K by L. Two control blocks are used for
required addresses generation and control signals generation.
The matrix multiplication is broken down to a multiplier and
an accumulator as in the previous modules.

The output of stage 1 is saved into a RAM block
and multiplied by the abundances matrix S. As shown
in Figure 17, the matrix multiplication is performed on two
stages as a multiplier and an accumulator. Control blocks
are needed to generate control signals for the multiplier and

FIGURE 18. Inverse square root module architecture.

FIGURE 19. Denominator term calculation architecture.

accumulator enables, read and write enables and generating
reading addresses.

The second term of the denominator is implemented
through two stages. In the first stage, we calculate the
element-wise inverse square root of the abundances matrix S.
Before calculating the inverse square root, the input value is
tested. If the value is zero then it is replaced by a very small
value. The inverse square root module is implemented in 3
blocks. Altera floating point inverse square root IP is used
along with two converters from fixed point to floating point
and from floating point to fixed point. The inverse square root
module needs 49 clocks to perform the operation as shown
in Figure 18.

Finally, the inverse square root module output is multiplied
by the value λ

2 then added to the first term of the denomi-
nator. The aforementioned multiplication and addition pro-
cesses are element-by-element operations. Figure 19 shows
the implementation of the denominator term. Control blocks
are added for control signals generation to synchronously
enable the multiplier and the adder, read and write enables
and required addresses generation.

IV. COMPLEXITY ANALYSIS
In this section, we discuss the computational complexity of
the L1/2-NMF algorithm relative to some other algorithms
present in the literature. As we mentioned in section I,
the L1/2-NMF algorithm outperforms NFINDR, PPI and
VCA algorithms [3]. However, the L1/2-NMF algorithm
has higher complexity than NFINDR, PPI and VCA algo-
rithms. This is due to the fact that the L1/2-NMF algo-
rithm computes both the end-members and the abundances
matrices while NFINDR, PPI and VCA algorithms compute
only the end-members matrix. In general, statistical based
approaches have higher complexity than geometrical based
approaches [4]. Table 1 shows the computational complexity
of the NFINDR,PPI, VCA and L1/2-NMF algorithms.

where L is the number of bands, K is the number of end-
members to be detected and N is the number of pixels present

12076 VOLUME 8, 2020



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

TABLE 1. Computational complexity of NFINDR,PPI, VCA and L1/2-NMF
algorithms.

FIGURE 20. Reflectances of carnallite NMNH98011, ammonioalunite
NMNH145596 and biotite HS28.3B.

in the scene, 2.3 < η < 2.9 and s is the number of skewers
for the PPI algorithm.

V. EXPERIMENTAL RESULTS
A. SIMULATION AND IMPLEMENTATION TOOLS
The hardware implementation of the L1/2-NMF algorithm
described in section III is designed using Mentor Graph-
ics FPGAdv 8.1. For the synthetic data set, the simula-
tions are performed using ModelSim SE PLUS 6.3a tool.
The proposed design is synthesized using Intel Quartus II
15.0 web edition. Altera Cyclone V device number
5CGXFC9E7F35C8 [49] is chosen as the target hardware
platform. For the real data set, the simulations are performed
using ModelSim 10.1c tool and the proposed design is syn-
thesized using Intel Quartus Prime 15.1 standard pro edition.
Altera Arria 10 device number 10AS048E1F29E1SG [50] is
chosen as the target hardware platform. This is due to the lim-
itation of the previously used target platform for the synthetic
data set experiment. The chosen FPGA for the real data set
experiment has more resources and is of a newer technology.
The Arria 10 FPGA uses 20 nm technology while Cyclone
V FPGA uses 28 nm technology. The newer technology
allows the FPGA to operate at higher frequency and to have
more resources which we show later in section V-C.5. The
implementation results are compared with simulation results
performed on MATLAB R2018a with Windows 10 operating
system on Intel CoreTM i7-4790 CPU@3.6 GHZ and 16 GB
memory.

B. DATA SETS
1) SYNTHETIC HYPERSPECTRAL DATA SET
We test the proposed implementation of the L1/2-NMF
algorithm on synthetic data prepared as mentioned in [12].

FIGURE 21. Subimage of the samson hyperspectral data set. [51]

FIGURE 22. Reflectances of soil, water and tree.

A simulated scene of dimensions 188× 400 is generated sat-
isfying equation 1. In section III, we show that the proposed
architecture of the L1/2-NMF algorithm depends on memory
blocks in many steps of the design. Since this is the first
implementation of the L1/2-NMF algorithm,we choose to test
our proposed design on a smaller scene with smaller number
of end-members to avoid memory overflow and validate our
results compared to our simulation results. Three spectral sig-
natures are selected from the U.S. Geological Survey (USGS)
digital spectral library [52]. The selected spectra are Car-
nallite NMNH98011, Ammonioalunite NMNH145596 and
Biotite HS28.3B as shown in Figure 20.
Each value in the dataset is converted in MATLAB to

binary representation. The binary value is of length 64 bits
with 15 bits representing the integer part and 48 bits repre-
senting the fraction part. The choice of 64 bits representation
is to provide more accuracy during calculations especially
while truncating the outputs of the multipliers and dividers.
Inputs and outputs data type is a standard logic vector
64 bits. Intermediate signals and RAM addresses are of an
unsigned type.

2) REAL HYPERSPECTRAL DATA SET
In this section, we use real hyperspectral data set to
test the proposed FPGA hardware implementation of the

VOLUME 8, 2020 12077



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

FIGURE 23. Cost function calculation module implementation.

FIGURE 24. Simulation results of cost function calculation module.

L1/2-NMF algorithm. The data set1 is acquired by the
SAMSON instrument hyperspectral sensor. Figure 21 shows
the region of 95× 95 pixels of the Samson hyperspectral data
set.

This data set consists of three end-members representing
water, soil, and tree. Figure 22 shows the spectra of the three
end-members. The image consists of 156 channels covering
the wavelengths from 401 nm to 889 nm.

As previously mentioned for the synthetic data set, each
value in the dataset is converted in MATLAB to binary
representation. The binary value is of length 64 bits with
15 bits representing the integer part and 48 bits representing
the fraction part. The choice of 64 bits representation is to
provide more accuracy during calculations especially while
truncating the outputs of the multipliers and dividers. Inputs
and outputs data type is a standard logic vector 64 bits. Inter-
mediate signals and RAM addresses are of an unsigned type.

C. IMPLEMENTATION RESULTS
1) COST FUNCTION CALCULATION MODULE
IMPLEMENTATION RESULTS
Figure 23 shows the implementation of the Cost Function
Calculation module. We calculate the first term in equation 3
‖Xf − Af S‖22 in the first unit ‘‘Xf_AfS’’. The second term

1Available here: http://lesun.weebly.com/hyperspectral-data-set.html

‖S‖1/2 is calculated in the second unit ‘‘S_half’’. The result-
ing values from the first and second units are passed to the
‘‘objfunc_adder’’ unit. The first value is multiplied by half
and the second value is multiplied by λ then the values are
added to calculate the cost function value. The cost function
value is stored inside the shift register ‘‘register_2’’.While the
algorithm is iterating, the value is shifted inside the register
and the new iteration value is stored in its place. Both values
are subtracted and the result is compared with the threshold
value ε in the ‘‘diff_comp’’ unit. The ‘‘diff_comp’’ unit also
has a counter for the number of iterations to which counts up
to the maximum number of iterations in the second stopping
condition. The ‘‘control_objfunc’’ controls the save and shift
processes in the register.

Figure 24 shows the simulation results of the Cost Function
Calculation module. The cost function value ‘‘objvalue’’ is
calculated and stored in the register. The cost function value
is then subtracted from the previous value and compared to
the threshold value ε. The result is the ‘‘en’’ signal indicating
the need for more iterations or the end of the optimization.

2) UPDATE A MODULE IMPLEMENTATION RESULTS
Figure 25 shows the implementation of the Update Amodule.
As previously explained in section III-B, The numerator term
is calculated in ‘‘XSTsaved’’ unit and the denominator term
is calculated in the ‘‘ASSTsaved’’ unit. Each element in the

12078 VOLUME 8, 2020



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

FIGURE 25. Update a module implementation.

FIGURE 26. Simulation results of update a module.

numerator term is divided by its corresponding element in the
denominator term inside the ‘‘A_Divider’’ unit. The division
result is then multiplied by the corresponding element in
the end-members matrix A inside the ‘‘mult_by_A’’ unit and
stored in a RAM block.

Figure 26 shows the simulation results of the Update A
module. As previously mentioned, after updating the end-
members matrix values, the resulting values are stored inside
a RAM block. These resulting values are passed to the other
two main modules; Cost Function Calculation module and
Update S module; to complete the optimization steps. The
updated end-members matrix also replaces the old one in the
next iteration. After the algorithm completes the optimiza-
tion, the values of the end-members matrix are exported to a
text file and read inside MATLAB software to compare the
implementation and simulation results.

3) UPDATE S MODULE IMPLEMENTATION RESULTS
Figure 27 shows the implementation of the Update S module.
As previously explained in section III-C, the denomina-
tor terms are calculated in ‘‘AfTAfS_saved’’ and ‘‘S_neg_
half_saved’’ units. Each value from the ‘‘S_neg_half_saved’’
unit is multiplied by λ

2 and added to the corresponding
resulting value from the ‘‘AfTAfS_saved’’ unit inside the
‘‘S_adder’’ unit. The resulting value from ‘‘AfTXf_saved’’
is divided by the corresponding value resulting from
the ‘‘S_adder’’ unit using the ‘‘S_divider’’ unit. Finally,

the resulting value from the ‘‘S_divider’’ unit is multiplied
by the corresponding value in the abundances matrix stored
in the ‘‘RAM_3_400_controlled’’ unit. The final values are
stored in a RAM block for updating and reuse.

Figure 28 shows the simulation results of the Update S
module. As previously mentioned, the denominator terms
are calculated while the numerator term is calculated. Next,
the numerator term is divided by the denominator term then
multiplied by the abundances matrix. The resulting values
are stored in a RAM block to update the old values in the
abundances matrix and to be passed to the other modules to
continue the optimization process.

4) SYNTHESIS RESULTS
The proposed hardware implementation of the L1/2-NMF
algorithm for the synthetic data set is synthesized using Intel
Quartus II 15.0 web edition. For the real data, the proposed
design is synthesized using Quartus Prime 15.1 standard pro
edition which supports newer FPGA families. Table 2 sum-
marizes the resources used for the proposed hardware imple-
mentation of the L1/2-NMF algorithm for both synthetic and
real data sets.

We implement our FPGA design for the synthetic data
set on Altera Cyclone V 5CGXFC9E7F35C8 FPGA. The
proposed FPGA design of the L1/2-NMF algorithm occupies
9127 logic elements, 17133 registers, around 1.26 Mb of
memory and 192 DSP blocks. The proposed design operates

VOLUME 8, 2020 12079



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

FIGURE 27. Update S module implementation.

FIGURE 28. Simulation results of update S module.

TABLE 2. Place and route results.

at 52.6 MHz maximum frequency. Our tests show that
the simulation run time for the algorithm on MATLAB
is 52.11 seconds while the implementation run time on
FPGA is 13.33 seconds which results in a speedup factor
of 3.9. In Table 2, we show the run time of each module

per iteration since the algorithm can stop optimizing at
different iterations according to the stopping conditions.
For the real data set, we implement our FPGA design on
Altera Arria 10 10AS048E1F29E1SGXFPGA. The proposed
FPGA design of the L1/2-NMF algorithm for the real data

12080 VOLUME 8, 2020



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

FIGURE 29. Simulation and implementation results comparison of synthetic data set (a)Biotite HS28.3B (b)Carnallite NMNH98011
(c)Ammonioalunite NMNH145596.

FIGURE 30. Simulation and implementation results comparison of samson hyperspectral data set (a) Water (b) Tree (c) Soil.

set occupies 124474 logic elements, 258479 registers, around
17 Mb of memory and 190 DSP blocks. Our tests show that
the simulation run time for the algorithm on MATLAB is
152.89 seconds while the implementation run time on FPGA
is 135.46 seconds wich results in a speedup factor of 1.14.

5) RESULTS COMPARISON
The implementation results are compared to MATLAB sim-
ulation results and the ground truth signatures [52] using
Spectral Angular Distance given by:

SAD = cos−1
(

ATÂ

‖A‖‖Â‖

)
(9)

Figures 29 and 30 show the results comparison between
MATLAB simulation, FPGA results and ground truth sig-
natures of the three selected end-members. The simulated
and the implemented results are plotted according to the
calculated SAD values. We calculate the SAD values for each
detected end-member against the ground truth signatures of
of all end-members. We plot the signature of the detected
end-member with the lowest SAD value against the ground
truth signature of the same end-member. In our implemen-
tation, we use δ = 15, small value = 10−6, max. iterations
value = 3000 and ε = 10−3.

TABLE 3. Synthetic data set SAD results comparison.

TABLE 4. Samson data set SAD results comparison.

Tables 3 and 4 show the SAD values calculated between
MATLAB simulation resulting end-members versus their
corresponding ground truth signatures and FPGA imple-
mentation resulting end-members versus the corresponding
ground truth signatures. From the tables, it can be seen that
the implementation results have higher SAD values than
simulation results. This is due to truncations and conver-
sions that occur within the implemented architecture of the

VOLUME 8, 2020 12081



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

L1/2-NMF algorithm. This comes from the fact that after each
multiplication or division process, the resulting values are
truncated to have the same data length in all the stages of
the hardware implementation. In addition, the approximation
that results from the conversion from fixed point to floating
point representations and vice versa affects the accuracy of
the resulting values.

VI. CONCLUSION
In this paper, we presented the first FPGA hardware imple-
mentation of the L1/2-NMF algorithm. Although L1/2-NMF
algorithm outperformsmany implemented algorithms such as
NFINDR, PPI and VCA, it has not been yet implemented in
the literature. The proposed design is tested using both syn-
thetic and real hyperspectral data sets. In the proposed design,
the mathematical operations are broken down to element-by-
element operations. Matrix multiplication is implemented as
a multiplier and an accumulator. Each stage of the design
has its own control blocks. Two types of control blocks
are used in the design. The first type is used to gener-
ate read enable, write enable, write addresses, multiplier,
adders and subtracter enables. The second control block type
is focused on generating read addresses synchronized with
blocks outputs. The design is implemented using Mentor
Graphics FPGAdv 8.1 and synthesized using Altera Quartus
II 15.0 web edition for the synthetic data set and Altera
Quartus Prime 15.1 standard pro edition for the real data set.
The experimental results were performed on Altera Cyclone
V 5CGXFC9E7F35C8 FPGA for the synthetic data set and
Altera Arria 10 10AS048E1F29E1SG FPGA for the real data
set. The hardware results are compared to the MATLAB sim-
ulation results using the same data set and ground truth sig-
natures via SAD calculation. The experimental results show
the proposed hardware design successfully unmixes the data
set with SAD results comparable to the simulation results.
The maximum MATLAB SAD value was 0.1239 while the
maximum FPGA SAD value was 0.2663 for the synthetic
data set. On the other hand, the maximum MATLAB SAD
value was 0.3327 while the maximum FPGA SAD value was
0.3308 for the real data set. The proposed design of the L1/2-
NMF algorithm works with a maximum speed of 52.6 MHz
for the synthetic data set and 104.32 for the real data set.
When compared to the MATLAB simulation, the FPGA
hardware design has higher speed which resulted in speed
up factors of 3.9 and 1.14 for the synthetic and real data
sets respectively. In the future, we will exploit pipelined and
parallel implementation of matrix multiplication to decrease
the run time of the implemented algorithm as well as to better
utilize the available resources.

REFERENCES
[1] L. Miao and H. Qi, ‘‘Endmember extraction from highly mixed data using

minimum volume constrained nonnegative matrix factorization,’’ IEEE
Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765–777, Mar. 2007.

[2] W.Wang and Y. Qian, ‘‘Adaptive L1/2 sparsity-constrained NMFwith half-
thresholding algorithm for hyperspectral unmixing,’’ IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2618–2631, Jun. 2015.

[3] Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, ‘‘Hyperspectral unmixing via
L1/2 sparsity-constrained nonnegative matrix factorization,’’ IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 11, pp. 4282–4297, Nov. 2011.

[4] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, ‘‘Hyperspectral unmixing overview: Geometrical, statis-
tical, and sparse regression-based approaches,’’ IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354–379, Apr. 2012.

[5] N. Keshava and J. F. Mustard, ‘‘Spectral unmixing,’’ IEEE Signal Process.
Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002.

[6] X. Liu, W. Xia, B. Wang, and L. Zhang, ‘‘An approach based on con-
strained nonnegative matrix factorization to unmix hyperspectral data,’’
IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757–772, Feb. 2011.

[7] M. Craig, ‘‘Minimum-volume transforms for remotely sensed data,’’ IEEE
Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542–552, May 1994.

[8] J. Boardman, F. Kruse, and R. Green, ‘‘Mapping target signatures via par-
tial unmixing of AVIRIS data: In summaries,’’ in Proc. 5th JPL Airborne
Earth Sci. Workshop, 1995, pp. 23–26.

[9] J. W. Boardman, ‘‘Automating spectral unmixing of aviris data using
convex geometry concepts,’’ in Proc. JPL, Summaries 4th Annu. JPL
Airborne Geosci. Workshop. AVIRIS Workshop, vol. 1, 1993, pp. 11–14.

[10] M. E. Winter, ‘‘N-FINDR: An algorithm for fast autonomous spectral
end-member determination in hyperspectral data,’’ Proc. SPIE, vol. 3753,
pp. 266–275, Oct. 1999.

[11] A. Plaza, P. Martinez, R. Perez, and J. Plaza, ‘‘Spatial/spectral endmember
extraction by multidimensional morphological operations,’’ IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 9, pp. 2025–2041, Sep. 2002.

[12] J. Nascimento and J. Dias, ‘‘Vertex component analysis: A fast algorithm
to unmix hyperspectral data,’’ IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 4, pp. 898–910, Apr. 2005.

[13] X. Tao, B. Wang, and L. Zhang, ‘‘Orthogonal bases approach for the
decomposition of mixed pixels in hyperspectral imagery,’’ IEEE Geosci.
Remote Sens. Lett., vol. 6, no. 2, pp. 219–223, Apr. 2009.

[14] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and
J. Huntington, ‘‘ICE: A statistical approach to identifying endmembers in
hyperspectral images,’’ IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10,
pp. 2085–2095, Oct. 2004.

[15] Y. Ma, Q. Jin, X. Mei, X. Dai, F. Fan, H. Li, and J. Huang, ‘‘Hyperspectral
unmixing with Gaussian mixture model and low-rank representation,’’
Remote Sens., vol. 11, no. 8, p. 911, Apr. 2019.

[16] O. Eches, N. Dobigeon, C.Mailhes, and J.-Y. Tourneret, ‘‘Bayesian estima-
tion of linear mixtures using the normal compositional model. Application
to hyperspectral imagery,’’ IEEE Trans. Image Process., vol. 19, no. 6,
pp. 1403–1413, Jun. 2010.

[17] X. Du, A. Zare, P. Gader, and D. Dranishnikov, ‘‘Spatial and spectral
unmixing using the beta compositional model,’’ IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 7, no. 6, pp. 1994–2003, Jun. 2014.

[18] Y. Zhou, A. Rangarajan, and P. D. Gader, ‘‘A Gaussian mixture model
representation of endmember variability in hyperspectral unmixing,’’ IEEE
Trans. Image Process., vol. 27, no. 5, pp. 2242–2256, May 2018.

[19] T. Nouri, M. M. Oskouei, and H. Zekri, ‘‘A comparison study of ORASIS
andVCA for mineralogical unmixing of hyperspectral data,’’ J. Indian Soc.
Remote Sens., vol. 44, no. 5, pp. 723–733, Oct. 2016.

[20] C.-I. Chang, Hyperspectral Data Exploitation: Theory and Applications.
Hoboken, NJ, USA: Wiley, 2007.

[21] D. D. Lee and H. S. Seung, ‘‘Learning the parts of objects by non-negative
matrix factorization,’’ Nature, vol. 401, no. 6755, pp. 788–791, Oct. 1999.

[22] P. Paatero and U. Tapper, ‘‘Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values,’’
Environmetrics, vol. 5, no. 2, pp. 111–126, Jun. 1994.

[23] D. Donoho and V. Stodden, ‘‘When does non-negative matrix factorization
give a correct decomposition into parts?’’ inProc. Adv. Neural Inf. Process.
Syst., 2003.

[24] T. Nouri and M. M. Oskouei, ‘‘Processing of Hyperion data set for detec-
tion of indicative minerals using a hybrid method in Dost-Bayli, Iran,’’ Int.
J. Remote Sens., vol. 37, no. 20, pp. 4923–4947, Oct. 2016.

[25] V. P. Pauca, J. Piper, and R. J. Plemmons, ‘‘Nonnegative matrix factor-
ization for spectral data analysis,’’ Linear Algebra Appl., vol. 416, no. 1,
pp. 29–47, Jul. 2006.

[26] S. Jia and Y. Qian, ‘‘Constrained nonnegative matrix factorization for
hyperspectral unmixing,’’ IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1,
pp. 161–173, Jan. 2009.

[27] R. Liu, B. Du, and L. Zhang, ‘‘Hyperspectral unmixing via double abun-
dance characteristics constraints based NMF,’’ Remote Sens., vol. 8, no. 6,
p. 464, May 2016.

12082 VOLUME 8, 2020



M. Guda et al.: FPGA Implementation of L1/2 Sparsity Constrained Nonnegative Matrix Factorization Algorithm

[28] X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, ‘‘Manifold regularized sparse
NMF for hyperspectral unmixing,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 5, pp. 2815–2826, May 2013.

[29] P. O. Hoyer, ‘‘Non-negative matrix factorization with sparseness con-
straints,’’ J. Mach. Learn. Res., vol. 5, pp. 1457–1469, Nov. 2004.

[30] Z. Yang, G. Zhou, S. Xie, S. Ding, J.-M. Yang, and J. Zhang, ‘‘Blind
spectral unmixing based on sparse nonnegativematrix factorization,’’ IEEE
Trans. Image Process., vol. 20, no. 4, pp. 1112–1125, Apr. 2011.

[31] R. Huang, X. Li, and L. Zhao, ‘‘Nonnegative matrix factorization with
data-guided constraints for hyperspectral unmixing,’’ Remote Sens., vol. 9,
no. 10, p. 1074, Oct. 2017.

[32] L. Sun, W. Ge, Y. Chen, J. Zhang, and B. Jeon, ‘‘Hyperspectral unmixing
employing l1−l2 sparsity and total variation regularization,’’ Int. J. Remote
Sens., vol. 39, no. 19, pp. 6037–6060, 2018.

[33] Z. Zhang, S. Liao, H. Zhang, S. Wang, and Y. Wang, ‘‘Bilateral filter
regularized l2 sparse nonnegative matrix factorization for hyperspectral
unmixing,’’ Remote Sens., vol. 10, no. 6, p. 816, 2018.

[34] Z. Xu, H. Zhang, Y. Wang, X. Chang, and Y. Liang, ‘‘L1/2 regularization,’’
Sci. China Inf. Sci., vol. 53, no. 6, pp. 1159–1169, 2010.

[35] D. Fernandez, C. Gonzalez, D. Mozos, and S. Lopez, ‘‘FPGA implemen-
tation of the principal component analysis algorithm for dimensionality
reduction of hyperspectral images,’’ J. Real-Time Image Process., vol. 16,
no. 5, pp. 1395–1406, Oct. 2019.

[36] C. Gonzalez, D. Mozos, J. Resano, and A. Plaza, ‘‘FPGA implementa-
tion of the N-FINDR algorithm for remotely sensed hyperspectral image
analysis,’’ IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 374–388,
Feb. 2012.

[37] A. Barberis, G. Danese, F. Leporati, A. Plaza, and E. Torti, ‘‘Real-time
implementation of the vertex component analysis algorithm on GPUs,’’
IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 251–255, Mar. 2013.

[38] G. M. Callicó, S. Lopez, B. Aguilar, J. F. López, and R. Sarmiento, ‘‘Par-
allel implementation of the modified vertex component analysis algorithm
for hyperspectral unmixing using opencl,’’ IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 8, pp. 3650–3659, Aug. 2014.

[39] D. Valencia and A. Plaza, ‘‘FPGA-based hyperspectral data compression
using spectral unmixing and the pixel purity index algorithm,’’ in Proc. Int.
Conf. Comput. Sci. Berlin, Germany: Springer, 2006, pp. 888–891.

[40] J. M. P. Nascimento, M. Vestias, and G.Martin, ‘‘FPGA-based architecture
for hyperspectral unmixing,’’ in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), Jul. 2015, pp. 1761–1764.

[41] C. Gonzalez, S. Lopez, D. Mozos, and R. Sarmiento, ‘‘Fpga implementa-
tion of the hysime algorithm for the determination of the number of end-
members in hyperspectral data,’’ IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 8, no. 6, pp. 2870–2883, Jun. 2015.

[42] J. Bioucas-Dias and J. Nascimento, ‘‘Hyperspectral subspace identifica-
tion,’’ IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435–2445,
Aug. 2008.

[43] J. Lei, L. Wu, Y. Li, W. Xie, C.-I. Chang, J. Zhang, and B. Huang,
‘‘A novel FPGA-based architecture for fast automatic target detection in
hyperspectral images,’’ Remote Sens., vol. 11, no. 2, p. 146, Jan. 2019.

[44] C. González, S. Sánchez, A. Paz, J. Resano, D. Mozos, and A. Plaza, ‘‘Use
of FPGA or GPU-based architectures for remotely sensed hyperspectral
image processing,’’ Integration, vol. 46, no. 2, pp. 89–103, Mar. 2013.

[45] C. A. Lee, S. D. Gasster, A. Plaza, C.-I. Chang, and B. Huang,
‘‘Recent developments in high performance computing for remote sensing:
A review,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4,
no. 3, pp. 508–527, Sep. 2011.

[46] L. Sterpone, M. Porrmann, and J. Hagemeyer, ‘‘A novel fault tolerant and
runtime reconfigurable platform for satellite payload processing,’’ IEEE
Trans. Comput., vol. 62, no. 8, pp. 1508–1525, Aug. 2013.

[47] J. A. Clemente, J. Resano, C. González, and D. Mozos, ‘‘A hardware
implementation of a run-time scheduler for reconfigurable systems,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 7, pp. 1263–1276,
Jul. 2010.

[48] J. Settle and N. Drake, ‘‘Linear mixing and the estimation of ground cover
proportions,’’ Int. J. Remote Sens., vol. 14, no. 6, pp. 1159–1177, 1993.

[49] Cyclone V Device Handbook, Altera, San Jose, CA, USA, 2019.
[50] Arria 10 Core Fabric and General Purpose I/Os Handbook A10, Altera,

San Jose, CA, USA, 2019.
[51] F. Zhu, Y. Wang, B. Fan, S. Xiang, G. Meng, and C. Pan, ‘‘Spectral

unmixing via data-guided sparsity,’’ IEEE Trans. Image Process., vol. 23,
no. 12, pp. 5412–5427, Dec. 2014.

[52] R. N. Clark, G. A. Swayze, T. V. King, A. J. Gallagher, and W. M. Calvin,
‘‘The U.S. Geological survey, digital spectral library: Version 1 (0.2 to
3.0 µm),’’ U.S. Geol. Surv., Denver, CO, USA, Open-File Rep. 93-592,
1993.

MOSTAFA GUDA received the B.Sc. degree from
the Electronics and Communications Department,
College of Engineering, Arab Academy for Sci-
ence, Technology and Maritime Transport, Egypt,
in 2014. He is currently pursuing the M.Sc. degree
with the Department of Electronics and Commu-
nications, College of Engineering, Arab Academy
for Science, Technology and Maritime Transport.
His research interests are in the fields of adaptive
signal processing, image processing, remote sens-

ing, and field-programmable gate array (FPGA) hardware implementation.

SAFA GASSER received the Ph.D. degree in adap-
tive signal processing and control from the Univer-
sity of California at Santa Cruz, Santa Cruz, where
she delivered the valedictory address at her gradu-
ation ceremony. She is currently an Associate Pro-
fessor of communications with the Department of
Electronics and Communications, Arab Academy
for Science, Technology and Maritime Transport
(AASTMT). Her research interests include adap-
tive signal processing, in addition to machine

learning, remote sensing, and communications. She is a former Councilor
of the IEEE AASTMT Chapter.

MOHAMED S. EL-MAHALLAWY (Member,
IEEE) received the B.Sc. and M.Sc. degrees from
the Electronics and Communications Department,
Faculty of Engineering, Arab Academy for Sci-
ence, Technology and Maritime Transport, Egypt,
in 1998 and 2002, respectively, and the Ph.D.
degree in image processing and pattern recognition
from Cairo University, Egypt, in 2008. He was
a Post-Doctoral Fellow with the Universiti Tech-
nolgi Malaysia, from 2011 to 2012. He is currently

a Professor with the Electronics and Communications Department, Fac-
ulty of Engineering, Arab Academy for Science, Technology and Maritime
Transport.

KHALED SHEHATA received the B.Sc. degree
from theMilitary Technical College, Cairo, Egypt,
in 1981, the M.Sc. degree from Cairo Univer-
sity, Egypt, in 1991, and the Ph.D. degree from
the Naval Postgraduate School, Monterey, CA,
USA, in 1996. He worked as a Research Assistant.
He worked as a Researcher in Egypt and the Direc-
tor of the VLSI Design Center, AOI, Egypt. He has
been a Professor with the College of Engineering,
Arab Academy for Science and Technology, since

2000. He is currently theDean of the College of Engineering and Technology,
Arab Academy of Science and Technology and Maritime Transport, Egypt.
His research interests include analog and digital VLSI design, and electronics
and communications system design. He hasmore than 100 scientific research
articles in these areas.

VOLUME 8, 2020 12083


