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ABSTRACT Multipath TCP has attracted increasing attention as a promising technology for 5G networks.
To fully utilize network interfaces on multi-homed terminals and the whole network resources, MPTCP
is proposed as an extension of TCP to transfer packets concurrently over multiple paths. Cross layer
optimization techniques have been applied for MPTCP such as routing and path management. However,
existing multipath routing algorithms and network modeling techniques are facing the challenges of subflow
asymmetry due to network heterogeneity, thus cannot handle routing optimization problems comprehen-
sively. To address these problems, in this paper, firstly, a novel GraphNeural Network (GNN) basedmultipath
routing model is proposed to explore the complications among links, paths, subflows and the MPTCP
connection on various topologies. Leveraging the GNN model, expected throughput can be predicted with
given network topology and multipath routes, which can further be the guidance for optimzing the multipath
routing. Then, GCLR, a GNN based cross layer optimization system forMPTCP by routing, is proposed with
the help of SDN (Software Defined Networking). According to simulation results, our off-line learned GNN
model can predict the expected throughput of specific MPTCP connections with very low error. Besides,
it’s validated that the model has high generalization ability in terms of connection arbitrary and topology
arbitrary, it can maintain MSE (mean squared error) at a low level when the situations are not seen during
training, which is sufficient for throughput prediction in multipath routing decisions. Finally, the online
routing optimization system is realized using SDN, experimental results show that our proposed routing
optimization system can achieve significant throughput enhancement compared with traditional multipath
routing algorithms.

INDEX TERMS Routing, multipath TCP, graph neural network, cross layer optimization, software defined
networking.

I. INTRODUCTION
As technologies evolve, networks are on a trend towards
multi-path. However, traditional TCP (transmission control
protocol), in essence, is designed to be a single-path pro-
tocol and incapable to make use of multiple paths concur-
rently. Multipath TCP (MPTCP) [1], proposed by the Internet
Engineering Task Force (IETF), aims to boost data rate and
move congestion away by using multiple alternate paths.
Since MPTCP can fully utilize network resources between
multi-homed devices, it has attracted increasing interests as a
promising technology in mobile communications [2]–[6] and
in data centers [7]–[11].
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Random-based approaches such as Equal-Cost Multi-Path
(ECMP) [12] are commonly applied for network routing in
MPTCP. However, subflows in an MPTCP connection are
coupled, so MPTCP hopes that multiple paths between hosts
are disjointed and matched, but random-based approaches
are not designed specially for MPTCP and may end up
with using the same paths for distinct subflows, which will
introduce avoidable bottlenecks and waste a large num-
ber of available network resources. Moreover, since tra-
ditional routing algorithms have very limited knowledge
of network states, the connections are generally forwarded
through the same paths, even though there are multiple
paths available in the network. Consequently, the connections
cannot fully benefit from multiple subflows provided by
MPTCP and the performance improvement remains limited.
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To solve these problems, cross layer optimization techniques
are applied, the network information can be provided by the
network layer, e.g. software defined networking (SDN) [13].
SDN separates control planes and data planes in communi-
cation systems and offers a complete view of the network to
applications and enables network programmability through
flexible rules. These rules can be used to ensure that the flows
follow the optimal paths in the network [14]. MPTCP imple-
mentations can be integrated with SDN to achieve higher
throughput, load balancing, security, and reliable transmis-
sion that improve transmission quality. In [15], the author
improved the video quality combing MPTCP and SDN, and
in [16], the network fairness for MPTCP is ensured using
SDN.

Despite owning the knowledge and control of the network
by SDN, network modeling techniques are significant espe-
cially in terms of finding the optimal routes in complex real-
world networks. However, it is difficult to find out the optimal
routes through traditional algorithms such as optimization-
based approaches or mathematical modeling, because routes
and link features will cause nonlinear influence to the per-
formance of MPTCP connections. Since machine learning
methods can ascertain the potential nonlinear relationships
among features, they have been widely applied nowadays.
In [17], a novel Graph Neural Network (GNN) model is
proposed to predict the delays and jitters in a network.
In [18], a scheduler for MPTCP is proposed based on Deep
Reinforcement Learning (DRL) in heterogeneous networks.
In [19], LSTM (Long Short Term Memory) and DRL are
implemented to improve the congestion control of MPTCP
connections. Unfortunately, the above machine learning net-
work modeling methods can only work in specific scenarios,
and they have to learn and update their models constantly in
a new environment.

Because of coupled congestion control algorithms and
schedulers among subflows in MPTCP, existing network
modeling techniques have limited performance, which will
further affect routing decisions. To understand the compli-
cated relationships among links, paths, subflows and the
MPTCP connection on various topologies for routing opti-
mization, in this paper, a novel GNN based cross layer routing
optimization system for MPTCP using SDN is proposed. Our
contributions are listed as follows:
• We analyze the routing problems when connections are
extended from TCP to MPTCP. First, coupled conges-
tion control algorithms and schedulers make the network
behavior dissimilar with pure TCP situations, besides,
the number of subflows, asymmetry among subflows,
overlapped routes will cause nonlinear influence to
MPTCP connections, thus making network modeling
and routing decisions more complicated. So that existing
network traffic models are not able to predict network
performance correctly and make multipath routing fail
to satisfy transmission requirements.

• We model the multipath routing problems into graph
problems and apply a novel GNN architecture to explore

the complicated relationships among links, paths, sub-
flows, and the MPTCP connection on various topolo-
gies based on the interactions among them. Evaluation
results prove that while maintaining high accuracy in
throughput predictions, our model can generalize over
arbitrary topologies and connections that are not seen
during training, which is sufficient to be the guidance of
multipath routing decisions.

• We propose GCLR, a cross layer multipath routing
optimization system, by combining the GNN model and
SDN. In GCLR, SDN can provide a global view of the
whole network and the further control of the MPTCP
connection. According to the prediction of the GNN
model, optimal routes can be determined from the mul-
tipath route candidate set, and finally, the correspond-
ing routing rules will be sent to switches. The GCLR
is evaluated by network simulator Mininet and SDN
controller Floodlight, simulation results show that it can
achieve significant enhancement in connection through-
put compared with traditional routing algorithms.

The rest of this article is structured as follows. In Section II,
related works including the analysis of multipath routing,
the state of art cross layer optimization methods for MPTCP,
and GNN are introduced. In Section III, we present the net-
work modeling methods for multipath routing using graph
theory and propose the GNN model, in IV the design of
our GNN based cross layer multipath routing optimization
system for MPTCP is presented using SDN. In Section V,
the performance of our proposed model and system is evalu-
ated. Finally, Section VI concludes the paper.

II. RELATED WORKS
In this paper, we aim at improving the performance of
MPTCP connections by optimizing multipath routing, so in
this section, wewill first list some problems inmultipath rout-
ing, then, the state of art cross layer optimization techniques
and the graph neural network will be presented.

A. TROUBLES IN MULTIPATH ROUTING
Although MPTCP can achieve throughput improvement
under ideal network conditions, the realistic network environ-
ment is complicated and changeable which makes it difficult
to reach the theoretical throughput. The structure of network
topology and the heterogeneity among links and paths will
introduce troubles in multipath routing, and the difficulties
are listed above:

Firstly, routing should control the number of subflows
in an MPTCP connection. Determining the optimal num-
ber of subflows is crucial to achieve the best performance
of MPTCP, an optimal subflow number can bring through-
put improvement without overwhelming network resources,
and makes MPTCP more adaptive to maximize the uti-
lization of network resources, while too many subflows
will introduce extra transmission and control overhead
on a network without significant throughput improvement,
and also wastes network resources (like Ternary Content
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FIGURE 1. A 6-node network example for multipath routing.

FIGURE 2. Per client and per subflow throughput with different subflow
numbers.

Addressable Memory, TCAM) by installing additional flow
rules. On the other hand, the insufficient number of subflows
cannot fully utilize network resources to reach the theoretical
throughput. Take a 6-node network topology in fig.1 as an
example, there are 6 hosts in the network, when the trans-
mission request from node0 to node5 arrives, since MPTCP
v0.90 multiple subflows can be created for each pair of IP
addresses so that 8 subflows can be created, even before
MPTCP v0.90, when only one subflow for each pair of IP
addresses is permitted, there can be 4 pairs of IP addresses and
thus 4 subflows can be established. But obviously, 2 subflows
are enough to make full use of bandwidth in this network,
which can be 0-1-3-5 and 0-2-4-5. Another example is shown
in fig.2, it shows the per subflow throughput and per client
throughput with increasing the number of subflows in another
network topology. With the increase of subflow number,
the traffic can be shared by each subflow, so that the per
subflow throughput continues to decrease. However, the total
throughput (per client throughput) reaches the highest when
the number of subflows approaches the optimal value and
starts to fall back with a further increase of the subflow
number. It shows that in the topology of fig.2, 4 is the optimal
subflow number to avoid the insufficiency or overflow of the
transmission capacity.

Secondly, routing should avoid overlapping links
traversed by subflows. MPTCP aggregates higher band-
width by exploring network resources of different paths with
multiple subflows. The overlapping link between subflows
may very likely end up with becoming a bottleneck link that
limits both subflows [20]. In a bottleneck link, bandwidth has

to be shared by both subflows even though one subflow can
already reach the same throughput, so that using only one of
the two subflows is enough, the second subflow will intro-
duce additional transmission and control overhead. Take the
topology in fig.1 as an example, if the first subflow uses path
0-1-3-5, to avoid overlapping links, path 0-2-4-5will be better
than any other possible path because the bandwidth can be
completely utilized while there is be no conflict between the
two subflows. Otherwise, for example, if the second subflow
chooses path 0-1-2-4-5 to route, there will form a bottleneck
on link 0-1, the two subflows will compete the bandwidth
on link 0-1 while link 0-2 keeps idle. The discovery and
avoidance of shared bottleneck links is an important issue in
MPTCP, the introduction of cross layer optimization based on
SDN can effectively solve this problem with the help of the
network layer information.

Thirdly, routing should consider thematch of subflows.
Dissimilar with regular TCP flows, coupled congestion
control algorithms and schedulers in MPTCP make the per-
formance of subflows interact with each other. If the differ-
ence among subflows is too large, the poorer subflow will
drag down the performance of the better subflow, and ulti-
mately affect the overall performance, so that the capability
of subflows should be on similar levels. In fig.3, we studied
the influence of subflow asymmetry in bandwidth, delay, and
packet loss rate. For each experiment, a 2-subflow MPTCP
connection with different subflow parameters will be created,
and the throughput of the connection tpm is measured, then
2 corresponding TCP connections are generated separately
to get throughput tps1 and tps2, finally, throughput promotion
is defined as tpm/max{tps1, tps2}. According to the value of
the throughput promotion, it is painted in different colors. The
influence of bandwidth asymmetry is shown in fig.3(a).When
the capacity of two subflows is symmetric, the throughput
promotion reaches near 100% (colored in yellow). But when
the gap between two subflows starts to increase, the through-
put promotion has a drastic drop, more seriously, it even drops
below 0 (colored in blue), which means that the additional
subflow in MPTCP brings negative gain to the connection.
This is mainly because MPTCP needs to reassemble the
out-of-ordered data into a complete and orderly one at the
receiver, but the subflow with larger bandwidth has to wait
for the smaller one so that the total throughput is restricted.
There exists the same situation in terms of delay asymme-
try and packet loss rate asymmetry in fig.3(b) and fig.3(c),
the performances of MPTCP connections with symmetric
subflows are better than those with asymmetric subflows.
The advantages of MPTCP decrease as subflow differences
increase. So, routing should consider the match of subflows
to avoid performance decrease in MPTCP due to subflow
asymmetry.

B. CROSS LAYER OPTIMIZATION FOR MPTCP
The most common routing scheme of MPTCP is usually
combined with randomized load balancing technologies such
as ECMP [12], of which the limitation is that avoidable
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FIGURE 3. Throughput promotion with path asymmetry in terms of a) bandwidth, b) delay, c) packet loss rate.

bottlenecks may be created while massive network resource
is idle.

Practical multipath routing algorithms are barely
satisfactory because MPTCP is a transport layer protocol
and the MPTCP stack has very limited knowledge of the
underlying network to adopt efficient routing decisions.
However, the advantages of MPTCP cannot be fully utilized
by relying only on the traditional transport layer information,
and useful network information on other layers need to
be effectively used for an efficient multipath routing. For
this reason, in recent years, related research has begun to
combine MPTCP with the relevant information from other
layers to effectively enhance its performance by cross layer
optimization technologies.

In this paper, we focus on cross layer optimization at the
network layer. For MPTCP, network layer information can be
utilized mainly in subflow management and subflow routing,
subflow management includes the evaluation and control
of existing subflows, and subflow routing determines the
route of each subflow, they all contribute to the performance
enhancement of MPTCP. In order to get the connection with
the network layer, the cross layer optimization for MPTCP
is often combined with network layer techniques such as
SDN [13], [14], [21], MPLS (multi-protocol label switching)
[22], [23], LIPS (locator/identifier separation protocol) [24],
[25], or source routing [26]. To fully utilize network resources
forMPTCP, researches have been studied in different aspects.
In [27], the author adopted a naive algorithm to avoid the
overlapping among subflows. It first calculates the shortest
path and deletes it from the topo, and then recalculates the
shortest path for the second subflow. This idea is also applied
in [26], but they only consider the overlapping between
subflows and neglect the capacity of links, though there
won’t form a bottleneck on links with sufficient bandwidth.
Further, algorithms starts to consider the traffic on subflows,
the author of [28] prefers paths with slighter traffic and
assigns them to the route of subflows. And in [14] it chooses
subflows with high bandwidth and small differences for data
transmission. However, as we mentioned before, coupled
congestion control algorithms and schedulers make subflows

interact with each other and make MPTCP dissimilar with
traditional TCP, so a comprehensive network model is urgent
for the guidance of multipath routing, and this is what we’ve
done in this paper.

Cross layer optimization methods have also been applied
at other layers. For example, at the physical layer and link
layer, cross layer optimizations are considered from the per-
spective of the perception of link on-off status [29]–[31],
the prediction of link parameters [32], and the coordination
of network resources [33], [34]. And as for the application
layer, the perception for deadline and importance [35]–[37],
the perception of distortion rate [38]–[41], and file size [42]
are usually considered.

C. GRAPH NEURAL NETWORKS AND MESSAGE
PASSING NEURAL NETWORKS
As mentioned before, it is difficult to model the MPTCP
network through traditional algorithms because there exists
nonlinear relationships among links, paths, subflows, and
theMPTCP connection. Existed machine learning techniques
can only work in trained environments, and they have to learn
and update their models constantly in a new environment.
In this paper, the graph neural network is adopted in net-
work modeling, GNN is good at solving problems related
to graphs, and multipath routing can be abstracted as graph
problems, so GNN is a best choice for solving multipath
routing problems.

Firstly, a network consists of hosts and links and can be
represented as a topology graph. Then, the relationships,
between links and paths, and between the MPTCP connec-
tion and subflows, are coupled. Factors interact with each
other and can be represented as a relationship graph. There-
fore, multipath routing for MPTCP can be abstracted as
optimization problems of graphs.

The graph structure has the ability of relational expres-
sions, and the complex relationships among nodes in graphs
pose a huge challenge to traditional machine learning
algorithms. The convolutional neural network (CNN) has
achieved great success in the Euclidean domain. But it can
only operate on regular data such as arrays and matrices.
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However, more and more application data belongs to the
non-Euclidean domain and needs to be represented by graphs,
which makes CNN stretched, so a neural network aiming
at learning graphs is crucial for solving complicated graph
problems.

Under the impetus of deep learning technologies,
researchers propose the graph neural network [43], which
combines the thoughts of convolutional networks, cyclic
networks, and deep auto-encoders. Now GNN has been
widely used in non-Euclidean domains such as applied
physics, molecular chemistry, and knowledge maps. Com-
pared with traditional solutions (e.g. CNN), the advantages
of GNN in processing graph structure data are listed as
follows [44]:

• Input order. Nodes in graphs are unordered, but CNN
superimposes the features of nodes in a specific order
and its inputs are sequential. So the inputs of nodes in
different orders in CNN will result in different output
results, which is contrary to the characteristics of graphs.
Therefore, CNN has to traverse all the input orders of
nodes, which leads to additinal overhead. As for GNN,
it is designed for the structure of graphs, features can
be propagated separately on each node, so that the input
order of nodes can be ignored, and the inputs in different
orders can come to the same output result.

• Learning object. In graph structures, an edge represents
the dependency information between two nodes, for
CNN, such dependency information is only regarded as
the feature of two nodes, and only the characteristics of
two nodes can be learned. However, for GNN, the infor-
mation of edges can be propagated along with the graph
structure, that is to say, the GNN model can learn the
structural features of a graph, which is called the hidden
state in GNN. Such structural feature is the key feature
in graphs.

• Generalization ability. Generalization ability is an
important topic of high-level artificial intelligence,
the reasoning process of the human brain is based on
the graph extracted from daily experience. CNN is able
to generate synthetic images and documents by learning
the distribution of data, but still cannot learn reasoning
graphs. However, since GNN learns the structural fea-
tures of graphs, it can generate new graphs from unstruc-
tured data such as scene images and story documents,
which makes higher-level artificial intelligence neural
network models possible. In this paper, the generaliza-
tion ability of GNN in terms of connection arbitrary and
topology arbitrary for multipath routing is utilized.

Message Passing Neural Network (MPNN) [45] is a GNN
framework, MPNN updates node representations by stacking
multiple graph convolutional layers using synthesis methods.
MPNN consists of two phases, which are the message passing
phase and the readout phase. During the message passing
phase, T times of spatial graph convolutions are performed,
and hidden states of nodes are iterated through message

functionMt () and update function Ut ():

htv = Ut (ht−1v ,
∑

w∈N (v)

Mt (ht−1v , ht−1w , evw)), (1)

where evw represents the characteristics from node v to
node w. New states are obtained by message function Mt (),
and then, the real states are updated by update function
Ut (). The readout phase is indeed a pooling operation that
computes the feature vector of the entire graph, which is
defined as

y = R(hTv |v ∈ G). (2)

MPNN was originally applied to the field of quantum
chemistry to learn the relationships between molecular struc-
tures and molecular properties to predict the properties of
unknown molecules [45]. Later, MPNN was also applied to
delay and jitter prediction in the network [46].

III. NETWORK MODELING
The MPTCP connection can be modeled by graphs to
ascertain the complicated relationships among links, paths,
subflows, and the MPTCP connection, in this section,
the method of network modeling and the proposed GNN
model will be introduced in detail.

A. NETWORK MODEL
The network topology can be abstracted by an undirected
graph G = (N ,L), which consists of a set of nodes N and
links L, where nodes ni ∈ N , represent for hosts, routers,
and switches in the network, and links li ∈ L, represent for
physical transmission links. In this work, in order to build a
comprehensive model for multipath routing, bandwidth bwi,
delay dei, and packet loss rate loi are considered as link
properties. Path pi is a sequence of links that connects 2 hosts
(the server and the client), which can be expressed as

pi = (p1i , p
2
i . . . , p

|pi|
i ), (3)

where pji is the index of the jth link in path i, and |pi| is the
number of links in path i. The bandwidth, delay and packet
loss rate of path i can be expressed as bwpi , depi and lopi ,
separately.

The MPTCP connection c consists of several subflows
si ∈ S, traditional TCP is a special case of MPTCP and can
be regarded as an MPTCP connection with only one subflow,
so the model in this paper also works when routing for tradi-
tional TCP connections. Subflow si has a corresponding path
pi with it, and their subscripts are consistent. The throughput
of connection c is notated as tpc.

B. RELATIONSHIPS IN GRAPHS
In this paper, in order to build up a comprehensive model
for multipath routing, three main features, bandwidth, delay,
and packet loss rate of a link will be considered in a network
topology. Take path pi = (p1i , p

2
i . . . , p

|pi|
i ) as an example,

since pi is the route of subflow si, the delay of si is the sum
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FIGURE 4. The mutually influential relationships in multipath routing.

of each link that si passes, which can be expressed as

depi =
|pi|∑
j=1

depji
. (4)

And it’s the same to bandwidth and packet loss rate,
the bandwidth is determined by the minimum value of bwji,
which is

bwpi = min(bwpji
), (5)

and the packet loss rate follows the multiplication rule, which
is

lopi = 1−
|pi|∏
j=1

(1− lopji
). (6)

As for the MPTCP connection, the throughput of the MPTCP
connection is equal to the sum of throughput of all the
subflows in this connection

tpc =
∑
si∈c

tpsi . (7)

From all the above, we can conclude from the graph struc-
ture of network topology that the state of a path is determined
by all the links that this path passes. In turn, on the other hand,
the state of each link depends on all the paths passing through
that link.

For the two graphs, due to the data sequence number
mechanism shared by all MPTCP subflows and the coupled
transmission control algorithms, we can acknowledge that the
state of each subflow in an MPTCP connection is determined
by the paths that each subflow passes, which is
tpsi = f (bwp1 , . . . , bwp|c| , dep1 , . . . , dep|c| , lop1 , . . . , lop|c| ),

(8)

where |c| is the number of subflows of connection c.
The mutually influential relationships in multipath routing

can be represented by fig.4. When we hide paths and connec-
tion in the graph, we can get:
• The state of all subflows in an MPTCP connection is
determined by the state of all links that each subflow
passes.

• The state of all links in the network topology is deter-
mined by all the subflows in the MPTCP connection.

Define the hidden state of a link as hli , and in
correspondingly way the hidden state of a subflow is defined
as hsk . We expect that link state vectors contain link infor-
mation such as delay, packet loss rate, link utilization, etc,

Algorithm 1MPTCP Network Model for Multipath Routing
Input: xs, xl
Output: hTs , h

T
l , o

1: # Initial phase
2: for s in S do
3: h0s = [xs, 0, . . . , 0]
4: end for
5: for l in L do
6: h0l = [xl, 0, . . . , 0]
7: end for
8: # Message passing phase
9: for t = 1 : T do

10: for s in S do
11: for l in L do
12: hts = RNNt (hts, h

t
l )

13: m̃t+1s,l = hts
14: end for
15: ht+1s = hts
16: end for
17: for l in L do
18: mt+1l =

∑
m̃t+1s,l

19: ht+1l = Ut (htl ,m
t+1
l )

20: end for
21: end for
22: # Readout phase
23: o = O(hTs , h

T
l )

and path state is expected to contain the information of end
to end connection parameters like RTT, throughput, packet
loss rate, etc. Finally, the relationships can be formulated in
a mathematical way as

hli = f (hsi , . . . , hs|k| ),

hsk = g(hl1 , . . . , hli ), li ∈ S, (9)

where f and g are some functions that describe the underlying
relationships among links and subflows.

C. THE ARCHITECTURE OF GNN MODEL
In the GNNmodel, information dissemination and output are
the key steps to obtain the hidden states of nodes and links,
so that different variants of GNN vary in aggregators and
updaters. Among these GNN variants, the message passing
neural network architecture is applied to solve the multipath
routing problems. The step-by-step process of the graph neu-
ral network model is shown in algorithm.1.

The input of the model includes link information xl from
network topology and subflow informationmatrix xs from the
MPTCP connection. First, the overlap of subflows should be
considered in multipath routing, so we number all the links
in the network topology uniquely and record their features in
link information xl :

xl =

∣∣∣∣∣∣
bw1 bw2 . . . bw|L|
de1 de2 . . . de|L|
lo1 lo2 . . . lo|L|

∣∣∣∣∣∣ , (10)
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FIGURE 5. The SDN architecture of GCLR.

where |L| is the mode of L, L is the number of links in the
network topology. Then, as for the subflow information xs,
since the number of subflows in an MPTCP connection and
the number of links that a subflow passes are variable, they
are set as parameters.

In the MPTCP network model for multipath routing, line
2-7 is the initial process of the hidden state hs and hl , they
are initialed with current value following with zeros. From
line 9 to line 21 is the T times iteration of the message
passing phase, since the training process is operated off-line,
the number of training samples and iteration steps can be
sufficient so that the model can be completely converged.
Line 11-14 and line 17-20 are the message passing phase
of links and subflows, separately. Information is aggregated
through a recurrent neural network (RNN) for the iteration
of subflows and through summation for links. For links,
the order of subflows does not matter. But for subflows,
sequential dependence between links in the same subflow
caused by losses requires sophisticated message aggregation.
So we use RNN here for it can record input sequence infor-
mation. Since the state of subflows is determined by all links
that these subflows pass, line 11-14 input the whole link set
cyclically. Likewise, in line 18, all the subflows are summed.
Line 13 and line 19 operate the update function from step t
to t + 1, and line 23 is the readout phase of MPNN, O() is
a multi-layer perceptron with appropriate activations, it can
finally calculate the feature vector of the graph based on the
hidden state hTs and hTl .

IV. SYSTEM DESIGN
The architecture of the GNN based cross layer optimization
for MPTCP by routing is shown in fig. 5. Based on the SDN
architecture, the system is composed of the real network and
the SDN controller. Several modules are designed in the SDN
controller to realize multipath routing optimization with the
help of the GNN model.

SDN is deployed among switches in data centers,
it separates control planes and data planes to enable network
programmability through flexible rules. Moreover, the avail-
ability of SDN has been extended to routers in WANs.
In this paper, SDN is applied to provide a global view of the
whole network and the further control of connections using
the OpenFlow protocol [47], [48]. In the SDN controller,
four modules are designed for multipath routing, they are
the topology explorer module, routing generator module,

GNN model, and decision maker. The role of these modules
will be introduced in detail.

A. TOPOLOGY EXPLORER & DECISION MAKER
The topology explorer and decision maker are the bridges
that connect the real network and the SDN controller. They
are responsible for the information interaction between the
network and the SDN controller.

Since network states change over time, the role of the topol-
ogy explorer is to maintain the link information matrix xl .
Firstly, topology explorer is applied to collect and update
various networking feedback from switches and routers in
real-time, then xl and the transmission requests will be sent
to the routing generator for further predictions and decisions.
The decision maker is for sending routing instructions back
to the network. In the last step, based on the prediction of
various routing strategies by the GNNmodel, decision maker
chooses the optimal one for multipath routing and sends the
configurations to the routers and switches in the network by
flow table.

B. ROUTING GENERATOR
With the GNN model, the performance of specific routing
results can be accurately predicted, but since the number
of feasible routes increases exponentially as network size
increases, it is unrealistic to iterate over all possible routes.
So, it is significant for us to cover the optimal or near-optimal
solution with a small routing candidate set. The routing gen-
erator is a key module in the SDN controller to generate
the routing candidate set for multipath routing. The routing
generator provides subflow information xs for the model.

When there comes a transmission request from the net-
work, according to the network state updated by the topology
explorer, the routing generator generates a routing candidate
set of the two hosts based on classic routing algorithms,
greedy algorithms, and random algorithms. In the routing
generator module, the number of subflows should be a param-
eter to test the optimal subflow number of the MPTCP con-
nection. During routing generation, greedy algorithms are
used to search for an optimal route while controlling the size
of the routing candidate set, random algorithms are applied
to maintain the diversity of the candidate set to avoid the
algorithm getting trapped in a local optimum. The routes in
the candidate set will then send to the GNN model to pre-
dict their corresponding expected performance. Benefit from
GNN’s fast single calculation time (around 1 ms), the number
of routes in the candidate set can be large enough to cover
potential optimal solutions.

C. GNN MODEL & OFF-LINE TRAINER
The GNN model is the core of GCLR. Since the GNN model
has a strong generalization ability and can deal with most
never-before-seen scenarios, it is divided into the off-line
training stage and the on-line predicting stage.

The GNN model has the generalization ability in terms of
connection arbitrary and topology arbitrary, so our off-line
trained model can keep high performance when facing never-
before-seen scenarios. For example, the prediction accuracy
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FIGURE 6. Network topology for the evaluation of GNN model and multipath routing.

remains high when the characteristics of test samples
(e.g. network topology, number of subflows) are not included
in the training set. So, a sufficient number of training samples
can satisfy most scenarios at the on-line predicting stage.
At the off-line training stage, samples in different topology,
by different routing algorithms, and with different subflow
numbers are collected to cover most application scenarios.
Then, these samples are divided into a training set and a
test set, the test set does not participate in the training of
the model, and is only used to calculate the performance
trend of the model during the training process. In this work,
the smoothed mean squared error (MSE) and the person
correlation (ρ) is calculated. At the on-line predicting stage,
routes in the candidate set will be sent to the GNN model
to predict the corresponding expected throughput, then the
results will be sent to the decision maker module.

V. PERFORMANCE EVALUATION
The evaluation of our works can be divided into GNN model
evaluation and multipath routing evaluation. Firstly, we will
introduce the simulation platform and data collection. Then,
the GNN model is evaluated in terms of the accuracy of
throughput prediction and the generalization in topology arbi-
trary and connection arbitrary. Finally, the cross layer multi-
path routing algorithm based on SDN is evaluated compared
with traditional routing algorithms.

A. SIMULATION PLATFORM
To get MPTCP connection data and test the GNN model
under different conditions, our data collection, model train-
ing, and performance validation are performed on a simula-
tion platform. In this part, the simulation platform and the
data collection process will be introduced.

The simulation environment is configured in a Linux server
with Intel i7-4790k with 8 CPU cores, 16GB memory, and
300GB storage. In order to support the MPTCP protocol,
the operating system is Ubuntu 14.04 LTS and installed with
MPTCP kernel v0.89 as the most widely used MPTCP ker-
nel version. The experimental network topologies are sim-
ulated by Mininet 2.2.2, and Floodlight v1.2 is used as the
SDN controller in the cross layer optimization. The GNN
model is implemented with Tensorflow in Linux userspace.
The MPTCP kernel is modified so that it can communicate
MPTCP-level information with the Linux userspace through
kernel logs.

FIGURE 7. The training process of throughput prediction of the GNN
model.

To ensure topological diversity, the directly connected
network, the National Science Foundation Network
(NSFNet), and the US Backbone Network in fig.6 are sim-
ulated by Mininet. Then, topology parameters xl including
bandwidth, delay, and packet loss rate are randomly set.
Finally, we generate MPTCP connections by Iperf to collect
training samples. In theMPTCP connections, communication
peers, subflow numbers, and the route of each subflow xs are
randomly configured to simulate all possible scenarios. Both
xl and xs are recorded as training samples.

B. EVALUATION OF GNN MODEL
GNN model is the most important component of GCLR,
only if the model’s prediction accuracy is high, the cross
layer multipath routing optimization can achieve better per-
formance. The GNN model is evaluated in terms of the accu-
racy of throughput prediction and the generalization ability in
topology arbitrary and connection arbitrary.

For the evaluation of prediction accuracy, MPTCP samples
are randomly divided into either the training set or the test set.
The test set does not participate in the training of the model
and is only used for performance evaluation at the training
state. The MPTCP model has been trained for 100k steps and
the convergence processes of MSE and ρ with the increase
of training steps are shown in fig. 7. In fig.7, the smoothed
MSE drops rapidly in the first 3k steps and turns into a steady
state, while the ρ value following the opposite trend. After
100k steps, the smoothed MSE arrives at 0.016 and ρ reaches
0.994, so we can conclude that the GNN model can provide
accurate predictions for different MPTCP connections and be
the guidance for multipath routing optimization.
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TABLE 1. The MSE of the GNN model in terms of subflow numbers and
topologies.

TABLE 2. The validation of generalization ability (in MSE).

Then, we analyzed the performance of the GNN model
when training with samples with different subflow numbers
(MPTCP connections with 2 and 3 subflows) and in different
topologies (directed connected network and NSFNet), since
MSE and ρ have similar but opposite trends, we only use
MSE to show the performance of the model and the results
are shown in table1. In table1, in the same topology, the per-
formance of the GNN model slowly decreases as the subflow
number increases. This is probably because that the effect
of the subflow aggregation on MPTCP throughput follows
similar rules, so that the subflow number has a small influence
on the model. In terms of differences in topologies, the model
has a very low MSE in the directly connected network, this
is because it is a simple topology and has no overlapped
subflows, so throughput predictions are much easier. As for
complex topologies such as the NSFNet, there are more links
in subflows, and various overlapped links exist, so the MSE
is a little bit higher but still acceptable for multipath routing
optimization.

To validate the generalization ability for topology arbitrary,
samples in the NSFNet (fig.6(b)) are sent to the GNN model
at the training stage and samples in theUSBackboneNetwork
(fig.6(c)) will only appear as the test set in the experimental
group. The two network topologies are composed of sim-
ilar network structures but they are not exactly the same.
Therefore, if GNN has the ability to learn the structural
characteristics of graphs, there will not be severe performance
degradation in never-before-seen topologies (US Backbone
Network). As for the generalization ability for connection
arbitrary, the number of subflows in the MPTCP connec-
tion is considered. Samples of 4-subflow connections are
set as the experimental group and will not be used while
training, and then the throughput of them will be predicted
to validate the generalization ability for connection arbi-
trary. The results are shown in table2, where samples in
experimental groups are from US Backbone Network and
4-subflow connections, respectively. Although the results
in experimental groups are not as good as that in control
groups, they can still maintain MSE at a low level, which
is sufficient for throughput prediction in multipath routing
decisions. The result for connection arbitrary is not as good
as that of topology arbitrary, this is because the increase
of subflow number brings the increase in the input dimen-
sion, but there is no corresponding treatment for that in the
GNN model.

FIGURE 8. The throughput cumulative distribution function of GCLR,
fullmesh, and the optimal value in the directly connected network.

C. EVALUATION OF MULTIPATH ROUTING
The evaluation of multipath routing (GCLR) also includes
two parts.

Firstly, we studied the advantages of GCLR in subflow
selection over the traditional MPTCP fullmesh algorithm.
The fullmesh algorithm will exhaust all feasible subflows
without considering the impact of subflow asymmetry on
throughput. Experiments are performed on the directly con-
nected network (fig.6(a)), link parameters are set randomly.
We transmit data for 10 seconds by MPTCP and calculate
the average transmission rate. The fullmesh algorithm selects
all subflows for data transmission, but GCLR only estab-
lishes appropriate subflows according to the guidance of the
GNN model. Finally, we compare the throughput difference
among GCLR, fullmesh, and the optimal solution obtained
by traversal. The results are shown in fig.8, we can see that
due to the ability of GCLR to predict the throughput of
different subflow combinations, the CDF curves of GCLR
and the optimal value almost completely coincide, which
exceed the traditional fullmesh algorithm a lot. It can be seen
from the enlarged graphs in fig.8 that the performance of
GCLR cannot reach the optimal value only at a few individual
points, this is due to the prediction error of the GNN model.
However, since the average error of the GNN model is small
(0.004), even though the optimal combination of subflows is
not selected, the throughput of GCLR will not differ much
from the optimal value.

Then, the performance of the GCLR in more complex
real-world topologies is evaluated. In complex topologies,
the feasible multipath routes increase exponentially with the
topology size, it is unrealistic to obtain the optimal solu-
tion for multipath routing. Therefore, we only compare the
performance improvement of the GCLR with the traditional
ECMP algorithm. Here, we choose the more representative
NSFNet as the experimental topology. First, link parameters
are set randomly. Then, transmission requests are created
randomly. Finally, then we establish the MPTCP connec-
tions by GCLR and ECMP separately to compare their
difference in performance. The results are shown in fig.9,
GCLR has significantly improved performance compared
with ECMP, with an average throughput increase of 14.57%.
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FIGURE 9. The throughput cumulative distribution function of GCLR and
ECMP in the NSFNet.

Compared with ECMP, GCLR not only has the ability to
control the number of subflows, but also can coordinate
the routes among subflows. So GCLR can avoid network
conflicts, make full use of network resources, and increase
MPTCP throughput. The above experimental results have
shown that this GNN based cross layer optimization system
for MPTCP by routing can provide significant performance
improvements to MPTCP connections.

VI. CONCLUSION
Leveraging the advantages of the GNN model that can learn
the characteristics of graph structures, in this paper, wemodel
routing problems as graph problems and propose a novel
GNN based multipath routing model to explore the complica-
tions among links, paths, subflows and the MPTCP connec-
tion on various topologies. Then, based on the GNN model,
the GNN based cross layer optimization system for multi-
path routing called GCLR is proposed. Evaluation results
have shown that GCLR can achieve significant throughput
enhancement in multipath routing optimization. At the same
time, it has the generalization ability in terms of connection
arbitrary and topology arbitrary.
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