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ABSTRACT Inertial sensor-based gait has been discovered as an attractive method for user recognition.
Recently, with the approaching of deep learning techniques, new state-of-the-art researches have been
established. However, the scarcity of training data still endures as an obstacle that impedes to build
a robust deep gait model. In this study, we address that problem by proposing a novel approach for
inertial sensor-based gait data augmentation. First, two label-preserving transformation algorithms, namely
Arbitrary Time Deformation (ATD) and Stochastic Magnitude Perturbation (SMP), are proposed to generate
more training data from the real gait data. The ATD algorithm adjusts the timing information of gait data
with random values, on the other hand, SMP alters the magnitude arbitrarily, to create variations on the
augmenting data. Then, we design a generic gait recognition model using convolutional neural network,
in which, the ATD and SMP algorithms are coordinated appropriately to produce augmenting data varied
naturally in both time and magnitude as real data. The proposed approach was evaluated on two public
datasets, one was collected in unconstrained conditions, and the other had the largest number of participating
users. The experiment showed that, under different amounts of training data, using ATD or SMP alone could
increase the recognition performance effectively, and their combination even attained higher accuracy. With
ATD and SMP, our model achieved competitive performance on both two datasets comparing to state-of-
the-art researches.

INDEX TERMS Gait recognition, inertial sensor data, accelerometer data, CNN gait network, data
augmentation.

I. INTRODUCTION
Gait recognition refers to the task of verifying or identify-
ing humans by their walking pattern. Traditional researches
in this field mainly base on computer vision [1], [2],
or floor sensor technologies [3], [4], which are useful
for the context of video surveillance or security access
control in restricted areas. The development of micro-
machining technique has opened a new gait recognition
approach, which uses inertial sensors (e.g., accelerometer,
gyroscope) attached to the human body to capture the walk-
ing pattern [5]. As offering various attractive advantages
(e.g., small-size, lightweight, mobility, low-cost, implicit
operation), this approach has attracted significant attention
from researchers worldwide [6]–[12], and achieved promis-
ing results. Despite those merits, most gait recognition
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researches were conducted in laboratory environment, under
certain operation constraints, and are infeasible for practical
applications [7], [13].

Although deep learning techniques have been applied
and established new state-of-the-art researches in this field
recently [9]–[12], [14]–[16], the scarcity of training data
still endures as an obstacle that impedes to build a robust
deep gait model [7]. Specifically, training a deep network
usually requires a large and diverged dataset which cov-
ers a substantial number of data instances possibly occur-
ring in practice [17], [18]. However, most of the available
inertial sensor-based gait datasets could not satisfy such
requirements. For instance, the published datasets whichwere
collected under realistic conditions, just contain data of a
limited number of users (e.g., 20 users [19], 38 users [20],
51 users [21]). On the other hand, the dataset which has a large
user population (i.e., 744 users), has limited data instances
for each user, and was collected in a constrained environment
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(i.e., each user performed two level-walk sequences of 9
m) [22]. Typically, collecting a dataset satisfying the above
requirements is a difficult and high-cost task. Thus, it is
desired to have a practical and effective method to obtain
more training data without performing the data acquisition
process.

Data augmentation by label-preserving transformation is
an elegant strategy to address the data scarcity problem. In
this strategy, the amount of training data is increased multiple
times by introducing noise or artificially modifying the avail-
able data so that they are different but still represent a same
identity [23], [24]. Data augmentation has showed its effec-
tiveness on various machine learning tasks (e.g., computer
vision [23]–[27], speech and language processing [28]–[30]).
Unfortunately, to the best of our knowledge, there is no pub-
lished study that proposes and analyzes a data augmentation
method dedicated to gait. In addition, although there are
substantial data augmentation methods for other data types
(e.g., image, voice), they could not be adopted for gait as
each data type has a different structure, meaning and variation
pattern.

Data augmentation is a promising approach to enhance the
robustness of inertial sensor-based deep gait model. However,
to effectively improve the performance, the augmentation
method needs to meet the following requirements. First,
the augmenting data should have certain variations to be
relatively different from the real data instance that it is derived
from. Second, the generating data should inherit the crucial
information from the real data so that they both represent a
same identity. Third, the variations introducing in augmenting
data should be highly possible to happen in practice so that the
trainedmodel will be more robust in real environments. Final,
the data augmentation method should be applicable to dif-
ferent sensor models, regardless of their specifications (e.g.,
sampling rate, sensitivity). Specifically, as having different
settings, each sensor may have its own range value and varia-
tion. The data augmentation method should be able to detect
such properties and generate augmenting data accordingly.

Motivating by the promising and necessity of the work,
in this study, we propose a novel method for inertial
sensor-based gait data augmentation. Our main ideas to fulfill
the aforementioned requirements and effectively improve the
performance are explained as follows. We observed that: (i)
the gait data variation could be decomposed into two domains
as time and magnitude; and (ii) the variation of real data is
usually resulted from the combination of variations in these
two domains (see Section III-B.1). So, we proposed two
algorithms, namely Arbitrary Time Deformation (ATD) and
Stochastic Magnitude Perturbation (SMP), to create random
variations in the time and magnitude domains, respectively.
Intuitively, ATD plays a role as the outside factors which
cause variation in timing information (e.g., human walking
speed, unstable sampling rate of the sensor). On the other
hand, SMP is used to simulate the impact of those fac-
tors affecting the magnitude (e.g., walking surface, footwear,
clothing). Both of them are designed so that the variations

are added randomly to make the augmentation data arbitrarily
different from the real data, however, the critical information
of real gait data is preserved on the augmenting data. In addi-
tion, gait data acquired in real conditions is always affected
by various factors and varies in both time and magnitude
domains. So, we design a generic deep gait recognition model
based on the convolutional neural network (CNN), in which,
ATD and SMP are coordinated effectively to achieve optimal
performance. In summary, themain contributions of our study
are outlined as follows:

• First, by observing how the real gait data vary in prac-
tice, we proposed two data augmentation algorithms as
ATD and SMP to address the data scarcity problem and
improve the robustness of deep gait model (Section III-
B). To the best of our knowledge, there was no study
addressing this task before.

• Second, we designed a generic deep CNN gait model for
gait identification, in which the proposed augmentation
algorithms were coordinated appropriately to improve
classification performance (Section III).

• Third, we extended the proposed identification gait
model to construct the verification model using trans-
fer learning and one-class support vector machine
(OCSVM) [31] (Section IV-D.1). By that, we aimed to
additionally confirm the effectiveness of augmentation
algorithms on the verification task.

• Fourth, we constructed a comprehensive experiment
to evaluate the proposed methods using the realistic
dataset (i.e., Chonnam National University gait dataset
(CNU) [20]) and the largest gait dataset (i.e., Osaka
University gait dataset (OU-ISIR) [22]) (Section IV).
By CNU and OU-ISIR, we analyzed our proposed
methods under realistic conditions and large user pop-
ulation, respectively. Moreover, as they were captured
using different sensor models, we demonstrated that
our algorithms can operate effectively on different
sensor specifications. With the proposed data augmen-
tation algorithms, our model performance was sig-
nificantly enhanced and achieved competitive results
(i.e., for CNU dataset, our model achieved the iden-
tification accuracy (ACC) of 96.24 %, and the equal
error rate (EER) on verification task of 1.62 %;
for OU-ISIR dataset, it achieved 89.99% ACC and
4.49% EER).

• Last, we provided a detailed analysis of the proposed
data augmentation algorithms to demonstrate their effec-
tiveness under different amounts of real training data
and augmenting data. In addition, the instruction on
how to select appropriate settings for the augmentation
algorithms to achieve optimal performance was also
given.

II. RELATED WORK
In this section, we present a review of state-of-the-art
researches related to our study, which are divided into two
groups as follows.
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A. GAIT RECOGNITION
For a long time, human gait has been discovered to contain
individual discriminative information, which can be used to
identify or verify the owner [32], [33]. By the data acquiring
techniques, the gait recognition researches could be cate-
gorized into three approaches: computer vision, floor sen-
sor, and inertial-sensor [13]. The computer vision approach
uses the user’s video (while he/she is walking) as the data
source for recognition [1], [2]. This approach is potential for
the context of video surveillance, security access control in
restricted areas, or early detection of interest person. The
floor sensing-based method uses the signals sampling from
embedded sensors in the smart mat, or floor vibration sensors
to identify the walking user [3], [4]. This approach is useful to
the task of transparently recognizing people when they enter
a specific area.

Along with the development of technology, inertial sensors
are increasingly adopted in many practical applications, and
widely embedded in mobile/wearable devices (e.g., smart-
phone, smartwatch, inertial measurement unit (IMU)). This
technology offers a new gait recognition approach, in which,
the signal data sampling by inertial sensors attached to the
user’s body (while he/she is walking) is used as data source
for user recognition [7], [13]. The first gait recognition study
using inertial sensor was conducted by Ailisto et al. [5].
Offering many attractive advantages (e.g., small size, mobil-
ity, low cost, implicit operation), this approach quickly
received significant research effort after that, and achieved
promising results [6]–[8], [14]–[16], [34]. In the beginning
stage, conventional machine learning and pattern recognition
techniques were adopted to discover from raw data the mean-
ingful feature/template for user identification/verification.
The study [7] provides a detailed and sufficient summariza-
tion for all researches following such approaches.

Recently, deep learning has gained an extraordinary
development and dramatically improved the state-of-the-art
researches in many pattern recognition and machine learn-
ing tasks such as speech recognition, visual object recog-
nition/detection [35]. Following that trend, many studies
have adopted deep leaning techniques for the task of inertial
sensor-based gait recognition and achieved new state-of-the-
art results [9]–[12], [14]–[16], [36].

Specifically, Gadaleta and Rossi [10] were the volun-
teers who conducted the first CNN framework named IDNet
for smartphone-based gait recognition. In that research,
the accelerometer and gyroscope signals were segmented into
gait cycles, following by the orientation-invariant transforma-
tion and normalization to get the fixed-length gait cycles. The
gait cycle was used as the input of CNN to extract the deep
gait features which were then used for predicting user iden-
tity. The IDNet was evaluated on a dataset of 50 subjects and
achieved a very promising performance as 0.15% equal error
rate (EER). After that, several studies [14], [36] followed this
trend by proposing others CNN architectures, and evaluated
with different datasets (e.g., [19], [22]). On the other hand,
some researches adopted CNN on the fused data of multiple

sensors placing in different positions of the human body to
improve the accuracy [9], [11]. Instead of directly using gait
signals as the input of CNN, Zhao and Zhou [12] trans-
formed gait signals to angle embedded gait dynamic image
(AE-GDI), which is invariant to device’s rotation or disorien-
tation. The CNN then used AE-GDI image as the input for
predicting the owner’s identity. On the newest research [16],
recurrent neural network (RNN) was firstly adopted on this
task, and a promising result was reported.

B. DATA AUGMENTATION
Data augmentation is an elegant and effective approach to
address the data scarcity problem and improve the robustness
of deep learning model. In this approach, the amount of
training data is increased multiple times by introducing noise
or appropriately modifying the original data [23], [24]. In
deep learning, with more training data, we can reduce the
over-fitting, and train a more robust deep model. Due to its
effectiveness, data augmentation has been widely adopted in
various tasks (e.g., image [23]–[27], speech recognition and
language processing [28]–[30]).

Despite its promising, data augmentation has not been
received proper research attention in inertial sensor-based
gait recognition. To the best of our knowledge, there is no
published research that focuses on proposing and analyzing a
data augmentation method dedicated to inertial sensor-based
gait data. There were only some simple methods, which were
included in [9], [14]. In [9], each gait signal was diversified
using a value drawn from a uniform distribution in the range
of [−0.2, 0.2] to make an augmenting instance. The method
described in [14] generated new gait sequences by three
steps: firstly, adding Gaussian noise with σ = 0.01 to each
original signal; then, scaling the length to a random value
in the range of [0.7, 1.1]; finally, interpolating to add more
values. Despite their effectiveness, they lost the generality.
Specifically, thesemethods are specific for the adopted sensor
models. Each sensor type has its own sensitivity and operating
range value specifying by the manufacturer. Then, to adopt
these methods to data collected by other sensor models, such
settings need to be re-identified. In addition, walking speed of
a human is unstable. Thus, the nature gait signal usually varies
in both the magnitude and acquiring time (Section III-B.1),
which can not be simulated by the methods in [9], [14]. In
summary, proposing a generic inertial sensor-based gait data
augmentation method, and providing its detailed analysis are
still the uncompleted tasks.

III. INERTIAL SENSOR-BASED GAIT RECOGNITION
MODEL
In this section, we describe the inertial sensor-based gait
identification model using convolutional neural network,
in which, the proposed data augmentation algorithms are
employed to improve the network performance. Here, we pro-
vide an overview of the model. The details of each processing
step will be explained after that.
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FIGURE 1. The processing blocks of the inertial sensor-based gait identification model using deep convolutional neural network, in which the data
augmentation algorithms are employed to improve the performance.

Overview: The overall processing of the proposed gait
identification model is depicted in Figure 1. Given raw gait
data captured by the acceleration sensor, some preprocessing
steps are performed to eliminate noise and impact of device’s
orientation instability. Then, the gait signals sequence are
segmented into a set of gait cycles. For easy discriminating,
we call the cycle segmented by this step as real gait cycle.
After that, the ATD algorithm is adopted to generate more
training gait cycles varying in time domain. The real gait
cycles, along with the output of ATD algorithm, are used as
input of the SMP algorithm, to obtain the data varying in
magnitude, and in both time and magnitude, respectively. All
the augmenting gait cycles, and the real cycles, are used for
training a deep CNN to extract deep features, which are then
used for user classification using fully connected network.

Note that, the state-of-the-art researches show that,
the gyroscope data could be used along with the
accelerometer data to improve the recognition perfor-
mance [10], [14], [16]. However, in this study, we focus on
proposing and analyzing a data augmentation approach. In
addition, the processing techniques of gyroscope data are
almost similar to those of accelerometer data. Thus, we just
use the accelerometer data for the whole model, an extension
that uses gyroscope data could be easy to find in related
researches.

A. GAIT DATA PREPROCESSING
For data preprocessing and gait cycle extraction, we utilize
the methods proposed in [20], which are briefly summarized
as follows.

1) NOISE AND IMPACT OF DISORIENTATION ELIMINATING
The main data for using are the acceleration signals sampling
by accelerometer. Typically, an acceleration signal acting on
the sensor at the time t is represented by a 3-dimensional
vector a =

[
aX aY aZ

]>
∈ R3, where aX , aY and aZ

are the forces acting on the sensor in the X , Y and Z axes,
respectively (see [20]). The raw acceleration data comprise
a sequence of signals

{
a1, a2, . . . as

}
sampling on sensor

respectively at the time
{
t1, t2, . . . ts

}
, where s is the number

of signals.
The first step of preprocessing is noise filtering, in which,

the Daubechies orthogonal wavelet with the decomposition at
level 2 [37] is used to clarify the noise caused from the data
acquisition process. Then, the problem of device’s orientation
instability is addressed by leveraging the orientation sen-
sor, which is widely embedded in most of mobile/wearable
devices. This sensor provides the rotation angles between
coordinate systems of the device and the Earth. A signal

sampling from the orientation sensor is also represented by a
3-dimensional vector o =

[
α β γ

]>, where α, β and γ
are the rotation degrees along the axes of X , Y and Z ,
respectively. Similar to accelerometer, the orientation sensor
also outputs a sequence of samples

{
o1, o2, . . . os

}
, which

provide the device rotation states at the time
{
t1, t2, . . . ts

}
,

respectively. For each acceleration signal aj (1 ≤ j ≤ s),
we transform it from the device’s coordinate system, which
is unstable, to the Earth’s coordinate system, using the ori-
entation state oj as explained in [20]. By this transformation,
all acceleration signals are represented in a fixed coordinate
system, and, the impact of device disorientation on the accel-
eration signal is eliminated.

2) GAIT CYCLE SEGMENTATION
In the next step, the acceleration gait signals are split into
segments based on the walking cycle, where each segment
(called gait cycle) comprises of signals acquired during the
time of two consecutive normal walking steps. For this task,
we use the methods proposed in [20]. First, we determine
the negative peaks, which are those signals having the Z -axis
magnitude significantly smaller than the mean of all signals
measured on the Z -axis. Intuitively, the negative peaks are
those signals potentially captured at the time when the leg
touches the ground. Next, the average gait cycle length (i.e.,
the number of signals in each gait cycle) is estimated using the
auto-correlation. Then, with each pair of consecutive negative
peaks, if the distance between them is approximate to the gait
cycle length up to a pre-defined factor, the signals between
them are extracted as a gait cycle. Figure 2 illustrates the
acceleration signals in three axes after noise filtering and
disorientation elimination, where the red verticals denote
the delimitations of gait cycles detected using the described
method.

Assume that there are m gait cycles extracted from a user.
With each gait cycle i (1 ≤ i ≤ m), we represent it by a 3×ni
matrix Ai, where ni is the number of signals. We mean aXi,j,
aYi,j, a

Z
i,j as the magnitude of signal j (1 ≤ j ≤ ni) in Ai, acted

on the X , Y and Z axes, respectively. In addition, with each
gait cycle Ai, we represent the timestamp of its signals by a
vector

ti =
[
ti,1 ti,2 . . . ti,ni

]
, (1)

where ti,j is the timestamp of the signal j in cycle i.

B. GAIT DATA AUGMENTATION
In this section, we describe our approach for inertial
sensor-based gait data augmentation. First, we show how the
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FIGURE 2. An example of the discrete acceleration signals in X , Y and
Z axes captured while the user is walking, where the red verticals
indicate the gait cycles’ delimitations determined in the Z axis.

FIGURE 3. Acceleration signals of different gait cycles of a same user,
capturing in X -axis.

signals in a gait cycle fluctuate when being acquired in real
conditions. Then, we propose two data augmentation algo-
rithms, which generate augmenting gait cycles by following
the fluctuation styles of the real gait cycle.

1) VARIATION OF GAIT ACCELERATION SIGNALS
Figure 3 displays the X -axis acceleration signals of different
gait cycles captured from a same user. We can see that the gait
signals between different cycles are not identical but greatly
vary from each other. This variation is caused by the dif-
ference in acquiring conditions such as walking speed, road
surface condition, wearing clothes, footwear, backpack [7].
Here, we only illustrate the variation in X axis, actually,
it occurs in both three axes X , Y and Z . It seems that the

variations are chaotic, however, we can decompose them into
two components as time-based and magnitude-based.

In the time-based variation, the gait signals of different
cycles have the same (or approximate) magnitude values,
however, their acting time (with respect to the starting signal
of each cycle) is different. So, the time interval between two
consecutive gait signals is inconstant, and the time length of
each gait cycle is not identical but fluctuates in a specific
range value. The factor causing this type of variation mostly
is the instability of human walking speed. The gait cycles 2
and 3 in Figure 3 give an example of this variation. Although
themagnitude of each signal of two gait cycles is approximate
to each other, the signals in gait cycle 3 are captured ‘slower’
than those of cycle 2, and the length of cycle 3 (in time) is
longer than cycle 2.

On the other hand, in magnitude-based variation, the gait
signals of different cycles are captured at the same (or approx-
imate) time, based on the starting time of each cycle. How-
ever, they have different magnitude values. The gait cycles 1
and 2 illustrate this kind of variation. This variation could be
caused by various factors such as the differences in walking
surface, wearing clothes or footwear.

In practice, the capturing gait signals are affected by
multiples factors simultaneously. Thus, the variation of gait
signals is usually resulted from the combined effects of
magnitude-based and time-based variations. The gait cycle 4
in Figure 3 is an example for this type. Comparing to signals
of other cycles, the signals of cycle 4 vary in both magnitude
and acting time, however, the cycle 4 still maintains a similar
waveform with other cycles.

2) THE ARBITRARY TIME DEFORMATION
Observing the time-based variation, we propose the Arbi-
trary Time Deformation (ATD) algorithm, which generates
the augmenting gait cycles by introducing random variations
on the timing domain of the real gait cycles. We design the
ATD algorithm so that, not only the time length of gait cycle
(i.e., the time gap between the last and first signal in each
gait cycle) varies, but also the time gap between each pair of
consecutive signals fluctuates arbitrarily.

Given m real gait cycles of a user (see Section III-A.2),
we determine their time length variance δ2τ by

δ2τ =
1

m− 1

m∑
i=1

(ti,ni − ti,1 − τ̄ )
2, (2)

where ni is the number of signal in the cycle i, and τ̄ is mean
of the time length

τ̄ =
1
m

m∑
i=1

(ti,ni − ti,1). (3)

Next, the averaged number of signals per gait cycle is also
determined,

n̄ =
1
m

m∑
i=1

ni. (4)
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After that, the ATD-based augmenting gait cycle is gener-
ated by altering the timestamps and copying the magnitude of
the real gait cycle. Specifically, let t̃ =

[
t̃1 t̃2 . . . t̃ni

]
be the

timestamps of an augmenting gait cycle which is generated
from a gait cycle i. At first, t̃ is initialized as the timestamps
of its based gait cycle, t̃ ← ti. Then, the timestamp of each
signal j (2 ≤ j ≤ ni) in the new cycle is adjusted one-by-
one with random value. When adjusting the timestamp of a
signal j, we aim to alter the time gap between the signals j
and (j− 1), however, preserve the time gap between j and all
signals after j. So, at the step of adjusting signal j, the times-
tamp of all signals k (j ≤ k ≤ ni) will be adjusted by a
value 1t ,

t̃k ← t̃k +1t, (5)

where 1t is a random number determined by

1t = x ∼ N (0,
δ2τ

n̄
) | x + t̃j > t̃j−1. (6)

That is, timestamp of all signals from j to the last are adjusted
by 1t , which is randomly generated from a Gaussian distri-
bution of mean zero and variance δ2τ

n̄ such that1t + t̃j > t̃j−1
(i.e., adjusting with1t will not make the timestamp j smaller
than the timestamp (j − 1)). The process is repeated for all
signal j (2 ≤ j ≤ ni), thus, the time gap between any two con-
secutive signal j and (j− 1) is altered arbitrarily, and because
of that, the time length of new gait cycle also fluctuates
stochastically.

We summarize in Algorithm 1 the process of generating
p×m timestamps of new gait cycles from the timestamps ofm
real gait cycles. That is, for each real gait cycle i, we generate
p new ones, following the ATD algorithm.

3) THE STOCHASTIC MAGNITUDE PERTURBATION
We present here the Stochastic Magnitude Perturba-
tion (SMP) algorithm which produces augmenting gait cycle
by altering the magnitude of each signal in both three axes
X , Y and Z . By SMP algorithm, the magnitude is altered
randomly, however, the waveform of the based cycle and the
smoothness between signals are preserved. Then, to produce
the augmenting gait cycle varying in both time and mag-
nitude naturally as real data, we simply perform ATD and
SMP sequentially (i.e., the gait cycle augmenting by ATD
algorithm is used as the input of SMP). Here, for each user,
we use m real cycles and m× p ATD-based augmenting gait
cycles as the input of SMP. Totally, there are m′ = m+ p×m
inputing gait cycles for each user.

Let Ã be the matrix containing magnitude of a gait cycle
augmented from the cycle Ai, (1 ≤ i ≤ m′). In the beginning,
Ã is initialized from Ai, Ã ← Ai. Then, alteration with
random value is performed on Ã to make it varying from
Ai. To maintain the smoothness and preserve the waveform,
instead of modifying each signal separately, we split Ã into
several frames by the signal semantic, then the alteration
is performed on each frame. Specifically, in each axis D,
(D ∈ {X ,Y ,Z }), the gait cycle is split independently, using

Algorithm 1 Arbitrary Time Deformation
Input

•

{
t1, t2, . . . , tm

}
: timestamps of m real gait cycles;

• p: the number of augmenting cycles per each real cycle;

Output

• T̃ : timestamps of m× p augmenting cycles;

1: T̃ ← {}
2: Compute the time length variance δ2τ by (2)

3: Compute the averaged number of signals per gait cycle n̄

by (4)

4: for each timestamp vector ti do

5: for l from 1 to p do

6: t̃← ti
7: for j from 2 to ni do

8: Generate a random value 1t by (6)

9: for k from j to ni do

10: Adjust t̃k with 1t by (5)

11: end for

12: end for

13: T̃ ← T̃ ∪ t̃
14: end for

15: end for

16: return T̃

the delimitation points pD determined by

pD={j | 2≤ j≤ (ni − 1), (ãDj −āD)(ã
D
j+1−āD)≤0}, (7)

where ãDj is the signal j in axis D of cycle Ã, and āD is the
mean of all signals in Ã in axis D

āD =
1
ni

n∑
j=1

ãDj . (8)

Equation (7)means that pD consists of the positions, at which,
the value of signal in axis D is changed from below/above
the mean to above/below the mean. Thus, by the points pD,
the gait cycle in each axis D is split into several frames,
so that, each frame consists of consecutive signals which are
all either above or below the mean.

Let f denote a frame segmented from Ã in an axis D.
We identify the signal j∗ in f having the largest absolute
magnitude

j∗ = argmax
j∈[fs, fe]

|ãDj |, (9)

where fs and fe are the beginning and ending points of f. Next,
we estimate the variance δ2D,j∗ of signal j

∗ in axis D over m′
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input cycles,

δ2D,j∗ =
1

m′ − 1

m′∑
i=1

(aDi,j∗ − ā
D
j∗ )

2, (10)

where aDi,j∗ is the signal j
∗ of cycle i in D-axis, and āDj∗ is the

mean of signal j∗ in axis D over m′ input cycles

āDj∗ =
1
m′

m′∑
i=1

aDi,j∗ . (11)

Then, a random value 1a is generated according to Gaus-
sian distribution of mean zero and variance δ2D,j∗ , 1a ∼
N (0, δ2D,j∗ ). For each signal j in f (fs < j ≤ fe), its value
is adjusted by:

ãDj ← ãDj +1a
ãDj − āD

ãDj∗ − āD
. (12)

Equation (12) means that in each frame f, a random value
1a is used as the baseline for adjusting all signals in f.

The fraction
ãDj −āD
ãDj∗−āD

ensures that, the adjusting amount for

high-magnitude signal is greater than it for low-magnitude
signal. By this fraction, the smoothness of signal in based
cycle is preserved in augmenting cycle.

We summarize in Algorithm 2 the process of generating
q×m′ new gait cycles fromm′ gait cycles following the SMP
algorithm, i.e., with each gait cycle Ai, q augmenting cycles
are produced.

C. CONVOLUTIONAL NEURAL NETWORK
In this section, we present the CNN for gait classification
including the shape of input data, the network architecture,
and the optimization method.

1) INPUT DATA
With each user in the dataset, both the real and the augmenting
gait cycles are used for training the deep network. In total,
there are m × (1 + p + q + p × q) gait cycles of each
user, in which there are m real cycles, m × p ATD-based
augmenting cycles, m × q cycles augmented by SMP, and
m × p × q ones augmented by both. First, all gait cycles
are normalized to have a fixed number of signals n = 120
using spline interpolation [38]. Then, with each signal j in a
gait cycle Ai, we determine its magnitude summation aMi,j =√
(aXi,j)

2
+ (aYi,j)

2
+ (aZi,j)

2. Each gait cycle Ai is represented
by a matrix of size (4 × 120) whose rows are formed by the
acceleration forces acted on the X , Y , Z , and the magnitude
summation, respectively. Finally, each component of Ai is
normalized to zero mean and unit variance over the training
dataset, as it leads to faster convergence and higher perfor-
mance [39].

2) NETWORK ARCHITECTURE
The proposed CNN architecture for gait identification is
sketched in Figure 4. The network consists of 4 convolu-
tional layers (Conv) for deep features extraction, and 2 fully

Algorithm 2 Stochastic Magnitude Perturbation
Input

• m′ gait cycles
{
A1, A2, . . . Am′

}
;

• q: the number of augmenting cycles per each real cycle;

Output

• Ã: a set of q× m′ augmented gait cycles;

1: Ã← {}
2: for each cycle Ai do

3: for k from 1 to q do

4: Ã← Ai

5: for each axis D ∈ {X ,Y ,Z } do

6: Identify the frame delimitation points pD by (7)

7: Segment Ã in D-axis into frames using pD
8: for each frame f do

9: Determine the signal j∗ having highest absolute

magnitude by (9)

10: Estimate the variance δ2D,j∗ of signal j
∗ in axis

D by (10)

11: Generate a random 1a by 1a← N (0, δ2D,j∗ )

12: for each signal ãDj in f do

13: Adjust value of signal ãDj by (12).

14: end for

15: end for

16: end for

17: Ã← Ã ∪ Ã
18: end for

19: end for

20: return Ã

connected layers (FC) for classification. The network accepts
the gait cycle expressed by a (4×120) matrixAi as the input,
and outputs a vector

ŷi =
[
ŷi,1 ŷi,2 . . . ŷi,Nu

]
, (13)

where Nu is the number of users in the dataset, and ŷi,j
(1 ≤ j ≤ Nu) represents the predicted probability of cycle
Ai belongs to the user j. Detailed computation of each layer
is explained as follows.
• Conv1. Given a gait cycle Ai, the Conv1 performs
one-dimensional convolution using 32 filters of size
(1× 6), and uses the rectified linear unit (ReLU) as the
activator, to get the output of size (32@4× 115). By the
one-dimensional convolution, this layer uses filtering on
each dimension of the input data separately, and does not
consider the correlation among different dimensions.
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FIGURE 4. The architecture of deep convolutional neural network for gait identification.

• Conv2: The second Conv layer performs two-
dimensional convolution with 48 filters of size (3 × 6),
activated by the ReLU unit. By these filters, the corre-
lation information between data in different dimensions
is detected and captured automatically. Then, the max-
pooling of size (2×3) is used to obtain the output of size
(48@2× 38).

• Conv3: The third Conv layer creates a fusion of the data
in two dimensions to get a one-dimensional vector using
64 filters of size (2 × 6), activated by the ReLU unit.
Then, the max-pooling of size (1× 3) is used to reduce
the data size to (64@1× 11).

• Conv4: The last Conv layer performs convolution with
96 filters of size (1 × 3) as the final filtering to get an
output of size (96@1 × 9). The ReLU unit is also used
as the activator. Then, the output is flattened into a vector
of size 864, which is represented by 864 neuron nodes.

• FC1: The first FC layer computes Nf outputs from 864
inputs, in which, each output is a linear combination
of all the input nodes, and activated by the Hyperbolic
tangent function. All the output nodes form a vector

fi =
[
fi,1 fi,2 . . . fi,Nf

]
(14)

whose elements are used as the hidden features of the
gait cycle Ai extracted by CNN.

• FC2: The second FC layer acts as a classifier, which
uses fi to predict the user identity. For a model of Nu
users, this layer outputs a vector ŷi of sizeNu, where each
component ŷi,j is computed from all the input nodes,
activated by the log softmax function.

In this network, Nf is determined according to the number
of participated users Nu as Nf = 3

2Nu. In overall, a better
performance can be achieved by increasing Nf , however, too
largeNf could cause the curse of dimensionality. In this paper,
we select an optimal value for Nf . Detailed analysis of Nf on
the classification performance is presented in [10].

3) NETWORK OPTIMIZATION
The network parameters are initialized randomly, then
updated iteratively through the supervised training process
using the stochastic gradient descent algorithm. Specifically,
let L be the set of gait cycles for training the model. Each gait
cycle Ai ∈ L is labeled with the identity of its owner user ui

(1 ≤ ui ≤ Nu). The training process is repeated by a number
of epochs. In each epoch, a set B ⊂ L including B gait cycles
are selected, where B is the batch size. All gait cycles in B
are input to the network to obtain a set of B output vectors
ŷi (13), (1 ≤ i ≤ B). The loss over the batch B is computed
using the negative log-likelihood (NLL) function

L = −
1
B

B∑
i=1

log(ŷi,ui ). (15)

The loss L is used to update the network parameters through
the back-propagation procedure. The process is repeated to
minimize L iteratively by rotating the gait cycles in B until
it spans entire L. When all gait cycles in L have been used,
the training process for one epoch completes. Then, entire
process is repeated with a new epoch until the stopping
criterion is met (see Section IV-A).

IV. EVALUATION
In this section, we present the experiment and evaluating
result of the proposed model. First, we describe the datasets
and experimental procedure. Then, the results of identifica-
tion and verification tasks are reported along with the detailed
analysis in each task. Finally, we give a relative comparison
between our study and state-of-the-art researches.

A. DATASET AND EXPERIMENT PROCEDURE
We evaluated our model using 2 datasets, the realistic and
the largest one, respectively published by Chonnam National
University and Osaka University.

1) CHONNAM NATIONAL UNIVERSITY DATASET
The Chonnam National University dataset (CNU) [20] com-
prises of acceleration and orientation gait signals of 38 volun-
teers (10 females and 28 males), acquired by Google Nexus
One. Each volunteer conducted 19 walking sessions on aver-
age, each session was performed on a different day during a
long-time period, and under unconstrained outside conditions
(e.g., clothes, foot gears, road surfaces). Thus, this dataset is
considered as the most realistic one. By it, we aim to confirm
our methods on real conditions.

Using the preprocessing methods described in
Section III-A, we processed the raw gait signals and seg-
mented to gait cycles. There were 21427 extracted gait cycles
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of all users. The extracted gait cycles were divided into
3 parts. The first one, denoted as L, was formed by randomly
selectingm gait cycles of each user, and was used for training
the model. From the remaining data, 50% gait cycles of each
user were selected randomly to make the validation dataset V .
All other gait cycles formed the testing dataset T .

In the training phase, gait cycles in L were augmented to
generate more training data using the proposed augmentation
algorithms (section III-B). The set V were used to termi-
nate the training process. Specifically, when one epoch was
completed, the loss on validation set V was computed. If the
loss on V did not decrease during 15 consecutive epochs,
the training process was terminated and all parameters of the
network were fixed for testing. In the testing phase, each gait
cycle in T was input to the trained model to get the predicted
user identity. The identification accuracy is computed by

ACC =
100× Nc
|T |

, (16)

where Nc is the correct classifying cases, and |T | is the
number of gait cycles in the testing set T .

To provide a detailed analysis on the impact of the aug-
mentation algorithms, we conducted the above experiment
with different numbers of augmenting gait cycles (i.e., p, q),
performed on different amount of training gait cycles (i.e.,m).
Each case was repeated 10 times and the averaged accuracy
was reported.

2) OSAKA UNIVERSITY GAIT DATASET
The Osaka University inertial sensor-based gait dataset
(OU-ISIR) [22] is considered as the largest published iner-
tial sensor-based gait dataset, which consists of two sub-
datasets. The first one contains gait signals of 744 users
(each user performed two level-walk sequences), captured
by the acceleration and gyroscope sensors of an IMU unit
placing in the center of the backwaist. The second sub-dataset
comprises data of 495 subjects, each one walked 4 sequences
including 2 level-walk, one up-slope, and one down-slope,
collected using 3 IMU units placing in the left, right and
center of the back waist, respectively. By this dataset, we aim
to analyze our model on a large number of users, thus, the first
sub-dataset was used to maximize the number of users.

Using the method summarized in Section III-A, we also
preprocessed and extracted the gait cycles from the raw gait
signals. However, for this dataset, the disorientation elimi-
nation step was skipped as the coordination of devices was
fixed during the time of acquiring data [22]. Totally, there
were 13023 gait cycles extracted. 8 gait cycles of each user
were used to construct the training dataset L; 50% of the
remaining gait cycles formed the validation dataset V , and
all the rest gait cycles were used for testing. ATD and SMP
algorithms were also adopted on L to get more training data.
However, this dataset does not contain the timestamp of gait
signal, which is needed for the ATD algorithm. To overcome
this issue, with each gait cycle i, we approximately assigned
the timestamp of each signal as ti,j = 10 × (j − 1) ms,

1 ≤ j ≤ ni. This means, in each gait cycle, the timestamp
of first signal is ti,0 = 0, and the timestamp of each signal
after that is gradually increased by 10 ms. The reason for this
approximation is the device sampled signals at the frequency
of 100 Hz when collecting this dataset. Thus, the averaged
time gap between two consecutive signals is 10 ms.

For this dataset, different settings of p and q were also
evaluated. However, as each user just performed two short
walking sequences, the number of gait cycles per each user
in this dataset is limited, which is 17 on average. Thus, all
experiments were conducted with m = 8.

B. VISUALIZATION OF THE AUGMENTING GAIT CYCLE
First, we provide a visualization of the augmenting gait cycles
to confirm that the proposed algorithms could generate new
gait cycles with the desired properties. Figures 5 and 6 plot
2 gait cycles randomly selected in CNUandOU-ISIR datasets
along with their augmenting cycles, respectively.

We could see that, when using the ATD algorithm
(Figures 5a, 6a), the magnitude of gait signal is preserved in
the augmenting cycles. And, the acting time of each signal
fluctuates arbitrarily. On the other hand, for the gait cycles
generated from the SMP algorithm (Figures 5a, 6a), the acting
time of each signal is preserved, and the magnitude varies
randomly in the augmenting cycles. Finally, by combining
the impact of ATD and SMP, the generated gait cycles vary in
bothmagnitude and time (Figures 5c, 6c), and the augmenting
gait cycles vary more naturally as had been acquired in real
condition. In all cases, the augmenting gait cycles still main-
tain the waveform of their based cycle, and they still represent
a same user identity in the vision manner.

C. IDENTIFICATION PERFORMANCE
1) CNU DATASET
The effectiveness of our proposed augmentation algorithms
on the CNU dataset is illustrated in Figure 7, which provides
the identification performance under different amounts of
augmenting and training data.

First, we provide in Figures 7a and 7b the accuracy com-
parison between adopting ATD or SMP alone and no data
augmentation, under different amount of real training data
(i.e., from 10 to 60 gait cycles). As we can see, ATD and
SMP clearly improve the identification accuracy, and their
efficiency depends on the number of training gait cycles
m and the augmenting gait cycles p, q. When having little
training data, the amount of increasing accuracy by applying
data augmentation is higher than that of having much training
data. For instance, with m = 10 and no data augmentation,
the model achieved the ACC of 80.39 %. By using ATD
augmentation with p = 1, the ACCwas increased to 83.01%,
thus the gained ACC for this case was 2.61 %. When m
was increased to 60, the gained ACC gradually decreased
to 0.78 %. Similarly, when adopting SMP with p = 1 and
m = 10, the gained ACC was 0.99 %, which was reduced to
0.85% when m was increased to 60.
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FIGURE 5. The augmenting gait cycles in time, magnitude and both, of a randomly selected cycle in CNU dataset, generated from ATD, SMP and their
combination, respectively.

FIGURE 6. The augmenting gait cycles in time, magnitude and both, of a randomly selected cycle in OU-ISIR dataset, generated from ATD, SMP and
their combination, respectively.

Besides, the effectiveness of augmenting algorithms is
impacted by the amount of augmenting cycles. For both ATD
and SMP, increasing the number of augmenting gait cycles
to 2 and 3 could further improve the accuracy. For instance,
with m = 10, when using ATD algorithm with p = 2 and

p = 3, the accuracy was 84.04% and 84.84 %, respectively.
In a same way, by increasing q to 2 and 3 when adopting
SMP algorithm, the ACC was raised to 82.82% and 83.44 %,
respectively. A similar impact could be observed with other
values of m. However, further increasing the number of
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FIGURE 7. The identification ACC (%) measured by CNU dataset, under different settings of augmenting gait cycles, where p = 0, q = 0, and
p = q = 0 mean no data augmentation.

augmenting cycles beyond 3 just resulted in minor improving
the ACC, or sometimes degrading. The reason for this fact is,
with a large number of augmenting cycles, the redundant data
could exist and causes inefficient learning. Thus, we suggest
that the appropriate number of augmenting gait cycles should
be 2 or 3 when adopting ATD or SMP separately.

With the combination of ATD and SMP, the augment-
ing gait cycle varies from each other more naturally (see
Section IV-B). So, as we expected, it resulted in much
higher accuracy comparing to using each algorithm sepa-
rately, as displayed in Figure 7c. For instance, when using
m = 10 training gait cycles, combining ATD and SMP with
p = q = 1 and p = q = 2 could increase the ACC from
80.39% to 85.44% and 88.93 %, respectively. When m = 60,
the ACC was boosted from 92.3% to 94.04% and 96.24% for
the case of p = q = 1 and p = q = 2, respectively. Similar
to using ATD or SMP alone, over-increasing p and q causes
generating redundant augmenting gait cycles and degrading
the ACC. In addition, by combining the ATD and SMP algo-
rithms, the number of augmenting gait cycles is increased
multiplicatively when increasing p and q. For instance, with
p = q = 1, there are 3 augmenting gait cycles for each real
cycle. And, with p = q = 2 and p = q = 3, the number
of augmenting gait cycles respectively are 8 and 15 for each
real cycle. So, when using ATD and SMP at the same time,
we recommend using p = q = 1 or p = q = 2 to avoid
generating redundant augmenting gait cycles.

Note that, when combining ATD and SMP, p and q can be
different (e.g., p = 1 and q = 3; p = 3 and q = 1). However,
such settings will lead to a large number of time-based or
magnitude-based augmenting gait cycles. Then, the ACCwill
be degraded as we just showed above. Thus, we recommend
that p and q should be equal to get optimal performance.

2) OU-ISIR DATASET
Table 1 summarizes the identification performance measured
on OU-ISIR dataset when training with 8 gait cycles per
each user, under different settings of data augmentation.

TABLE 1. The identification ACC ( %) when adopting different settings of
data augmentation on 8 real gait cycles per each user, measured on
OU-ISIR dataset.

We could see that the proposed augmentation algorithms are
also effective for dataset having a large number of subject as
OU-ISIR. When there was no data augmentation, the iden-
tification ACC was 82.53 %. By using ATD with p = 1
and p = 2, the ACC was improved to 84.91% and 87.22 %,
respectively. Similarly, adopting SMP alone could boost the
performance to 84.71% and 87.44% for q = 1 and q = 2,
respectively. The best ACC experimented in OU-ISIR, was
89.99 %, achieved by combining ATD and SMP with p =
q = 2. For this dataset, we observed a same inference as it was
with CNU dataset. That is, too much augmenting data could
lead to redundant training cycles and make the performance
degrading. The number of augmenting gait cycles per each
real cycle (i.e., p, q) should not exceed 2.

D. VERIFICATION PERFORMANCE
In this section, we extend the identification model (Figure 4)
to construct a verification model using transfer learning and
one-class support vectormachine (OCSVM) [31]. The perfor-
mance evaluating on CNU and OU-ISIR datasets is reported
to confirm the effectiveness on verification task.

1) OCSVM-BASED VERIFICATION MODEL
It is well-known that, a deep network, which has been trained
for a specific task (e.g., identification), can be transferred to
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FIGURE 8. The ROC curves of the verification performance under different data augmentation settings, using 60 training gait cycles, measured by CNU
dataset.

use in a related task (e.g., verification) [40]. A trained CNN
network can be used as a universal feature extraction tool,
which automatically extracts good features, even for subjects
that have not leaned before [41].

Following that approach, we construct a verification model
as follows. First, we train the CNN network (Figure 4) with
the perspective of identification as described in Section III-
C.3. At this step, the ATD and SMP algorithms are also
adopted to generate more training data. Upon the training is
completed, we discard the FC2 layer, and use the remaining
network as a generic feature extraction tool which outputs a
feature vector fi (14) when inputing a gait cycle Ai. Then,
the extracted vectors fi are used as the input of OCSVM to
build a verification model.

For the verification model of a user u, OCSVM uses a
set of feature vectors fi belong to u to learn a boundary
which covers all fi and separates them from those of other
users. By OCSVM, a classifier is trained using only the data
of positive class (i.e., user u), but can handle the impostors
whose data have not given in the training stage [31]. The
main strategy of OCSVM is to map the input data to an
appropriate space corresponding to the kernel, then build a
hyperplane to separate them from the origin with maximum
margin.

At the run time stage, a testing gait cycle A′ is input to the
network to get a feature vector f′. The learned OCSVMmodel
receives f′ and returns a score g(f′) which reflects the position
of f′ in relation to the boundary. A positive g(f′) means that f′

is inside the boundary, zero indicates f′ lies on the boundary,
and outside otherwise. Thus, when g(f′) ≥ 0, A′ is classified
as positive class, and negative if g(f′) < 0. We use false
acceptance rate (FAR), false rejection rate (FRR) and equal
error rate (EER) tomeasure the verification performance. The
FRR is computed as the percentage of positive cases but are
classified as negative, while the FAR is determined by the
percentage of negative cases but the model results to positive.
To provide a trade-off between FAR and FRR, we adopt
an additional parameter θ , which plays as a flexible thresh-
old to determine positive or negative. Specifically, given

TABLE 2. The verification EER (%) when using 60 gait cycles for training,
under different numbers of augmenting gait cycles, measured on CNU
dataset.

a specific θ , A′ is classified as positive if g(f′) ≥ θ , and
negative if g(f′) < θ . The equal error rate (EER) is deter-
mined as the average of FAR and FRR corresponding to a
specific threshold θ , at which, FAR and FRR are equivalent
or approximate to each other.

2) CNU DATASET
Figure 8 displays the verification performance ROC curves
measured in CNU dataset, under different settings of data
augmentation when using 60 real gait cycles for training, and
Table 2 provides the EER for each case. Specifically, the EER
when using no data augmentation was 3.07 %. By adopting
ATD alone with p = 1, p = 2 and p = 3, the EER was
reduced to 2.63 %, 2.35% and 2.15 %, respectively. For SMP,
a similar effect could be observed. Using SMP alongwith q =
1, q = 2, and q = 3 could reduce the EER to 2.52 %, 2.14%
and 1.91 %, respectively. After all, as expected, the highest
performance (lowest EER) was achieved as 1.62% by com-
bining ATD and SMP with p = q = 2.

3) OU-ISIR DATASET
Figure 9 displays the ROC curve of FAR and FRR measured
on OU-ISIR dataset when using 8 real gait cycles of each user
for training, under different configurations of data augmenta-
tion. Table 3 summarizes those results by providing the EER
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FIGURE 9. The verification EER (%) when using 8 gait cycles for training, under different numbers of augmenting gait cycles, measured on OU-ISIR
dataset.

TABLE 3. The verification EER (%) measured on OU-ISIR dataset, when
training with 8 gait cycles, and using different numbers of augmenting
gait cycles.

for each case. By these results, we show that the proposed data
augmentation algorithms are also effective for the task of user
verification, under a large number of subjects. Specifically,
without data augmentation, the model achieved the EER of
7.58 %. The use of ATD algorithm with p = 3 could reduce
it to 5.21 %. Similarly, by using SMP with q = 2, the EER
was decreased to 5.14 %. Again, the best performance exper-
imented in this dataset was 4.49 %, achieved by combining
ATD and SMP with p = q = 2.

E. STATE-OF-THE-ART RESEARCH COMPARISON
In this section, we provide a comparison between our study
and state-of-the-art researches which experimented on CNU
and OU-ISIR datasets. It is very difficult to provide a fair
comparison as the experimental evaluation of each research
was conducted in different settings (e.g., the portion of train-
ing data, the potion of data for each testing trial, the number
of users). As the classification performances (e.g., FAR, FRR,
EER) are strongly affected by these factors [7], the com-
parison is just relative. We summarize in Table 4 not only
classification performances but also other settings, to provide
a comparison as fairly as possible, where the cell with ‘−’
means the corresponding factor was not given.

On the CNU dataset, our study clearly out-performs the
state-of-the-art research [20] in all aspects. Specifically,

in their research, they used 50% of data for training, and 4 gait
cycles for each time of testing. They achieved 94.93% ACC
for identification task and 5.35% EER for verification task.
By data augmentation, we could use smaller potion of data
for training as 23% dataset. However, our trained model is
more robust as it achieves higher performance (i.e., 96.24%
ACC and 1.62% EER) while using shorter data sequences for
each testing trial (i.e., 1 gait cycle).

The OU-ISIR dataset has been used for experimental eval-
uation on many researches. In the early time, Zhong et al.,
2014 [42] constructed the gait dynamic images (GDIs),
which is invariant to sensor orientation, for the task of
user verification. The EER of 5.6% was reported when
using 50% of data for training and one walking ses-
sion (9m long) for each time of testing. The studies
after that gradually improved the classification performance
overtime [6], [14]–[16], [36], [43]. A recent research by Del-
gado et al. [14] reported a high-performance model in both
the task of verification and identification (i.e., 94.8 % ACC
and 1.1% EER) with the use of CNN on multi-sensor and
multi-task learning. On the other hand, Fernandez et al. [16]
conducted a first approach with RNN and achieved the EER
of 7.55% when using 80% of data for training and 1 cycles
for each testing trial. To the best of our knowledge, [16]
is also the only research that adopts RNN to the task of
inertial sensor-based gait recognition. Usually, the classi-
fication performance is greatly impacted by the potion of
training data and the amount of data used for each testing
trial. A larger potion data for training usually results in a more
robust classifier, while a longer sequence of data for testing
provides more stable and sufficient information to get higher
prediction accuracy.

We can see that our model out-performs all other methods
while using smaller potion of training and each testing trial,
excepting the studies [14], [36]. The reported ACC in [36] is
96.84 %, which is higher than our identification performance
as 89.99 %. However, in [36], the authors just used 100 users
selected randomly among 744 users for experiment, while
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TABLE 4. The comparison on different factors (e.g., dataset, performance, training/testing data potion) between state-of-the-art gait recognition
researches.

it has been showed that, larger participated subject would
reduce the classification performance [7], [22]. Similarly,
in the study [14], beside the robust of their proposed method,
the high performance has the contribution of long testing data
sequence (i.e., 9m long) and the fusion of multiple sensors
(i.e., gyroscope and accelerometer). For this study, we focus
on designing a gait data-based augmentation algorithms.
Thus, we only use the accelerometer. In addition, we used
a short sequence data as 1 gait cycle for each testing trial. We
strongly believe that, incorporating the gyroscope data and
increasing the training/testing data amount could increase the
performance as indicating in prior studies [7], [16].

V. CONCLUSION
In this study, we proposed a novel approach for inertial
sensor-based gait data augmentation. First, two algorithms
as ATD and SMP were proposed, to create random varia-
tion in the time and magnitude domain, respectively. They
were designed to arbitrarily adjust the real gait data for
making variation, while preserving the critical information
of real data in augmenting data. A generic deep CNN gait
model was designed for user identification task, in which,
the ATD and SMP algorithms were coordinated effectively.
Then, a verification model was constructed by extending the
identification model using transfer learning and OCSVM.
We analyzed ATD, SMP and the proposed models using
the realistic and the largest gait dataset (i.e., CNU dataset
and OU-ISIR dataset, respectively). The experiment results
show that the combination of ATD and SMP could generate
augmenting data varying naturally as real data. And by their
help, the verification and identification performances were

effectively improved. In addition, the proposed algorithms
could operate on various sensor models, which could be
widely employed for data augmentation in future deep gait
models.
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