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ABSTRACT Emotion plays a significant role in perceiving external events or situations in daily life. Due
to ease of use and relative accuracy, Electroencephalography (EEG)-based emotion recognition has become
a hot topic in the affective computing field. However, scalp EEG is a mixed-signal and cannot directly
indicate the exact information about active cortex sources of different emotions. In this paper, we analyze
the significant differences of active source regions and frequency bands for pairs of emotions-based recon-
structed EEG sources using sLORETA, and 26 Brodmann areas are selected as the regions of interest (ROI).
And then, six kinds of time- and frequency-domain features from significant active regions and frequency
bands are extracted to classify different emotions using support vector machines. Furthermore, we compare
the classification performances of emotion features extracted from active source regions and EEG sensors.
We have demonstrated that the features from selected source regions can improve the classification accuracy
by extensive experiments on the DEAP and TYUT 2.0 EEG-based datasets.

INDEX TERMS Emotion recognition, EEG source reconstruction, inverse solution, difference analysis of
active source, time- and frequency-domain features.

I. INTRODUCTION
Emotion is the human affective response to the external
event or specific situation, which plays a significant role
in daily life. If a person can’t correctly perceive and reg-
ulate emotions, it will become very terrible. For example,
as a mood disorder, depression usually causes severe symp-
toms that affect one’s feeling, sleeping and even thinking.
Besides, if we can endow a machine with emotion, it will
significantly improve the efficiency of the human-machine
interaction. Therefore, analyzing the emotionmechanism and
automatic recognition of emotion state has become a hot
topic in psychology, medicine and computer science in recent
years [1], [2].

In General, it is believed that people have six basic emo-
tions [3], including anger, disgust, fear, happiness, sadness,
and surprise. Besides this discrete emotion, there is a contin-
uous model [4], which can be described in a 2-dimensional
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space with dimensions valence and arousal (see Fig. 1) or
even with third dimension dominance. Early studies about
human emotion mainly focused on facial expressions, speech
and gestures, which are the external signs of emotion. That
is, we can often perceive a person’s happy or sad emotion
from facial expression and speech. But these feelings can be
controlled by people, and their real emotions will be masked.
Thus, the current researches about emotion mainly focus on
physiological signals [5], [6], e.g. galvanic skin response
(GSR), heart rate (HR), electroencephalography (EEG),
magnetoencephalography (MEG) and functional magnetic
resonance imaging (fMRI) and so on. These can give some
objective indicators of emotion. The GSR and HR mostly
reveal the arousal information, while EEG, MEG and fMRI
have to do with the neurocognitive process of the brain.
Especially, EEG is of increasing interest, because of its non-
invasiveness and the relative ease of use. Another critical
advantage of EEG is its high temporal resolutions, which can
characterize the dynamic response of different emotions in
the millisecond level.
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FIGURE 1. Schematic diagram of our framework.

Currently, researches on EEG emotion recognition focus
on selecting the optimal channels or features from raw EEG,
which can notably improve the emotion recognition accu-
racy [7], [8]. However, scalp EEG is amixed-signal frommul-
tiple cortex sources through some tissues. It cannot directly
indicate the exact information about active sources of differ-
ent emotions in the brain. Many various sources may generate
the same distribution on the scalp because of the volume
conductor and field spread effects [9].

To localize the active sources, we commonly employ the
method to compute the inverse solution, which is the esti-
mation of an equivalent dipole or current density on prede-
fined surfaces or a three-dimensional volume with a priori
assumption [10]. Initially, EEG source reconstruction was
used as a useful technique to localize the epileptic focus
non-invasively [11]. Due to non-uniqueness of the inverse
solutions, the head model-based forward and inverse prob-
lems were studied. Some source estimation algorithms have
been proved to be reliable, including least square fit, multiple
signal classification, minimum norm, local autoregressive
average, Bayesian approaches and low-resolution brain elec-
tromagnetic tomography (LORETA) [12]. Keil et al. [13]
investigated the time course and source distribution of emo-
tional picture processing using minimum normmethod. They
localized the sources of slow-wave modulation in occipital
and posterior parietal cortex with a right-hemispheric dom-
inance. Keuper et al. [14] reconstruct the current-density
sources for two early time intervals P1 and early poste-
rior negativity (EPN) to understand the spatiotemporal brain
dynamics underlying emotional-word processing by using
L2-minimum norm estimate and realistic head models.

Further, Kashyap et al. [15] performed the source loca-
tion of EEG and functional connectivity for the DEAP
emotional dataset by using standard LORETA (sLORETA)
tool. The results showed that there were different active
regions with different current densities for different emo-
tional states. Becker et al. [16] presented a new 257-channel

EEG emotion database and reconstructed the cortical activity
by applying the regularized least-squares WMNE algorithm.
And the features were extracted from source regions and
EEG channels. The results showed that the source recon-
struction improved the valence classification performance.
Padilla-Buritica et al. [17] proposed a method for emotion
classification that relied on features extracted from the active
brain areas, including power spectral density, Wavelet, and
Hjorth parameters. Obtained results on the DEAP database
showed that source estimation by employing the multiple
sparse priors (MSP) can improve the accuracy of discrimina-
tion. In [18], sLORETAwas used to localize regions involved
in different emotions of DEAP dataset. Seven frequency
bands were computed to evaluate gender differences for emo-
tional responses.

In summary, EEG source localization procedure can
exploit the available spatiotemporal information for emotion
recognition. However, the problem of field spread is never
wholly abolished in source space with inverse solution cur-
rently. A better strategy could be to analyze the active changes
for different emotions, rather than the active strength [19].
Most of the works did not focus on the significant differ-
ences of active sources between pairs of emotions. No study
has yet been conducted to systematically explore the cortex
regions of interest (ROI) mapping from EEG for different
emotions. Therefore, the principal goals of this study are to
analyze the differences of cortical ROI among emotion tasks
and extract the emotion-based recognizable features from the
active sources. As shown in Fig. 1, our work is made up of
three parts as follows. For the preprocessed emotion-based
EEG data, first, the sLORETA tool is applied to obtain the
inverse solutions of EEG sources and analyze the significant
differences of active source regions and frequency bands
between pairs of emotions. The source regions and frequency
bands of interest are determined. Second, six kinds of fea-
tures from both significant active source space and sensor
space are extracted to classify different emotions. Finally, the
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classification performances of emotion features extracted
from active source regions are compared with the ones from
EEG sensors.

This paper is organized as follows: In Section II,
we describe the emotion datasets and the source localization
steps, the types of features, and the classification approach
that we consider in this paper. Section III presents and dis-
cusses the classification results that we have obtained on two
datasets. These results are summarized, and conclusions are
drawn in Section IV.

II. MATERIALS AND METHODS
A. EEG-BASED EMOTION DATASETS
In this work, the emotion EEG signals from DEAP [20] and
TYUT 2.0 [21] datasets were used to evaluate the perfor-
mance of source localization and emotion recognition. The
DEAP dataset includes 32-channel EEG signals of 32 sub-
jects for 40 trials. During each trial, the subject was required
to watch a one-minute excerpt of music videos and rate
it in terms of valence, arousal, dominance, liking with the
distributed scores from 1 to 9. Herein, the emotion states are
categorized into four classes including HALV, HAHV, LALV
and LAHV according to valence-arousal scores, where the
score greater than five labels high (H) and the score less than
five labels low (L). The EEG signals were downsampled to
128 Hz and the EOG artifacts were removed with a blind
source separation technique. A 4.0-45 Hz band-pass filter,
common average reference and 3s baseline correction were
applied to data preprocessing. And then, a 5 s hamming
window with non-overlap was used to divide each signal into
12 data segments.

The TYUT 2.0 dataset from our laboratory was recorded
with 1000 Hz sampling rate by using the 64-channel Neu-
roscan system. We selected the EEG data from 16 subjects
for 250 trials with five classes of emotions, including sadness,
anger, happiness, surprise and neutral. Each emotion had 50
trials, and each speech clip was only presented once at each
trail. The EOG artifacts were removed by using independent
component analysis. The 0.5-45 Hz band-pass filter and bilat-
eral mastoid reference were applied to data preprocessing.
A 1s hamming window was used to extract an event-related
data frames from -0.2s to 0.8s, and 0.2s baseline correction
was applied. The detailed information about these two pub-
licly available datasets is shown in Table1. The placement
of the electrodes is depicted in Fig. 2, and the considered
electrodes in DEAP dataset are marked in black.

B. RECONSTRUCTED EEG SOURCES OF EMOTIONS
As a mixture signal, the scalp EEG of emotional response
cannot be interpreted straightforward. To assess the active
brain regions, we should project the EEG data on the source
space, which can be modelled by a high number of current
dipoles with fixed locations and orientations as follows,

X = KS + ε (1)

TABLE 1. Description of EEG-based emotion datasets.

FIGURE 2. 10/20 Electrode Positions.

where X ∈ RC×T is EEG signal with C channels and T
time samples, S ∈ RN×T is the N distributed current dipoles
perpendicular to the cortical surface, ε is the noise from
measurement system and background activity of the brain.
In this case, K ∈ RC×N is defined as the lead-field matrix
from sensor space to source space, which can be computed for
a given head model and is thus known. However, the number
of scalp sensors is usually much less than the number of
current dipoles, i.e. C � N , the lead field matrix is severely
underdetermined. So it is necessary to make some additional
constraint assumptions for the source current dipoles to solve
this ill-posed inverse problem. The commonly employed
assumption is that the spatial distribution energy of source
is limited, and then the solution of the inverse problem can be
transformed into the following optimization problem,

min
K ,ε
‖X − KS − ε‖2 + λ ‖S‖2 (2)

where λ ≥ 0 is a regularization parameter. This optimization
problem is similar to the regularized least-squares function,
which can be solved by sLORETAmethod with little running
time and zero location error [22]–[24]. The specific solution
to this optimization problem is as follows.

Ŝ = TX (3)

where T = KTH
[
HKKTH + λH

]+, H = I − 11T /1T 1 ∈
RC×C is the centering matrix, I ∈ RC×C is the identity
matrix, 1 ∈ RC×1 is a vector of ones; and []+ denotes the
pseudoinverse.
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FIGURE 3. Differences of active brain sources for DEAP emotion dataset (∗ p<0.05, ∗∗ p<0.01).

In this study, we investigated the significant differences
of active brain sources for four EEG frequency bands by
different kinds of emotion’s stimulus. The EEG frequency
bands, including θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), and
γ (30-45 Hz) were computed using the least-squares FIR
bandpass filter. The sLORETA was used to obtain the corti-
cal distribution of current density for the emotion EEG and
to compare the difference among emotion responses using
paired samples t-test. We used a three-shell spherical head
model with the Colin27 brain atlas template from Montreal
Neurological Institute (MNI) and produced 6239 cortical
grey matter voxels at 5mm resolution in MNI coordinates.
Neither data normalization nor the baseline correction was
performed. The t-test was carried out for a log of the ratio
of averages (log of F-ratio), and the randomization statistical
nonparametric mapping (SnPM) was performed to compute
critical thresholds and p values. The number of randomiza-
tions was set to 5000.

Fig. 3 and Fig. 4 summarize the differences of active
brain sources for above mentioned two EEG emotion datasets
with four frequency bands respectively. The source location
difference between any pair of emotions can be observed

in cortical level and Brodmann areas (BA). For the DEAP
dataset, the results show significant differences between pairs
of emotions in BA3, 18 and 10 for γ and θ frequency bands
with p<0.05. These areas mainly involve the postcentral
gyrus, anterior prefrontal cortex and occipital visual cortex,
which are related to emotional perception and processing.
This viewpoint is consistent with the results in [25], [26].
For example, BA3 has been implicated in the perception
of emotions based on vocal prosody, BA10 is related to
dealing with emotional stimuli, and BA18 responses to emo-
tion in visual processing. Other active regions of emotion
mainly include BA6, 13, 19, 29, 30, 31 39, 40, 41 and 47.
In addition, the significant differences might be determined
by arousal, i.e. response to different emotions are affected
by high arousal (HA) and low arousal (LA), and the effect
of valence is smaller compared with arousal. This result is
consistent with [27].

Therefore, extracting valence-related features is essential
to distinguish different emotions.

For the TYUT 2.0 Emotion dataset, the results show sig-
nificant differences between pairs of emotions in BA5, 6,
9, 13, 19 and 23 from θ , α and γ frequency bands with

11910 VOLUME 8, 2020



G. Chen et al.: Emotion Feature Analysis and Recognition Based on Reconstructed EEG Sources

FIGURE 4. Differences of active brain sources for TYUT 2.0 emotion dataset (∗ p<0.05, ∗∗ p<0.01).
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TABLE 2. Features applied in this paper.

p<0.05. Other active regions of emotionmainly include BA3,
7, 8, 18, 20, 29, 30, 39 and 40. Similar to DEAP dataset,
significant differences mainly occur between high arousal
and low arousal emotions, such as anger- sadness, sadness-
happiness and sadness-surprise.

Above all, though all BA regions contribute to the mea-
sured EEG signals, only part of them will be involved
in processing emotions. For further analysis and feature
extraction, we consider 26 Brodmann areas as the region
of interest (ROI) which have been observed from the
above results. The selected ROI sets include BA3, 5, 6,
9, 10, 13, 18, 19, 23, 29, 30, 39 and 40 with bilat-
eral hemispheres. And then, the volume current density
of the active source is assigned to each ROI based on
the nearest neighbor principle, and the current density of
each ROI is obtained, from which the features were to be
extracted.

C. FEATURE EXTRACTION
In this paper, we consider six kinds of features extracted
from time, frequency and time-frequency domains that have
been widely used to emotion recognition [28]. All features
are computed in both the sensor space and source space,
where corresponding signal series in the following equations
are all called x (t). The features applied in this paper are
listed in Table 2 and are described as follows, where N is the
number of sensors or source ROI regions.

1) TIME DOMAIN FEATURES
To measure the variability of signal amplitude in the time
domain, we consider a set of classical statistical quantities
as features, comprising skewness, kurtosis and total power of
the signals. These quantities are defined below:

skewness =

1
T

T∑
t=1

(x (t)− x)3

σ 3 (4)

kurtosis =

1
T

T∑
t=1

(x (t)− x)4

σ 4 (5)

power =
1
T

T∑
t=1

x2 (t) (6)

where T is the length, x is themean value and σ is the standard
deviation of signal x (t) respectively.

2) HJORTH PARAMETERS
Hjorth parameters can describe the statistical characteristics
of signals in the time- or frequency-domains. They consist of
Activity, Mobility, and Complexity descriptors [8], which are
computed as:

Activity = σ 2
=

1
T − 1

T∑
t=1

(x (t)− x)2 (7)

Mobility = σd/σ (8)

Complexity =
σdd/σd

σd/σ
(9)

where σd represents the standard deviation of the first deriva-
tive of x (t) and σdd represents the standard deviation of
the second derivative of x (t).
The Mobility parameter is proportional to a standard devi-

ation of the power spectrum. It is an estimate of the mean fre-
quency. The Complexity gives an estimate of the bandwidth
of the signal, which indicates the similarity of the shape of
the signal to a pure sine wave.

3) FRACTAL DIMENSION
Fractal dimension (FD) is a measure of signal complexity and
irregularity. The value of FD is invariant, even under different
initial conditions and amplitudes. The larger the value of FD,
the more complicated the signal is. Therefore, the emotion
evoked signal is typically characterized by a dynamic and
non-stationary spectrum which accounts for higher FD. Due
to much higher accuracy than other methods, Higuchi’s algo-
rithm is used to estimate the FD herein [29]. Consider the
signal x (t)with length T to be analyzed, construct a new time
series.

xmk = x
(
m+

⌊
N − m
k

⌋
k
)
, m = 1, 2 · · · k (10)

where m indicates the initial value, k is the time interval
between points, and b·c means integer part. For each of the
time series xmk , the average length is computed as

Lm (k)

=


b(T−m)/kc∑

i=1

|x (m+ik)−x (m+(i1) k)|

 T−1
b(T−m) /kc k

/k
(11)

If the average value over k sets of Lm (k) is defined as
〈L (k)〉 ∝ k−D, then the curve of ln (〈L (k)〉) / ln (1/k) is
fractal with the dimensionD, i.e. the slope of the least squares
linear fit is the estimate of the fractal dimension D.

4) DIFFERENTIAL ENTROPY
Differential entropy (DE) can be used to measure the com-
plexity of signal, which can be expressed as follows,

h (x) = −
∫
∞

−∞

1
√
2πσ 2

e−
(x−µ2)
2σ2 log

(
1

√
2πσ 2

e−
(x−µ2)

2σ2

)
dx

=
1
2
log

(
2πeσ 2

)
(12)
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where the signal series x should satisfy the Gaussian distri-
bution with N

(
µ, σ 2

)
. It has been proved that the sub-band

signals can meet Gaussian distribution hypothesis [30], so the
DE features were computed in 4 frequency bands mentioned
above.

5) WAVELET ENTROPY
Thewavelet analysis is an excellent way to describe themulti-
scale and time-frequency local property with an optimal time-
frequency resolution. Wavelet entropy can reflect the degree
of signal variation, and it can provide useful information
about the underlying dynamical process associated with the
signal [31]. For the signal x (t), if the wavelet decomposition
is carried out at kth point with jth decomposition scale,
the high-frequency coefficient cDj(k) and low-frequency
coefficient cAj(k) can be obtained. And then the original
signal x (t) can be expressed as the sum of the reconstructed
signal components Dj(k) and Aj(k) as follows [32]:

x (t) = D1 (t)+ A1 (t) = D1 (t)+ D2 (t)+ A2 (t)

=

m∑
j=1

Dj (t)+ Am (t) (13)

where the frequency band of Dj(k) and Aj(k) are
[2−jfs, 2−(j−1)fs] and [0, 2−jfs] respectively, j = 1, 2 · · · ,m,
fs is the signal frequency.

Let’s write Am (t) as Dm+1 (t),

x (t) =
m+1∑
j=1

Dj (t) (14)

For the wavelet energy spectrum of x (t),

Ej =
∑
k

∣∣Dj (k)∣∣2 (15)

The total wavelet energy E is equal to the sum of the
component energy spectrum Ej based on the characteristics
of wavelet transform.

Let pj = Ej/E , then the wavelet entropy is defined as

WE = −
∑
j

pj log pj (16)

6) FUNCTION CONNECTIVITY FEATURES
Emotion responses in the brain depend on the coordina-
tion of multiple cerebral cortex regions. It is crucial that
the brain is viewed as a complex network to obtain the
functional connectivity characterizes between sensors or
source regions. Conventional functional connectivity analy-
ses exploit measurements from coherence, correlation, phase
locking value (PLV) and phase lag index (PLI) [33], [34].
In this study, we used the PLI to describe the functional con-
nectivity, which ismore robust and can address the problem of
volume conduction and active reference electrodes [35], [36].
The PLI is computed based on the instantaneous phases

φi (t) and φj (t) at brain regions i and j,

PLI (i, j) =

∣∣∣∣∣ 1T
T∑
t=1

sign
(
φi (t)− φj (t)

)∣∣∣∣∣ (17)

where sign() is the symbolic function, the range of PLI is
between 0 and 1. To compute the instantaneous phases φ (t),
the analytical signal z (t) based on the Hilbert transform is
used,

z (t) = x (t)+ ix̃ (t) = A (t) eiφ(t) (18)

where x̃ (t) is the Hilbert transform of x (t),

x̃ (t) =
1
π
PV

∫
∞

−x

x (τ )
t − τ

dτ (19)

where PV refers to the Cauchy principal value. The instanta-
neous phase φ (t) can be computed by

φ (t) = arctan
x̃ (t)
x (t)

(20)

Once the PLI matrix between pairs of brain regions is
obtained, the functional network with four frequency bands
can be constructed with a collection of nodes (brain regions)
and edges (PLI values). And then, the network properties,
including characteristic path length L, clustering coefficient
C , global efficiencyE and local efficiencyEloc, are calculated
as feature vectors to classify different emotions [37].

D. CLASSIFIER AND EVALUATION
To compare the performance of emotion recognition,
we employed the support vector machines (SVM)
classifier with Gaussian kernel, which can approximate
most kernel functions if the kernel parameter was chosen
appropriately [38]. The goal of SVM is to find a separat-
ing hyper-plane with maximum margins and classify the
data accurately. There are two parameters, including penalty
parameter and the kernel parameter, that need to be optimized
to improve the classification accuracy [39]. The grid search
method was utilized to tune the parameters, which were
searched in the range from 2−8 to 28. The classification per-
formance was assessed in terms of the average accuracy (AC)
and standard deviation (SD) using 10-fold cross-validation.

III. EXPERIMENTS AND RESULTS ANALYSIS
In this section, we compare and analyze the classification
performance for different features extracted from both sen-
sors and source regions in two emotion datasets. The experi-
ments were performed in a PC with the MATLAB R2014a
development environment. The SVM classifier was based
on LIBSVM 2.89 toolbox [40]. We first analyze the overall
performance achieved for different subjects in SectionA.And
then, in Section B, we evaluate the influence of different
frequency bands on the classification accuracy.
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FIGURE 5. Classification results of first ten subjects using different features in DEAP (a) and TYUT2.0 (b).

A. OVERALL CLASSIFICATION RESULTS
First, we analyze the classification performance using
different features of each subject in the DEAP and
TYUT2.0 datasets. The classification results are shown
in Fig. 5 and Fig. 6. The height of the bars marks the average
accuracy whereas the whiskers mark the standard deviation.
The plain colored bars and the hatched colored bars mark
the performance of sensor space features and source space
features, respectively.

In Fig. 5, while the classification performance varies with
different subjects, for most subjects, the overall classification
results tend to be similar across the mentioned features. Com-
pared with the results obtained from sensor space features,
it can be observed that the recognition results from source
space features lead to a higher accuracy rate. Even though this
improvement is not always systematic for all features, most
of the features can achieve increased classification accuracy.

In this work, we can obtain the best accuracy rate
of 94.82% with FC features of source space in the subject
10 from the DEAP dataset and 86.78% with DE features
of source space in the subject 9 from TYUT 2.0 dataset
separately. This result shows that features extracted from the

reconstructed cortex sources are superior to the ones from
scalp EEG for emotion recognition. Moreover, the improved
result is generally achieved from FC features, which reflects
the fact that FC is more sensitive to the spatial resolution of
brain signals.

In Fig. 6 (a), we can notice that the best result in the DEAP
dataset is generally achieved for FC features, followed by
DE, WE, HP, TD, and FD features. In Fig. 6 (b), the best
result in the TYUT2.0 dataset is achieved for WE feature,
followed by DE, HP, FD, TD, and FC features. In TYUT2.0,
the features that exhibit the lowest accuracy is the FC with
phase lag index, while it is difficult to detect the phase syn-
chrony related to emotions based on the onset of each trial.
In DEAP, the FC is extracted from the segments divided by
the hamming window, which can keep the signal steady and
avoid spectrum leakage.

B. INFUENCE OF DIFFERENT FREQUENCY BANDS
In section II, we have compared the significant differ-
ences between pairs of emotions for different frequency
bands. While most of significant differences between pairs
of emotions occur in γ -band, other significant differences
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TABLE 3. Average classification accuracy and standard deviation of all subjects for individual frequency band in the DEAP and TYUT2.0.

FIGURE 6. Average accuracy and standard deviation of all subjects using
different features in DEAP (a) and TYUT2.0 (b).

are present in θ and α bands. Herein, we will analyze the
classification accuracy in the DE and FC features with the
individual frequency band. Table 3 shows the average classi-
fication accuracy and standard deviation of all subjects for an
individual frequency band in DEAP and TYUT2.0. From the
table, it can be observed that the best classification accuracy is
achieved for DE and FC features in γ -band both sensor space
and source space, except for the FC feature in TYUT2.0. And
we can obtain the best average accuracy rate of 89.64% with
FC features of source space in γ -band from the DEAP dataset
and 84.67% with DE features of source space in γ -band from
the TYUT 2.0 dataset separately. In the θ -band, the average
accuracy yields a slightly lower value than γ -band. Overall,
the classification results are consistent with the findings in
section II, which show the significant active differences in γ
and θ frequency bands.

IV. CONCLUSION
In this paper, we have analyzed the significant differences
of active source regions and frequency bands for pairs of
emotions-based reconstructed EEG sources using sLORETA,
and 26 Brodmann areas are selected as the regions of inter-
est (ROI). The selected ROI sets include BA3, 5, 6, 9,
10, 13, 18, 19, 23, 29, 30, 39 and 40 with bilateral hemi-
spheres, which involve postcentral gyrus, prefrontal cor-
tex, parietal cortex, temporal cortex and occipital cortex.
Most significant differences between pairs of emotions occur
in γ , θ and α bands. And then, six kinds of time- and
frequency-domain features based on the current density of
ROI are extracted to classify different emotions using support
vector machines. Furthermore, we compare the classifica-
tion performances of emotion features extracted from active
source regions and EEG sensors on the DEAP and TYUT

2.0 EEG-based datasets. We have demonstrated that the fea-
tures from selected source regions can improve the classifi-
cation accuracy by extensive experiments. Moreover, the best
classification accuracy is achieved for DE and FC features
in γ -band both sensor space and source space. Because the
reconstructed sources with sLORETA are blurred, as the
future work, we need to explore a more accurate source local-
ization method to improve emotion recognition performance
further.
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