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ABSTRACT A chaotic system with a hyperbolic function flux-controlled memristor is designed, which
exhibits conditional symmetry and attractor growing. The newly introduced cosine function keeps the
polarity balance when some of the variables get polarity inversed and correspondingly conditional symmetric
coexisting chaotic attractors are coined. Due to the periodicity of the cosine function, the memristive system
with infinitely many coexisting attractors shows attractor growing in some special circumstances. Analog
circuit experiment proves the theoretical and numerical analysis.

INDEX TERMS Attractor growing, conditional symmetry, hyperbolic function, offset boosting.

I. INTRODUCTION
Memristor as the fourth basic circuit component has raised
great interest in nonlinear field. In 1971, Chua predicted the
existence of the memristor from the symmetry structure of
circuit components. In 2008, HP company developed a solid-
state memristor proving the prediction of Chua’s. From then
on, memristor has been become a research focus in the area
of circuit and computer [1]–[4], two main branches of which
are physical design and mathematical modeling. Interest-
ingly even hyperbolic sine function [5]–[7], hyperbolic cosine
function [8], [9], or even hyperbolic tangent function [10],
[11] is used to model memristor for chaos producing.

In addition, multistability of a dynamical system [12], [13]
has attracted great interest in nonlinear science and engi-
neering. When the symmetry is broken, symmetric pairs of
attractors [6], [14]–[17] are born instead of the symmetric
one, even some of which are hidden [18]–[20]. Asymmetric
systems give coexisting attractors from different directions.
As we know, symmetric attractors can still stay in asymmetric
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systems when conditional symmetry is obtained [21]. In this
case, the polarity balance of conditional symmetry is main-
tained by the offset boosting. In addition, conditional sym-
metry provides a new way to organize coexisting attractors
[22]–[24], where it is a special bond for attractor growing
[25], [26].

In this paper, an offset-boostable chaotic system is selected
for hosting memristor and conditional symmetry. By intro-
ducing a hyperbolic-tangent-function-based memristor and
a cosine function, a new four-dimensional chaotic system
was constructed with the following properties: (1) chaos pro-
ducing; (2) Being of conditional symmetry; (3) Exhibiting
infinitely many oscillations; (4) Attractor growing. There-
fore, to the best of our knowledge, this class of memristive
system has never been reported. In section 2, the newly
introduced memristor and the derived chaotic system were
given with basic analysis. In section 3, special property
of conditional symmetry was analyzed in detail. In section
4, attractor growing was observed. In section 5, circuit
experiment proves the theoretical and numerical analysis.
Some discussions and conclusions were given in the last
section.
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II. SYSTEM MODEL
A chaotic system [21] is selected as,

ẋ = y2 − az2,
ẏ = −z2 − by+ c,
ż = yz+ x.

(1)

When a = 0.4, b = 1.75, c = 3, system (1) has chaotic
solution with Lyapunov exponents (0.1191, 0, −1.2500)
and Kaplan-York dimension of DKY = 2.0953. A peri-
odic trigonometric function is introduced to coin a self-
reproducing system [21],

ẋ = y2 − az2,
ẏ = −z2 − by+ c,
ż = yz+ d cos x.

(2)

When a = 0.48, b = 1.4, c = 3, and d = 6.2, sys-
tem (2) exhibits chaotic oscillation with Lyapunov exponents
(0.13966, 0,−1.9466) andKaplan-York dimension ofDKY =

2.0717. Since dcos(x) = −dcos(x+(2k+1)π) (k ∈N), when
x → x+(2kπ+1) (k ∈ N), y → y, z → -z, the polarity
balance of system (2) is restored, therefore system (2) is of
conditional reflection symmetry.

A memristor was selected to maintain the structure of
conditional symmetry. The flux-controlled memristor is from
a hyperbolic function,

W (w) = dq(w)
dw = tanh(w),

i = W (w)y = tanh(w)y,
dw
dt = y2 − w.

(3)

whereW (w) represents the voltage and current constraints in
the memristor, which is a typical 8-like hysteresis loop. The
newly developed memristive system can be rewritten as,

ẋ = y2 − az2,
ẏ = −z2 − by tanh(w)+ c,
ż = yz+ d cos x,
ẇ = y2 − w.

(4)

When a = 0.5, b = 1.4, c = 3, and d = 6.2 and the
initial conditions are (1, −1, 1, 0) and (1+π , −1, −1, 0),
system (4) gives pairs of chaotic oscillations with conditional
symmetry with Lyapunov exponents (0.21112, 0, −1.0836,
−1.6862), and Kaplan-York dimensionDKY = 2.1948, as
shown in Fig.1. In fact, system (4) exhibits infinitely many
chaotic oscillations around those equilibria (0.9788+2kπ ,
83.4774, 0.9894, 1.3992) (k ∈ N) [27]. All those equilibrium
points share the same eigenvalues:λ1 = (−3.4209, 0.86364
± 2.2862i, −0.30641), showing that they are saddle-foci of
index 2.

III. CONDITIONAL SYMMETRY ANALYSIS
Unlike those coexisting symmetric attractors, system (4) also
exhibits coexisting attractors of conditional symmetry. The
periodic trigonometric cosine function shows the power for

FIGURE 1. Pairs of conditional symmetric chaotic attractors in system (4)
with a = 0.5,b = 1.4, c = 3, d = 6.2 under initial conditions of [1, −1, 1, 0]
and [1+π , −1, −1,0] in red and green respectively: (a) x - y plane, (b) x-z
plane, (c) x-w plane, (d) y -z plane.

FIGURE 2. Coexisting attractors in system (4) with a = 0.5, b = 1.4, c = 3,
d = 6.2 under initial conditions [x0, −1, 1, 0], x0 = 1, 1+π , 1+2π , 1-π ,
1-2π are for green, magenta, red, cyan, blue correspondingly: (a) x-z
plane, (b) x - w plane.

generating infinitely many coexisting attractors [28]–[32],
as shown in Fig.2.

By selecting initial conditions, various attractors in their
separate basins are extracted. The location of coexisting
attractors can be observed from the average value of each
variable. As shown in Fig.3(a), when the initial condition of
x ∈ [−15, 15], nine coexisting attractors are captured by the
stepwise average value of x. The average value of z sways
periodically with the initial value of x proving the conditional
reflection symmetric oscillations. Unpredicted jumping of the
average value of x indicates the fractal basin boundaries of
attraction. Fig.4 shows the unusual ‘‘undisciplined jump’’
when x0 = 1.56, x0 = 1.60 and x0 = 1.58. Different chaotic
attractors share the unified Lyapunov exponents, as shown
in Fig.3(b). Each coexisting oscillation undergoes its own
bifurcation. As shown in Fig.5, when a = 0.5, b = 1.4,
c = 3, d = 6.2, b varies in [1.35, 1.85], five independent
bifurcations coexist safely from different initial conditions of
x. All these bifurcations share a unified Lyapunov exponent
spectrum approximately.
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FIGURE 3. Coexisting oscillations in system (4) with a = 0.5, b = 1.4,
c = 3, d = 6.2 under the initial condition [x0, −1, 1, 0], x∈ [−4π , 4π ]:
(a) average values of x, y, z, w, (b) Lyapunov exponents.

FIGURE 4. Coexisting attractors in system (4) with a = 0.5, b = 1.4, c = 3,
d = 6.2 under the initial condition [x0, −1, 1, 0] in the x-z plane.

FIGURE 5. Coexisting bifurcations in system (4) with a = 0.5,c = 3,
d = 6.2, b∈ [1.35, 1.85] under the initial condition [x0, −1, 1, 0]:
(a) bifurcation diagram (y = 0.5), x0 = 1, 1+π , 1+2π , 1-π , 1-2π are for
green, magenta, red, cyan, blue separately, (b) Lyapunov exponent
spectra.

When the parameter c varies in [3, 4], system (4) teeters
between chaos and periodic oscillation as shown in Fig.6. For
the special structure of conditional symmetry, each solution
repeats its oscillations in the phase space in pairs. Typi-
cal coexisting attractors of conditional symmetry are shown
in Fig.7 and Fig.8, the detail information of those solutions
are given in Table 1 and Table 2. It is interesting that all
these coexisting attractors are arranged in pairs and extend
to infinity, but not appear any other kinds of oscillation. And
when the parameter c grows bigger, system (4) stays in chaos
but without any other style of oscillation. Coexisting pairs of
bifurcation of conditional reflection symmetry can be seen
in Fig.6 (b).

IV. ATTRACTOR GROWING
Infinitely many attractors may get interlinked when the dis-
tance among coexisting attractors get shrined. In this case,
computational noise may lead to attractor growing for the

TABLE 1. Coexisting attractors in system (4) with a = 0.5, b = 1.4, d = 6.2.

TABLE 2. Coexisting attractors in system (4) with a = 0.5, b f = 1.4,
d = 6.2.

FIGURE 6. Dynamical behavior in system (4) with a = 0.5, b = 1.4, d =
6.2 when c∈ [3, 3.86]: (a) Lyapunov exponents, (b) bifurcation diagram
(cross section: x = 0) under the initial condition [0, −1, 1, 0] and [π , −1,
−1, 0] are for red and blue.

intertwining of the fractal structure of attraction basin. Other-
wise, if the coexisting attractors stand separately with enough
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FIGURE 7. Phase portraits of coexisting attractors in system (4) with
a = 0.5, b = 1.4, d = 6.2 in the y – z plane: (a) c = 3.24, (b) c = 3.655,
(c) c = 3.

FIGURE 8. Phase portraits of coexisting attractors in system (4) with
a = 0.5, b = 1.4, d = 6.2 in the y – z plane: (a) c = 3.75, (b) c = 3.8,
(c) c = 3.829, (d) c = 3.86.

FIGURE 9. Attractor growing of system (4) with a = 0.45, b = 1.54, c = 3,
d = 6.2 under initial condition [1, −1, 1, 0].

distance, they locate in their basins of attraction safely with-
out any entanglement or interference. In the following, this
phenomenon is verified and the corresponding conditions are
discussed. As shown in Fig.9, attractor growing was captured
in system (4) when a = 0.45, b = 1.54, c = 3, d =
6.2 under the initial condition [1, −1, 1, 0]. The speed of
attractor growing is not even. Two scrolls connect when the
time duration T is 200. Another new scroll appears with the
time duration of 200 before T = 1000. But when T is from
1000 to 1200, two scrolls appear. These linked scrolls have
exceeded the definition of a bounded attractor, which can

FIGURE 10. Attractor growing under different initial conditions of system
(4) with a = 0.45, b = 1.54, c = 3, d = 6.2, IC = [f x0, −1, 1, 0], x0 ∈ [−4π ,
4π ] under the time duration of T = 1000: (a) Lyapunov exponents. (b)
Coexisting attractors, and here x0 = −4π , −2π , 0, 2π , 4π are for red,
green, blue, magenta, cyan respectively.

FIGURE 11. Average value evolution of system (4) with a = 0.45, b = 1.54,
c = 3, d = 6.2 with time duration of T = 1000: (a) IC = [x0, −1, 1, 0], x0 ∈
[−4π , 4π ], (b) IC = [1, y0, 1, 0], y0 ∈ [−4π , 4π ].

FIGURE 12. Bifurcation diagrams of system (4) with a = 0.45, b = 1.54,
and time duration T f = 1000 under initial condition IC = [1, -1, 1, 0]
(cross section of y = −2): (a) d = 6.2, c∈ [2.85, 3.25], (b) c = 3, d∈[5.6, 6.4],
(c) attractor growing under c = 3.25, d = 6.2, (d) attractor growing under
c = 3, d = 5.85.

be called as pseudo attractors [25]. Different initial condi-
tions lead to various process of attractor growing reflecting
a homogenous multistability. However, all these interlinked
attractors share the unified Lyapunov exponents (0.21586,
0, −1.0836, −1.8506) and Kaplan-York dimension of
DKY = 2.1992, as shown in Fig.10.
Attractor growing in the dimension of x can also be

manifested by the evolution of the average value of each
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FIGURE 13. Circuit schematic of the memristive system.

state variable under the continuously revised initial con-
dition. As shown in Fig.11(a), when the initial condition
x0 increases, the average value of x grows almost linearly
without considering the influence of computational noise.
The average of the other three variables remains almost
unchanged. As shown in Fig.11(b), when the initial condition
of y0 continuously grows in [−4π , 4π ], the average value of
y, z, and w keeps unchanged, while the average value of x
changes in a quadratic way. The reason may be associated
with the equation of ẋ = y2 − az2, which implies that the
derivative of x is associated with the quadratic function of y
and z.

FIGURE 14. Equivalent circuit of the flux-controlled memristor.

FIGURE 15. Pinched hysteresis loop of memristor W(w). (f = 200Hz.
x-axis: 10mv/div, y-axis: 50mv/div).

Generally all the bifurcation parameters in the system
influence the coexisting bifurcations, and pose a similar
effect on attractor growing. As shown in Fig.12(a)(b), when
a = 0.45, b = 1.54, d = 6.2, c ∈ [2.85, 3.25] or a =
0.45, b = 1.54, c = 3, d ∈ [5.6, 6.4], all the bifurcation
diagrams in system (4) show some regions with ‘‘zebra-
stripe-like bifurcation’’, where attractor growing can be eas-
ily found. The gap of stripes indicates the switches from
an attractor to another of conditional symmetry. Since the
attractor growing will increase the variable x promptly, here
the logarithmic function is applied to low its value so that to
scale its growth matching the evolvement of a parameter. The
phase trajectories shown in Fig.12(c)(d) proves the attractor
growing.

V. CIRCUIT IMPLEMENTATION
Use the PSpice software to simulate the circuit diagram
of the system (4). Generally draw a circuit diagram to con-
sider the hardware limitations of the circuit. As is shown
in Fig.1, the system variable has a main oscillation in
[−4, 4]. The analog circuit of system (4) is designed shown
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FIGURE 16. Pairs of conditional symmetric chaotic attractors in system
(5) with a = 0.5, b = 1.4, c = 3, d = 6.2 under initial condition [1, −1, 1, 0]
and [4.14, −1, −1, 0] are for red and green: (a) x- y (x-axis: 0.1v/div,
y-axis: 0.2v/div), (b) x-z(x-axis: 0.1v/div, y-axis: 0.2v/div), (c) x-w( x-axis:
0.1v/div,y axis: 0.2v/div), (d) y- z(x-axis: 0.1v/div, y-axis: 0.2v/div).

FIGURE 17. Attractor growing of system (5) with a = 0.45, b = 1.54, c = 3,
d = 6.2 under the initial condition [1, −1, 1, 0]. (a) x-z plane with time
duration of T = 5s (x-axis: 0.08v/div, y-axis: 0.2v/div), (b) x-z plane with
time duration of T = 20s ( x-axis: 0.1v/div, y-axis: 0.2v/div), (c) x-w plane
with time duration of T = 5s (x-axis: 0.08v/div, y-axis: 0.1v/div), (d) x -w
plane with time duration of T = 20s (x-axis: 0.08v/div, y-axis: 0.1v/div).

in Fig.13 with the circuit equation (5),

ẋ = 1
R1C1

y2 − 1
R2C1

z2,

ẏ = − 1
R5C2

z2 − 1
R6C2

y tanh( R17
2R16VT

w)+ V1,

ż = 1
R10C3

yz+ 1
R11C3

cos x,

ẇ = 1
R14C4

y2 − 1
R15C4

w.

(5)

The circuit consists of four channels that integrate, add, and
subtract the state variables x, y, z, and internal variables
w, respectively. Addition, subtraction, and integration opera-
tions using the operational amplifier TL084 and its peripheral

circuits, Ideal multiplier for nonlinear product operations.
The variables x, y, z, and w in system (5) correspond to the
state voltages of the four channels, respectively. In this circuit,
R1 = R3 =R4 = R5 =R7 = R8 =R9 = R10 =R11 = R12 =
R14 = R15 = 100k�, R16 = R22 = R23 = R24 = R25 =
10k�, R18 = R19 = 1k�, R20 = R21 = 2k�, R2 = 200k�,
R6 = 71.4k�, R13 = 16.1k�, R17 = 520�, R26 = 9.8k�.
V1 is 3V. Select capacitor C1 = C2 = C3 = C4 = 1nF.
Initial voltage of the capacitor Vc1 = Vc3 = 1V, Vc2 = -1V,
Vc4 = 0V, Stable phase diagram. Derived from [10] in the
hyperbolic function tanh( R17

2R16VT
w), the thermal voltage VT

of the transistor is about 26mV at room temperature. Using
a voltage-current exponential characteristic of the collector
current of a bipolar NPN transistor to construct a hyperbolic
function circuit. The circuit simulation diagram and a plot of
pinched hysteresis loop of memristor are shown in Fig.14 and
Fig.15. If the voltage across the memristor is v, the current
flowing through the memristor is i, a sinusoidal alternating
voltage Asin(2π ft) is applied to both ends of the memristor as
an excitation signal source with f = 200 and amplitude A is
0.7V. When the initial voltage of the capacitor is Vc1 = 1V,
Vc2 = −1V, Vc3 = 1V, Vc4 = 0V and Vc1 = 4.14V, Vc2 =
−1V, Vc3 = −1V, Vc4 = 0V. The conditional symmetrical
chaotic attractors are shown in Fig.16. When the resistance
R2 = 222.2k� and R6 = 64.9k� are changed, attractor
growing is shown in Fig.17.

VI. CONCLUSION AND DISCUSSIONS
A hyperbolic-tangent-function-based memristor was intro-
duced in the offset-boostable chaotic system with a cosine
function. Infinitely many coexisting attractors of conditional
symmetry are produced thereafter. In some circumstances
these coexisting attractors link together and finally form
attractor growing. Moreover, the initial-condition-induced
offset boosting can be produced by other periodic trigono-
metric functions such as sinusoidal or even tangent function.
In this case, the coexisting attractors locate in the basins
of attraction with different phases or even periods. Circuit
experiment agrees with the numerical simulation proving
the unique oscillation in the memristive chaotic system.
This unique phenomenon is firstly observed in a memristive
system, which deserves further exploration in application
engineering.
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