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ABSTRACT By merging high-resolution panchromatic (PAN) images with low-resolution multi-
spectral (MS) images, high-resolution MS images with complementary information can be obtained,
i.e., pansharpening. Multiresolution analysis (MRA) methods have attracted widespread attention in the
pansharpening field. The spatial detail information injected into MS images is extracted from PAN images
by MRA tools. Since such methods often suffer from spatial distortion and ringing artifacts, a restoration
algorithm based on blind deblurring and iterative back-projection (IBP) is proposed in this paper. First, a
blind deblurringmethod based on the Tikhonov regular constraint model is used to estimate the blurring filter.
Second, spatial details extracted from PAN images are modulated into MS images using a high-pass mod-
ulation (HPM) framework, and then fusion images are spatially enhanced based on the modulation results
and blurring filter. Finally, the IBP technique is used to project the reconstruction error back to iteratively
update and optimize the desired high-resolution images. Experiments are performed on data sets acquired
by different satellites at full and reduced resolution, and eight state-of-the-art MRA-based pansharpening
methods are used for validation. Compared to the enhanced back-projection (EBP) algorithm, the proposed
restoration method is better in improving spectral and spatial quality of MRA-based pansharpening. The
results indicate the effectiveness and superiority of the proposed method.

INDEX TERMS Blind deblurring, image restoration, iterative back-projection, multiresolution analysis,
pansharpening.

I. INTRODUCTION
With the rapid development in image sensor and imaging
technology, it is convenient for optical remote sensing satel-
lites to obtain massive images. Thus, the time, space and
spectral resolution are greatly improved. The accumulation
of massive remote sensing data provides support for accu-
rate interpretation of ground objects, including classification
and recognition. Due to physical and technical limitations,
optical remote sensing satellites such as QuickBird,
IKONOS, GeoEye and WorldView cannot provide remote
sensing images with both high spectral and high spatial res-
olution. Panchromatic (PAN) and multispectral (MS) images
are two kinds of typical optical satellite images with different
spatial and spectral properties. By combining spatial and
spectral information of MS and PAN images while removing
the redundancy, MS images with high spatial resolution can
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be obtained, which is called pansharpening. Pansharpening
belongs to image fusion, also known as superresolution.

In the past two decades, fusion of MS and PAN images
has become an important task in the field of data fusion,
which has attracted the extensive attention of researchers.
The importance of this research is illustrated by the annual
data fusion contest organized by the IEEE Geoscience and
Remote Sensing Society since 2006. At present, there have
been many theories and methods proposed for pansharp-
ening, which can be classified into three categories: the
component substitution (CS) method, the multiresolution
analysis (MRA)method and themodel-basedmethod [2], [3].
Literature [4] systematically reviewed and compared the CS-
and MRA-based pansharpening methods. CS-based methods
are often referred to as a spectral class, which separates the
spectral and spatial components by projecting MS images
into a new space and substituting spatial components with the
histogram-matched PAN images. This familymainly includes
intensity hue saturation (IHS) [5], principal component
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analysis (PCA) [6], Gram–Schmidt (GS) [7], band-dependent
spatial detail (BDSD) [8], and Gram–Schmidt adaptive [9].
These methods can be realized easily and can achieve rela-
tively good spatial quality but are more likely to suffer from
spectral distortion. MRA-based methods, called spatial class,
have better spectral quality than CS-based methods because
the spatial detail information injected into MS images is
extracted from PAN images by MRA tools. Popular exam-
ples in this family are additive wavelet luminance propor-
tional (AWLP) [10], à trous wavelet transform (ATWT) [11],
high-pass filtering (HPF) [12], smoothing filter-based inten-
sity modulation (SFIM) [13] and generalized Laplace
pyramid (GLP) [14]. MRA methods can achieve better spec-
tral quality but may introduce artifacts into fusion results and
suffer from spatial distortion. In fact, CS- and MRA-based
methods have strong complementary characteristics in terms
of enhancement of spatial details and preservation of spectral
properties. Some other fusion methods have also emerged
in recent years, such as a Bayesian method based on total
variation penalization terms [15], and sparse representation
or compressive sensing theory [16], [17]. Although these
methods have achieved good fusion effects, the high compu-
tational complexity caused by optimization techniques limits
their application in practice.

Major challenges related to image sensor and acquisition
systems include two aspects: misregistration caused by dif-
ferences between temporal or spatial coordinate systems of
MS and PAN images, and aliasing of MS bands associated
with optical properties of MS sensors, which usually results
in spectral distortion and jagged edges [18], although the
CS family has been proven to be less sensitive than the
MRA family to these two problems in general [19], [20].
The pansharpening method, due to its own limitations,
may inevitably cause some spectral distortion, artificial tex-
ture or excessive injection of spatial details. To a certain
degree, loss of useful information and degradation of fusion
results may have negative impacts on further applications.
To meet the needs of practical applications and obtain more
useful information, it is especially important to restore the
fusion results. Therefore, image restoration has become an
important research work. Several studies have combined
fusion methods with restoration in their process flows. The
literature [21] incorporated the modulation transfer func-
tion (MTF) differences between PAN and MS images into
the ARSIS-based scheme and proved that based on this dif-
ference, the fusion performance can be improved from the
perspective of geometry without degrading the image quality.
In the literature [22], estimation of the blurring filter was
modeled as an image blind deconvolution problem, and then
MS and PAN images were fused based on the estimated filter
and high-pass modulation (HPM) injection scheme. In the
literature [23], a simple improved scheme was proposed to
replace the interpolated MS image with its deblurred ver-
sion, to improve the pansharpening quality. Approaches men-
tioned in these studies all belong to restoration methods of
preprocessing; there are also some restoration methods used

as a postprocessing step for pansharpening. For example,
conditional filtering in the PCA domain was used to enhance
the spatial details of fusion results in the literature [18].
Correction of color distortion and noise near the edges was
carried out based on the fusion results in the literature [24].
Fusion quality has been improved through the postprocessing
step.

This paper focuses on the postprocessing restoration of
pansharpening results achieved by MRA-based methods.
Considering the disadvantages of the methods in detail
injection, it is necessary to focus on enhancing the spatial
details of the fusion results while further improving the abil-
ity to maintain spectral information. Gaussian-shaped filters
are mostly used to approximate the MTF of MS sensors
in practical applications. However, the MTF gain at the
Nyquist frequency may not always be available for many
sensors. Moreover, it may change with the aging of optical
and electronic equipment. Thus, using the gain at the Nyquist
frequency cannot always make the MTF of sensors achieve
the desired accuracy. Therefore, the method proposed in the
literature [22] is adopted to simulate the relationship between
PAN and MS images to estimate the MTF in this paper. The
HPM injection scheme is a well-known modulation model,
which is often used to enhance the spatial details of MS
images [11], [24]–[26]. In the literature [11], HPM tech-
nology was analogized with the contrast of images in local
areas, which is generally superior to the HPF method [24].
Therefore, the HPM scheme can be adopted to improve
the spatial quality of pansharpening. According to Wald’s
protocol [27], when a fused image blurs its spatial infor-
mation and returns to the original MS scale, it should
match the original MS image as closely as possible [28].
However, the fusion image still suffers from the loss of
spatial precision, which is contrary to spatial consistency.
Enhanced back-projection (EBP) technology, proposed in
the literature [28], is used to iteratively tune the estimated
high-resolution images, and theMTF-matched filters are used
to guide the back-projection.

Motivated by the advantages of blind deblurring, the HPM
scheme and EBP technologies, we proposed an image restora-
tion algorithm forMRA-based pansharpeningmethods in this
paper, which can be directly applied to the restoration of the
fusion results without modifying the pansharpening methods.
The contributions of the proposed restoration framework are
as follows.

(1) We use the blind deblurring method based on the
Tikhonov regular constraint model to estimate the blurring
filter. The HPM scheme and the estimated filter are used to
balance between spatial information injection and spectral
information preservation of fusion results.

(2) A new restoration framework based on the IBP tech-
nique and enhanced images is constructed, and unlike the
EBP method, the MTF-matched filter is replaced by the
estimated filter in our proposed method. The reconstruction
error is projected back to tune and update the estimated
high-resolution MS images iteratively.

VOLUME 8, 2020 13695



J. Jiao, L. Wu: Image Restoration for the MRA-Based Pansharpening Method

The rest of this paper is organized as follows. A short
overview of MRA methods and our proposed image restora-
tion method are provided in Section II. In Section III,
experimental results based on real and degraded datasets
are presented and analyzed. Finally, a conclusion is drawn
in Section IV.

II. MATERIALS AND METHODS
A. SHORT OVERVIEW OF MRA METHODS
The basic principle of MRA-based method is to extract miss-
ing details of MS images from PAN images by multiscale
decomposition, and then inject the details into MS images
interpolated to the size of PAN to obtain high spatial reso-
lution MS images M̂S. The MRA scheme is given by

M̂Sk = M̃Sk + gk · Dk , k = 1, · · · ,K (1)

where M̂Sk represents the fusion result, M̃Sk is the upsam-
pled MS image, gk indicates the injection gain matrix, sub-
script k denotes the k th band and K represents the number of
MS bands. Detailed image Dk is defined as

Dk = Pk − PLPk (2)

where Pk is the PAN image that is histogram-matched to
M̃Sk , and PLPk is the low-pass version of the PAN image. For
MRA methods, different spectral channels may correspond
to different Pk . Histogram matching of PAN images can be
performed according to M̃Sk and the function Pk of k can
be obtained [29]. In general, PLPk is calculated by iterative
decomposition of MRA tools. Through the repeated appli-
cations of a multiscale analysis operator, a two-dimensional
signal sequence with gradually reduced information is con-
structed [4]. It is the simplest method to calculate PLPk by
linear time-invariant filter hk

PLPk = Pk ∗ hk (3)

where, ∗ denotes the convolution operation.
Calculation of the injection gain matrix can be divided

into two categories of methods based on additive injection
(HPF scheme) and methods based on multiplicative injection
(HPM scheme) [4]. In this paper, the HPM scheme is used
to enhance the spatial details of pansharpened images. The
framework can be represented as

M̂Sk = M̃Sk +
M̃Sk
PLPk
· (Pk − PLPk ) = M̃Sk ·

Pk
PLPk

(4)

the ratio of MS image to low-resolution PAN image is used
as a weighting coefficient for spatial details.

CS-basedmethods can effectively reduce spatial distortion,
whereas MRA-based methods perform better in maintaining
spectral characteristics. These two types of methods are com-
plementary in terms of robustness of spatial and temporal
deviations [19]. CS- and MRA-based injection frameworks
have important differences in extracting details from PAN
images. Since low-resolution PAN images with different sur-
face objects cannot be well approximated according to the

weighted sum of selected MS bands based on CS methods,
an MRA-based method is usually adopted to estimate the
low-resolution version of the PAN.

The brief procedure of the MRA-based fusion method is
as follows. First, the MS image is interpolated to the size of
the PAN image, and then the low-pass version of the PAN
image is obtained by the equivalent filter. R is the scale factor
between the spatial resolution of the MS and PAN images.
Different equivalent filters determine whether a downsam-
pling operation is required. Finally, the injection gain coef-
ficient is calculated, and the fusion result is generated by
combining the extracted details with MS images.

B. BLURRING FILTER ESTIMATION
It is assumed that all MS bands are generated based on
the same spatial degradation of the PAN images in the
literature [22]. MS and PAN images can be regarded as
blurred images and sharp images, respectively. First, a math-
ematical model of image degradation is established

g(x, y) = f (x, y) ∗ h(x, y)+ n(x, y) (5)

where g and n are the degraded image and observation noise,
respectively, f denotes the ideal sharp image; h represents the
blurring filter, and ∗ is the convolution operator.
Images can usually be represented as matrices or vectors.

The matrix-vector notation of (5) can be represented as

g = fh+ n (6)

where f ∈ RMN×MN is a matrix operator whose construc-
tion depends on the selection of boundary conditions of
image f [30], and M × N denotes the image size. h, g and
n are represented by lexicographically ordering h, g and n,
which belong to RMN .
The blurring filter can be estimated based on the applica-

tion of the degradation model with the original PAN image
and its equivalent low-pass version PI . Calculation of PI by
a linear combination of MS bands is as follows

PI =
K∑
i=1

ωiM̃Si (7)

where M̃S is the MS image upsampled to the original PAN
size, and ω = [ω1, ω2, . . . , ωK ] denotes the weighting
coefficient vector.

To estimate the blurring filter from the preprocessed equiv-
alent PAN image, the optimization problem ofminimizing the
cost function as shown below needs to be solved

minimize
h,ω

{‖PI − Ph‖2 + λ ‖h‖2 + µ(‖Dvh‖2 + ‖Dhh‖2)}

subject to hT 1 = 1,h ∈ H (8)

where regularization terms based on gradient operators are
designed [31], which can also be regarded as prior infor-
mation under the Bayesian framework [24]. According to
the restoration model, the degraded image is fitted and
restored. Dh, Dv ∈ RMN×MN are used to represent first-order
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finite-difference operators in the horizontal and vertical,
respectively. Constraints hT 1 = 1 and h ∈ H represent
normalization and finite support, respectively, of the blurring
filter. λ and µ are weights of regularization terms.

Equation (8) can also be represented as

fh(h) = minimize
h,ω

{(PI − Ph)T (PI − Ph)+ λhTh+

µ((Dvh)T (Dvh)+ (Dhh)T (Dhh))} (9)

as the quadratic form of the cost function, (9) is used to
calculate the vector derivative of f with respect to h. When
following (10) is satisfied, a global minimum value can be
obtained.

∂fh(h)/∂h

= (∂{(PI − Ph)T (PI − Ph)+ λhTh+

µ((Dvh)T (Dvh)+ (Dhh)T (Dhh))})/∂h = 0

⇒ 2∂(PI − Ph)T /∂h · (PI − Ph)+ 2λh+

µ(2∂(Dvh)T /∂h · (Dvh)+ 2∂(Dhh)T /∂h · (Dhh))

= −2PT · (PI − Ph)+ 2λh+ 2µ(DT
v Dvh+ DT

hDhh)

= 2PTPh− 2PTPI + 2λh+ 2µ(DT
v Dvh+ DT

hDhh) = 0

(10)

Image and blur are not joint convex optimization, but when
one variable is fixed, the equation is a convex optimization
problem for the other variable, which can be solved by the
strategy of alternative iterative optimization. This problem is
transformed into a solution in which two convex optimization
subproblems are performed alternatively. First, the coefficient
ω is estimated, then optimization of the blurring filter is
performed. Calculating ω with a given estimation of h finds
the solution of simple least squares problems.

M̃STω = Ph (11)

after calculating ω, estimation of h under a given ω is as
follows

[PTP+ λI+ µDT
v Dv + µDT

hDh]h = PTPI
⇒ ĥ = [PTP+ λI+ µDT

v Dv + µDT
hDh]−1PTPI (12)

where ĥ represents the estimated blurring filter. During min-
imization of (8), it is necessary to perform multiple compu-
tations of the gradient of fh(h), which is a time-consuming
process, and the calculation can be accelerated by fast Fourier
transform F {·}. The closed-form solution obtained by fast
Fourier transform is as follows

ĥ = F−1
{
(F {P} ◦ F {PI })/(F {P} ◦ F {P} + λ+

µ(F {Dh} ◦ F {Dh} + F {Dv} ◦ F {Dv}))
}

(13)

where F {·} and F−1 {·} represent discrete Fourier transform
and inverse Fourier transform, respectively, andF {·} denotes
a complex conjugate of Fourier transform.

C. SPATIAL ENHANCEMENT
The restoration object in this paper is the pansharpened
image obtained by the MRA method. Since the advantage
of MRA tends to maintain the spectral information, the spa-
tial details of the fusion results need to be enhanced before
restoration. It has been proven through theory and practice
that the histogram matching technique used as a prepro-
cessing step pansharpening is effective for reducing spectral
distortion [32], [33]. The HPM scheme is widely used in
the spatial enhancement of fusion results [24], [26]. In the
literature [22], a fusion model was defined by taking advan-
tage of these two technologies, which can be called spatial
enhancement (SE).

PHM
LP ∈ RK×MN denotes the low-resolution version of

PHM. Generating PHM
LP through a pyramid decomposition

scheme is a widely used MRA method [34]. This process
is usually accomplished by applying a smoothing low-pass
linear filter, and the estimated blurring filter ĥ in the previous
section is used in this part.

PHM
LP,k = PHM

k ∗ ĥ (14)

where PHM
∈ RK×MN is the PAN image after histogram

matching with the MS bands, aiming at compensating the
radiation differences between the original MS and PAN
images. PHM

k can be calculated as follows

PHM
k = [P− µp] ·

σM̃Sk
σP
+ µM̃Sk (15)

where µX denotes the mean of image X, and σX denotes the
standard deviation of image X.

Based on the HPM scheme, spatial details of the PAN
images are modulated into MS images with the ratio between
the histogram-matched PAN images and low-pass PAN
images to obtain fusion results {M̂Sspak }k=1,··· ,K

M̂Sspak = M̃Sk ·
PHM
k

PHM
LP,k

(16)

where M̂S ∈ RK×MN , and the MS images are represented as
two-dimensional matrices in which each column is a spectral
vector of the corresponding pixel and each row represents a
spectral band.

Fusion images obtained by MRA methods are represented
as {M̂Sspek }k=1,··· ,K , and fusion results after spatial enhance-
ment are marked as {M̂Sfusk }k=1,··· ,K .

M̂Sfusk = (M̂Sspak − ĥ ∗ M̂Sspak )+ ĥ ∗ M̂Sspek (17)

MRA and SEmethods are combined to integrate the advan-
tages of these two. M̂Sspak − ĥ ∗ M̂Sspak denotes the spatial
details extracted from the enhanced image M̂Sspak (see the
Appendix for details). It can be concluded that ĥ ∗ M̂Sspek
can extract efficient spectral information. A balance between
these two methods is realized through the estimated blurring
filter ĥ, so that the spatial details of the fusion results obtained
by the MRA methods can be enhanced while the spectral
information is maintained well. The pseudocode for the spa-
tial enhancement is summarized in Algorithm 1.
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Algorithm 1 Spatial Enhancement Algorithm

Input: PAN and MS images, estimated blurring filter ĥ
Output: Spatially enhanced image M̂Sfusk
Begin
1 Interpolate MS image to PAN size to obtain M̃S
2 for k = 1, . . . ,K do
3 Calculate histogram-matched PAN image

PHM
k = [P− µPk ] ·

σM̃Sk
σPk
+ µM̃Sk

4 Perform SE method based on the HPM scheme

M̂Sspak = M̃Sk ·
PHMk
PHMLP,k

5 Combine the MRA and SE methods
M̂Sfusk = (̂MSspak − ĥ ∗ M̂Sspak )+ ĥ ∗ M̂Sspek

6 end for
7 Gather {M̂Sfusk }k=1,··· ,K in M̂Sfus

End

D. IMAGE RESTORATION BASED ON IBP
For the restoration of pansharpened images, the main degra-
dation factors include downsampling and blurring. Assuming
that the ideal high-resolution image is X , and the correspond-
ing low-resolution image Y can be obtained by performing
blurring and downsampling operations on X as follows

Y = (X ∗ F) ↓r (18)

where F represents the blurring filter of the imaging system,
and the filter estimated by the blind deblurringmethod is used
here, and↓r denotes downsampling operator with scale factor
r (r = 4 is usually found in pansharpening).
The IBP scheme [35] is a common method for solving

the above model and has been successfully applied in
superresolution literature [36], [37]. It was first proposed
in [38] for pansharpening postprocessing. The reconstruction
errors were projected and fused back to adjust the desired
high-resolution images iteratively, which can effectively
improve the spatial and spectral quality of pansharpening
images.

The basic idea of the IBP algorithm is that, based on
the input low-resolution image, the initial estimation of
a high-resolution image X̂0 is given and projected to the
low-resolution simulated image. The residual between the
input low-resolution image and the analog low resolution
image is the reconstruction error e, which is projected back
to tune and update the desired high-resolution image X̂ by
iteration.

The reconstruction error et of the tth iteration can be
calculated as follows

et = Y − (X̂t ∗ F) ↓r (19)

where t represents the t th iteration. Based on the reconstruc-
tion error obtained by (19), the estimation of high-resolution
images is updated as follows

X̂t+1 = X̂t + et ↑r ∗G (20)

Algorithm 2 Image Restoration Based on IBP

Input: MS, ĥ, spatially enhanced pansharpening image
M̂Sfus

Output: Restoration image M̂S
Begin
1 t = 0, tmax = 100, β = 0.1, M̂Sk,0 = M̂Sfus

2 while t < tmax
3 Perform blurring and downsampling operations

MSk,t =MS− (M̂Sk,t ∗ ĥ) ↓r
4 Calculate the residual

eMS
k,t = MS−MSk,t

5 Upsample and back project the residual
eBP,t = eMS

k,t ↑r ∗̂h
′

6 Update the estimated the high-resolution image
M̂Sk,t+1 = M̂Sk,t + βeBP,t

where, β determines the floating range of pixel
values

7 γt+1 = norm(M̂Sk,t+1−M̂Sk,t )/norm(M̂Sk,t+1)
where, norm(·) represents the matrix 2-norm

8 if t > 3
9 If the terminate condition of iteration is

satisfied
|γt−3 − γt | < 1e− 4

10 break;
11 end
12 t = t + 1
13 end while
End

where G denotes the back projection filter, G = F−1; X̂t+1
and X̂t are the estimated high resolution images in the t+ 1th
and tth iterations, respectively; ↑ represents the upsampling
operator; r denotes the corresponding scale factor; and the
residual is upsampled and back projected. Equations (19)
and (20) are iteratively performed until a sufficiently small
difference between the input low-resolution image and the
analog image is achieved.

The literatures [39] and [40] provide the conditions for the
convergence of the above equations to the desired image. The
updating rules of (19) and (20) can converge to a desired
high-resolution image under the condition that (18) is sat-
isfied and ‖δ − F ∗ G ↓r‖2 < 1 (δ represents a unit pulse
function centered at (0, 0), δ = ((Y − X ∗ F) ↓r ) ↑r ).

et+1 = Y − (X̂t+1 ∗ F) ↓r
= Y − ((X̂t + (Y − (X̂t ∗ F) ↓r ) ↑r ∗G) ∗ F ↓r
= Y − (X̂t ∗ F) ↓r −(Y − (X̂t ∗ F) ↓r ) ↑r ∗G ∗ F ↓r
= (Y − (X̂t ∗ F) ↓r ) ∗ (δ − G ∗ F ↓r )
= et ∗ (δ − G ∗ F ↓r ) (21)

since ‖et+1‖2 = ‖et ∗ (δ − G ∗ F ↓r )‖2 ≤ ‖et‖2 ∗
‖δ − G ∗ F ↓r‖2, the limit formula can be obtained:
lim
t→∞

(X̂t∗F) ↓r= Y . According to the formula derivation, it is
proven that the residual is attenuated during each iteration,
and the error on low-resolution images tends to 0. IBP-based
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FIGURE 1. The flow chart of the proposed restoration method.

FIGURE 2. Experimental images on the degraded and real data (images in (a–f) came from the GeoEye-1 satellite, and the images in (g–j) came from the
QuickBird satellite): (a) degraded PAN image 1; (b) degraded MS image 1; (c) reference image 1; (d) degraded PAN image 2; (e) degraded MS image 2;
(f) reference image 2; (g) real PAN image 1; (h) real MS image 1; (i) real PAN image 2; (j) real MS image 2.

restoration can be summarized as Algorithm 2. The flow chart
of the proposed restoration method is illustrated in Fig. 1.

III. EXPERIMENTS AND RESULTS
This section is divided into three parts. In the first part, the
data sets and pansharpening methods used in the experiment
are introduced. In the second part, the quantitative evaluation
indices adopted in this paper are briefly discussed. The third
part is the experimental analysis and discussion based on real
and degraded data sets.

A. DATA SETS AND PANSHARPENING METHODS
In the experiment, two data sets from the QuickBird and
GeoEye-1 satellites are selected for experimental verifica-
tion of the proposed method, as shown in Fig. 2. The data

set from the GeoEye-1 satellite was captured in Hobart,
Australia, on 24 February 2009. The spatial resolution of the
MS and PAN images was 2 m and 0.5 m, respectively. The
QuickBird dataset was captured on 21 November 2002 from
National Forest Park in Sundarbans, India. The MS and
PAN images have spatial resolutions of 2.8 m and 0.7 m,
respectively. The datasets used in this paper consist of
one PAN channel and four MS channels (red(R), green(G),
blue(B) and near-infrared (NIR)). The MS and fused MS
images shown in the figures are displayed by three channels,
R, G and B. In the experiment, due to the lack of reference
images for performance evaluation, the source images are
processed by MTF filtering with a downsampling factor of 4,
and the original MS images are taken as reference images.
The sizes of the PAN and MS images used in this paper are
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256×256 and 64×64, respectively, and the reference image
size is 256× 256.

The implementations of the tested pansharpening meth-
ods are from the pansharpening MATLAB toolbox released
by Vivone, which is published together with a review
of CS and MRA methods [4]. The toolbox covers sev-
eral state-of-the-art pansharpening methods. The following
eight fusion methods based on MRA are used to validate
the restoration method proposed in this paper, including
HPF [12], SFIM [13], ATWT [11], AWLP [10], MTF-GLP
with HPM (MTF-GLP-HPM) [41], MTF-GLP with context-
based decision (MTF-GLP-CBD) [42], morphological filter
and half gradients (MF-HG) [43] and filter estimation and
HPM (FE-HPM) [22]. The first six methods are from the
toolbox. MF-HG was proposed by Restaino et al. in 2016,
and FE-HPM was proposed by Vivone et al. in 2015. The
available codes for these two pansharpening methods can be
found at ‘‘http://openremotesensing.net/.’’ Parameter settings
for the above eight pansharpening methods are based on the
authors’ discussions in their papers.

Degraded and real data sets are used for experimental
analysis to discuss whether the fusion quality of the images
obtained by the eight MRA methods improves with restora-
tion to prove the effectiveness of the proposed restoration
method in this paper. A comparison of restored pansharpen-
ing results based on EBP and the proposed method is given,
and the gains obtained in the percentage of evaluation indices
by postrestoration methods are shown.

Eight MRA methods selected in the experimental part are
briefly summarized in Table 1, which provide a basis for the
filtering framework and injection gain in Equation (1). For a
detailed overview, please refer to the literature [4].

B. QUALITY INDICES
The quality evaluation of pansharpening mainly aims at two
aspects: the injection of spatial details, which mainly eval-
uates the spatial quality of fused images, and the preser-
vation of spectral information, which mainly measures the
maintenance of original spectral properties. The existing
evaluation methods of pansharpening include objective and
subjective evaluations. The subjective evaluation method is

relatively simple and intuitive, but it has certain subjectiv-
ity and one-sidedness due to the influence of a variety of
human factors. Therefore, subjective evaluation is only used
as an auxiliary method to measure the fusion quality. It is
necessary to select some reliable objective evaluation indices
to perform quantification analysis. Objective evaluation is a
challenging problem because there is no reference image in
practical application. At present, there are two methods for
quantitatively evaluating the fusion results. One method per-
forms an evaluation on reduced resolution based on the scale
invariance assumption according toWald’s protocol [27]. The
other method performs a full resolution evaluation without
reference images.

1) REDUCED RESOLUTION EVALUATION
According to Wald’s protocol, fusion images should be as
similar as possible to high-resolution images collected by
MS sensors in which the spatial resolution is the same as
the PAN images. However, this cannot be obviously veri-
fied in practice. Therefore, source images for pansharpening
are obtained by reducing the resolution of original images,
and original MS images are taken as corresponding refer-
ence images. Three indices are utilized for the degraded
datasets, including relative dimensionless global error in syn-
thesis (ERGAS) [44], spectral angle mapper (SAM) [45] and
Q4 [46]. The ideal values of ERGAS and SAM are 0, and
for Q4, the ideal value is 1.

2) FULL RESOLUTION EVALUATION
For the evaluation of full resolution image fusion, quantitative
indices are usually designed by analyzing the relationship
between fusion results and original images. The most com-
monly used evaluation index is the quality with no reference
(QNR) [47], which includes two independent indices: the
spectral distortion Dλ and the spatial distortion Ds. A larger
value of QNR indicates better fusion quality, while the
opposite is true for Dλ and Ds.

C. ANALYSIS OF EXPERIMENTAL RESULTS
The display of result images includes the fused images
obtained by the eight MRA-based pansharpening methods
and the images after restoration based on EBP and the pro-

TABLE 1. Overview of MRA-based pansharpening methods.
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TABLE 2. Results for the fusion images in figure 3 at reduced scale.

TABLE 3. Results for the fusion images in figure 4 at reduced scale.

posed method. To facilitate a subjective visual comparison,
the MS images in the figures are shown in RGB colors. The
results of corresponding objective indices are summarized
in Table 2–Table 5. Columns in tables are grouped according
to different quality indices, and each group is divided into
three columns. The columnmarked ‘‘fuse’’ denotes the fusion
result obtained by each MRA method. The column labeled
‘‘restore’’ is the result with the restoration postprocessing.
The column ‘‘change (%)’’ shows the gain percentage of the
corresponding evaluation index; a positive value represents
an improvement of the corresponding index after restoration,
while the negative value indicates a degradation of the index.

Note that the results with EBP as the restoration method are
shown in green, and results with the proposed method as
postprocessing are represented in blue.

1) EXPERIMENTAL RESULTS ON DEGRADED DATA
The pansharpening results of eight MRA-based methods with
and without restoration based on the degraded GeoEye-1
dataset are shown in Fig. 3. The figures without dotted bor-
ders present the pansharpening results, and the restoration
results based on EBP and our proposed method are shown in
dotted borders in different colors. Green indicates EBP, and
blue indicates our proposed method. Image results obtained
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TABLE 4. Results for the fusion images in figure 5 at full scale.

TABLE 5. Results for the fusion images in figure 6 at full scale.

by restoration methods are prefixed with ‘‘restored’’ before
their names. EBP adds ‘‘1’’ at the end of the name, and the
proposed method adds ‘‘2’’. Compared with the fused images
obtained by the eight MRA methods, it can be seen that the
spectral quality of the restored image with the EBP method
has improved to some extent, but some distortion is caused
by excessive enhancement of spatial details and high contrast
in local areas; in contrast, most of the results based on the
proposed method have significantly improved, with clearer
spatial details and better spectral information. To summarize,
the subjective visual effects demonstrate that the proposed
method effectively improves the quality of the fusion results,
preserving clear edges and showing natural colors.

Table 2 shows the evaluation results for the GeoEye-1
dataset obtained by the eight pansharpening methods with
and without restoration by EBP and the proposed method
at reduced resolution. According to the table, it can be
seen that in the evaluation results of EBP, except for the
improvement in the ERGAS index of the MTF-GLP-CBD
method after restoration, the index gains of the other meth-
ods are all negative, which indicates that the EBP method
suffers spatial distortion in most restoration results. This
is due to the introduction of excessive spatial details in
the design of the method. The SAM index of the restored
images based on EBP improved compared with that before
restoration. In addition, relative changes in the SAM score of
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FIGURE 3. Fusion images with and without restoration on the GeoEye-1 data set at reduced scale: (a) HPF; (b) SFIM;
(c) ATWT; (d) AWLP; (e) restored HPF 1; (f) restored SFIM 1; (g) restored ATWT 1; (h) restored AWLP 1; (i) restored HPF 2;
(j) restored SFIM 2; (k) restored ATWT 2; (l) restored AWLP 2; (m) MTF-GLP-HPM; (n) MTF-GLP-CBD; (o) MF-HG;
(p) FE-HPM; (q) restored MTF-GLP-HPM 1; (r) restored MTF-GLP-CBD 1; (s) restored MF-HG 1; (t) restored FE-HPM 1;
(u) restored MTF-GLP-HPM 2; (v) restored MTF-GLP-CBD 2; (w) restored MF-HG 2; (x) restored FE-HPM 2.
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MF-HG are better than those of the proposed method, with
an increase of 4.5996%. The Q4 indices obtained by HPF,
SFIM, MTF-GLP-CBD and MF-HG exhibit positive gains
after restoration, while the indices in ATWT, AWLP, MTF-
GLP-HPM and FE-HPM decreased, showing a decrement
of 0.4690%, 0.5451%, 0.7330% and 0.5769%, respectively,
which is small. For the proposed method, we can see that all
the MRA methods except for MTF-GLP-HPM and FE-HPM
show significant improvement using the proposed method.
In particular, the restored result obtained by MTF-GLP-CBD
shows the greatest improvement compared with those of the
other methods with improvements of 38.9556%, 34.8790%
and 12.1478% for the ERGAS, SAM and Q4 indices,
respectively.

Fig. 4 shows the fusion results on the QuickBird dataset
at reduced resolution for the MRA methods with and
without restoration. It is apparent that the spectral quality is
enhanced based on the EBP method, but the spatial quality
is relatively poor, especially for the MTF-GLP-HPM and
MTF-GLP-CBD methods. The spatial distortion may be
caused by excessive detail injection. In contrast, we can
see that most of the restored images based on the proposed
method are improved in visual effect. As seen in Fig. 4 (i),
the fusion result of HPF looks more detailed after restora-
tion, and the fusion result obtained by MTF-GLP-CBD with
restoration can obtain rational details and natural colors,
as shown in Fig. 4 (v). For the other methods, it can be
seen that the restored images obtained by using the proposed
method look more detailed with fewer artifacts, and achieve
more similar colors to the reference images. From the per-
spective of subjective visual effect, the restored images based
on the proposed method are obviously better than that based
on EBP.

The statistical results of the eight pansharpening methods
evaluated at reduced resolution based on the QuickBird
dataset are illustrated in Table 3. The results of EBP show
that the relative changes in the ERGAS score of all meth-
ods are negative, and only HPF and SFIM methods show
gains in the Q4 metric, with an improvement of 1.1422%
and 0.2744%, respectively. The restored results obtained by
EBP achieve a relatively better SAM. The largest gains are
shown by the SFIM, AWLP, MTF-GLP-HPM, MF-HG and
FE-HPM methods. From the results of the proposed method,
it can be seen that every MRA method shown gains in
Q4 index after restoration. The SAM indices of the restored
images obtained by the methods except for SFIM, AWLP
andMTF-GLP-HPMhave improved, and the relative changes
in the ERGAS scores of most methods are positive. Most
improved indices are from the restoration results of the MTF-
GLP-CBDmethod, which have an improvement of 7.4678%,
6.9701% and 4.2704% for the ERGAS, SAM and Q4 indices,
respectively.

2) EXPERIMENTAL RESULTS ON REAL DATA
Fig. 5 shows the fusion results of each MRA method with
and without restoration based on the GeoEye-1 dataset at

full resolution. Restored images obtained by EBP look more
realistic in brightness and hue but have relatively poor spatial
quality. For example, the SFIM method introduces some
artifacts and noise in the fusion results, resulting in obvious
spatial distortion in local areas, as shown in Fig. 5 (f). For
our proposed method, it can be seen that the image quality
after restoration significantly improves, with clearer spatial
details and brighter colors, showing better visual effects.
Compared with the fused images without restoration, local
spatial distortion appears in the fusion results obtained by the
HPF and SFIMmethods after restoration. Some spatial details
are lost after restoration for the MTF-GLP-CBDmethod, and
visually, the details of the fusion results without restoration
are clearer and sharper. In general, restored images obtained
by our proposed method show a better visual effect than the
EBP method.

The evaluation results of theDλ,Ds andQNR indices based
on real datasets from the GeoEye-1 satellite are summarized
in Table 4. It can be seen that the restored images obtained
by the EBP method show gains in the Dλ metric, and the
largest gains are obtained by the HPF, ATWT and FE-HPM
methods compared to those using the proposed method,
with an increase of 10.7554%, 18.7042% and 23.1375%,
respectively. However, the Ds index exhibits negative gains
in all methods after restoration. Most MRA methods show
improvement in the QNR index, and only HPF, SFIM and
AWLP have negative gains, with decreases of 0.8780%,
2.7256% and 0.4913%, respectively. Compared with the EBP
method, most of the Dλ from the restored results obtained
by the proposed method are superior. The relative changes in
the Ds score of the ATWT, MF-HG and FE-HPM methods
are positive. For the QNR index, all MRA methods except
HPF and SFIM benefit from the restoration. In conclusion,
most MRA methods show improvements using the proposed
restorationmethod, particularly the FE-HPMmethod, and the
increased rates of theDλ,Ds and QNR indices are 21.7209%,
9.9476% and 5.9799%, respectively.

The pansharpening results with and without restoration
based on the QuickBird dataset at full resolution are shown
in Fig. 6. From the perspective of visual effects, restored
images obtained by EBP and the proposed method look
more detailed and have better color balance. However,
comparatively, the proposed method gives a more natural
visual effect, similar to the SFIM and AWLP methods, which
acquire an obvious effect. These methods cannot achieve a
good visual effect when restored by EBP; the tones seem
lighter, and the details are excessively enhanced in local areas.

Table 5 shows the results of the evaluation indices for the
QuickBird satellite datasets at full resolution. As seen from
the table, all the restored results obtained by EBP and our
proposed method show improvements in the Ds and QNR
indices. For the Dλ index, all pansharpening methods except
for SFIM benefit from the restoration. In addition, all meth-
ods achieve better Dλ and QNR with our proposed method,
aside from the HPF, SFIM and AWLP methods, which show
worse effect in QNR. However, the EBP method outperforms
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FIGURE 4. Fusion images with and without restoration on the QuickBird data set at reduced scale: (a) HPF; (b) SFIM;
(c) ATWT; (d) AWLP; (e) restored HPF 1; (f) restored SFIM 1; (g) restored ATWT 1; (h) restored AWLP 1; (i) restored HPF 2;
(j) restored SFIM 2; (k) restored ATWT 2; (l) restored AWLP 2; (m) MTF-GLP-HPM; (n) MTF-GLP-CBD; (o) MF-HG;
(p) FE-HPM; (q) restored MTF-GLP-HPM 1; (r) restored MTF-GLP-CBD 1; (s) restored MF-HG 1; (t) restored FE-HPM 1;
(u) restored MTF-GLP-HPM 2; (v) restored MTF-GLP-CBD 2; (w) restored MF-HG 2; (x) restored FE-HPM 2.
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FIGURE 5. Fusion images with and without restoration on the GeoEye-1 data set at full scale: (a) HPF; (b) SFIM; (c) ATWT;
(d) AWLP; (e) restored HPF 1; (f) restored SFIM 1; (g) restored ATWT 1; (h) restored AWLP 1; (i) restored HPF 2; (j) restored
SFIM 2; (k) restored ATWT 2; (l) restored AWLP 2; (m) MTF-GLP-HPM; (n) MTF-GLP-CBD; (o) MF-HG; (p) FE-HPM;
(q) restored MTF-GLP-HPM 1; (r) restored MTF-GLP-CBD 1; (s) restored MF-HG 1; (t) restored FE-HPM 1; (u) restored
MTF-GLP-HPM 2; (v) restored MTF-GLP-CBD 2; (w) restored MF-HG 2; (x) restored FE-HPM 2.
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FIGURE 6. Fusion images with and without restoration on the QuickBird data set at full scale: (a) HPF; (b) SFIM; (c) ATWT;
(d) AWLP; (e) restored HPF 1; (f) restored SFIM 1; (g) restored ATWT 1; (h) restored AWLP 1; (i) restored HPF 2; (j) restored
SFIM 2; (k) restored ATWT 2; (l) restored AWLP 2; (m) MTF-GLP-HPM; (n) MTF-GLP-CBD; (o) MF-HG; (p) FE-HPM;
(q) restored MTF-GLP-HPM 1; (r) restored MTF-GLP-CBD 1; (s) restored MF-HG 1; (t) restored FE-HPM 1; (u) restored
MTF-GLP-HPM 2; (v) restored MTF-GLP-CBD 2; (w) restored MF-HG 2; (x) restored FE-HPM 2.
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TABLE 6. Time costs of different fusion methods with and without restoration.

our proposed method in terms of Ds obtained by most MRA
methods. Therefore, the whole effect of the proposed method
is better than the EBP method.

3) COMPUTATIONAL COMPLEXITY
Table 6 shows the time complexity of the eightMRAmethods
with and without restoration. The size of the fused images is
256×256 pixels, so the average running times are calculated
based on each dataset. As seen from the table, pansharpen-
ing based on MRA has relatively good time performance,
and the time increases with the restoration process. We can
see the calculation time of the MTF-GLP-CBD method is
higher than the other pansharpening methods, and restoration
based on the proposed method costs more time than the EBP
method. The percentages of time gain after restoration with
the proposed method and EBP the method are 12.8513% and
5.4119%, respectively. For the HPF method with a shorter
fusion time, the time increases by 4.1492 s and 1.7840 s for
our proposed method and the EBP method. Obviously, the
restoration postprocessing has a relatively large impact on the
fusion methods. Therefore, optimizations of postprocessing
is a question for further study.

IV. CONCLUSION
The MRA-based pansharpening methods are simple, fast
and efficient, with excellent spectral preservation ability.
However, the spatial details of the fusion results may be
less than ideal, and there are ringing artifacts caused by
the methods or images. Based on this, an image restoration
method for MRA methods is proposed in this paper. Based
on estimating the relationship between the original MS and
PAN images, the blurring filter can be obtained, which is
applied to balance the detail injection and the spectral preser-
vation of pansharpening results, and then the enhanced fusion
results are tuned and optimized by the back-projection of
iterative errors based on the IBP method. Based on eight
state-of-the-art MRA methods, datasets from the GeoEye-1
and QuickBird satellites are used to analyze the restoration
method at reduced and full scale. The experimental results
show that the proposed method can significantly improve the
fusion quality for most MRA methods.

The improvement in pansharpening quality mainly
depends on the implementation of the restoration method.

Considering the subjective visual effect, most restored images
achieve improvement of spatial and spectral quality.

Most of the MRA methods obtain clearer images by the
restoration method proposed in this paper, which contains
more detailed information and reduces ringing artifacts to
some extent. For colorful source images, fusion results of
some MRA methods show a decrease in spatial quality
after restoration. This is because the MRA methods have
great advantages in spectral maintenance, which is more
apparent when the restoration is applied to color-rich images.
Therefore, after iterative restoration based on IBP, although
the spectral quality improves, it also creates distortion in the
spatial details to some extent. However, in general, whether
the subjective visual effect or objective evaluation indices,
the quality of restored images improves.

In the next step, we plan to study the adaptive enhancement
of spatial details based on the evaluation of spectral preserva-
tion to avoid the imbalance between the spatial and spectral
information caused by excessive injection of spatial details or
spectral information.
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