
Received December 13, 2019, accepted January 5, 2020, date of publication January 13, 2020, date of current version January 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965947

Object Removal Software Test Automation
DEBDEEP BANERJEE , (Member, IEEE), KEVIN YU , AND GARIMA AGGARWAL
Qualcomm Technologies Inc., San Diego, CA 92121, USA

Corresponding author: Debdeep Banerjee (debdeepb@qti.qualcomm.com)

ABSTRACT This paper considers the problem of designing a test method and robust test automation for
evaluating the functionality of computer vision algorithms for object removal and image reconstruction of
the removed area. An object removal algorithm is used to select and remove a region in an image. After the
removal of the object, the object removal algorithm regenerates the area in the image from which the object
was removed, similar to photoshop. We developed an algorithm in MATLAB that accesses the features of
the macroblocks from the region that adjoins the removed object and correlates these macroblocks with
the actual area that is regenerated. The SSIM (structural similarity index) score is calculated by comparing
the ground truth with the image generated from image reconstruction after removal of the object. Finally,
we calculate the artifact area present in the regenerated region to determine the algorithm quality. To validate
this method, the authors compare a 3rd-party object removal solution with an in-house developed solution
using the proposed approach. This comparison shows that the SSIM score is 1.55% higher than the 3rd-party
solution and 26.3% lower in artifact areas. Besides the results, this paper also describes in detail the procedure
to automate the use case of object removal test automation to scale up the test coverage.

INDEX TERMS Software engineering, software testing, image processing, image restoration, multimedia.

I. INTRODUCTION
This paper discusses a validation strategy for testing an object
removal algorithm. We designed test-automation-based algo-
rithms that evaluate the area that is regenerated after an object
is removed. The object removal software test automation
is developed to validate the functionality, performance, and
stability of the object removal algorithm. The test automation
uses image quality algorithms such as the SSIM (structural
similarity index) to evaluate the comparison of the image
that was reconstructed after the object was removed with the
ground truth. We also use algorithms to detect the presence
of artifacts in the image reconstructed area.

We compare the luma values of the macroblocks of the
region that adjoins that from which the object was removed.
Then, we apply the k-means clustering algorithms to confirm
the number of color clusters in the images and compare
this number with the ground truth to evaluate the functional
verification of the image reconstruction.

There has been research in the field of denoising and
artifact removal of an image using Weiner filter etc., [1].
The effect of object removal from an image has to be filled
in a visually plausible way [2]. We develop a test automa-
tion that measures the quality of the regenerated area using

The associate editor coordinating the review of this manuscript and

approving it for publication was Habib Ullah .

MATLAB software after the object removal algorithms are
used. The challenge for the validation team is to program-
matically determine the quality of the removed objects from
the images. The object removal algorithm needs to regener-
ate the removed area so that it blends with the surrounding
pixels of the object. We identify an approach to effectively
generate test images and ground truth images. The output
image results can be compared to the ground truth image
using the SSIM (structure similarity index) measurement to
quantify the regenerated area quality. Finally, a computa-
tion is performed using machine learning algorithms such as
k-means clustering to detect artifacts and obtain the artifact
area percentage. We deterministically assign a result to these
test cases. Saliency maps are applied for determining objects
and applying masks (green in color) to them based on the
object detection.

The object removal applications require us to select a
region in the object to remove. If we apply a mask to the
object that needs to be removed, we can apply swipe events
for the area selected in the mask through touch event-based
automation. The challenge is to detect and select the object
and then color the object for the mask. We apply saliency
maps for object detection using MATLAB, and we color the
region of the saliency map for the mask generation.

The results of a comparison with other Android applica-
tions performing object removal are obtained, and testing is

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 12967

https://orcid.org/0000-0002-4907-3054
https://orcid.org/0000-0001-9224-3891
https://orcid.org/0000-0003-1496-7741
https://orcid.org/0000-0002-2434-0849


D. Banerjee et al.: Object Removal Software Test Automation

performed with different test vectors, including a cluttered
background, a non-cluttered background, etc. We perform
competitive analysis tests with a 3rd-party software appli-
cation using the test automation on different types of back-
ground test images, quantitatively proving that our object
removal application regenerates background areas that have
better image quality.We compare the object removal latencies
for the device that performs with hardware processors and
that uses hardware acceleration for performing the object
removal algorithms. For the results, the comparative Android
application does not use hardware acceleration on the hard-
ware processors. We observe noticeable gains in the latency
measurements for the object removal algorithms with hard-
ware acceleration.

This test automation strategy is evaluated for inclusion
at various software integration points so that we can detect
any regressions in the software code churns. If a regres-
sion is detected, the failures re triaged, and if a fail-
ure is diagnosed as a software issue, it is debugged and
fixed by the software development team. This approach
helped us maintain the software quality and detect issues
early in the software development lifecycle. In particular,
observing problems late in the software development pro-
cess can lead to significantly higher costs of solving the
problem.

II. MOTIVATION
The goal of developing the test automation strategy was to
measure the accuracy and performance of object removal
algorithms qualitatively. The development of a robust
automation helps us consistently benchmark the functionality
and performance test results.

The test automation strategy enables us to apply machine
learning algorithms such as k-means clustering to perform
color segmentation of the image. The test automation strategy
performs feature extraction of the adjoining macroblocks
from which the object was removed and compares them to
the regenerated area. Depending on the correlation values,
the test automation strategy can objectively assess a pass or
fail result for the test case. The test automation strategy also
uses correlations to compare the similarity of the features
of the adjoining macroblocks to the regenerated area. Any
unusual colors that are formed during the regeneration of the
removed object can lead to the creation of additional color
segments and decrease the correlation values. Therefore, the
test automation strategy can detect abnormal color patches,
which are distortions in the regenerated area from which the
object has been removed.

Stability tests are crucial to software testing but executing
the same test cases multiple times can be tedious. Thus,
writing and deploying a reliable test automation strategy that
can perform functional validation of the test cases can be
beneficial. In addition, many issues, such as memory leaks,
are detected after several iterations of testing. These stability
issues may not be detected during functional testing. The test
automaton collects logs for each iteration, which helps the

engineers effectively triage the failures based on log analysis
and the captured images.

We intend to reduce the workload of manual testing. Man-
ual testing can be a tedious and error-prone process. Thus,
if the automation is reliable, test engineers can focus on
new test software development efforts, writing new test plans
and enhancing test coverage by carefully evaluating the soft-
ware architecture of the algorithms and developing new test
automation strategies for testing them. The test automation
strategy can be deployed at several points of the software
integration cycle. Testing code churn early in the software
development process can lead to the detection of regression
issues. The test case failures are triaged and then software
failures are debugged and fixed by the software developers.
Using this approach, we can efficiently detect the issues early
in the process.

III. BACKGROUND AND RELATED WORK
The research field of artifact removal of an image involves
development of image reconstruction techniques. Image
reconstruction requires image smoothing techniques. The
image smoothening algorithms use techniques for recon-
structing the smoothly changed shape and intensity of the
original image [3]. Research has been done to apply deep net-
work architecture for removing rain streaks from an image.
This has helped in improved rain removal from images and
much faster performance in object removal techniques [4].
The image reconstruction techniques are discussed after
either part of the image is corrupted [5].

A clustered differential pulse code modulation method
with removal of local spectral outliers has been studied
and analyzed for lossless compression of images [6]. Image
processing algorithms like 3D reconstruction and hand jit-
ter reductions has been implemented on mobile phones.
Validation techniques involve design and development of
test automation for validating these image processing algo-
rithms [7], [8]. Techniques have been developed to detect
the types of noise artifacts for removal in experimental data
and analysis [9]. Test automation development for embedded
software-based image rectification techniques has been done
for validating the automatic color, sharpness of images [10].
Face recognition software has been popular for image pro-
cessing in mobile phone. Validation techniques for this fea-
ture testing of face recognition has been discussed with
performance metrics [11].

Test automation exists for automation image processing
systems of high precision X Ray and Neutron imaging appli-
cations [12]. Research has been done for development of
testing methods for designing artificial scenes and automati-
cally generating virtual images with precise annotation [13].
Test systems can calculate the accuracy of image processing
capture systems like fisheye cameras [14]. The accuracy
calculations are crucial for any test system to analyze the
performance of the system and the software. In this paper we
discuss the test automation strategies for the object removal
algorithm.

12968 VOLUME 8, 2020



D. Banerjee et al.: Object Removal Software Test Automation

TABLE 1. Snapshot of test cases in the object removal test plan.

IV. SOLUTION
A. SOFTWARE OVERVIEW
Object removal is a digital image editing solution. By editing
an image, the user can remove the unwanted content from
the image. The libraries provide an application programming
interface (API) in which the masked region is an input param-
eter, providing flexibility to the user to select the content of
his/her choice. The object removal feature is preferred when
obtaining more personalized images.

B. OBJECTIVES
The goal of the object removal software is to remove the
content in the selected regions and fill-in the holes of these
regions in a visually plausible way. An end-to-end test appli-
cation automation framework is required to test these fea-
tures for a large data set and quantitively evaluate the object
removal quality.

In our object removal test plan, there are test cases
that involve with combination of different types of back-
ground and objects to remove. The backgrounds can be
categorized into uniform colored simple background, tex-
tured background, repeated pattern background, and complex
color/textured background. The objects to be removed from
the backgrounds are uniform and multi-colored objects as
well as simple and complex shaped objects. The combination
of these objects and backgrounds form a good representation
of scenarios that user will be using the object removal app for.
Table 1 shows a snapshot of sample test cases in our object
removal test plan.

Since we have hundreds of these test cases to fully evaluate
the object removal software’s performance, manually testing
them is time consuming and object removal quality result
is subjective. An automated process is needed for object
removal software testing. The main challenges of automating
this process are the remove object selection, ground truth/test
image generation and object removal/background restoration
quality postprocessing. Our objectives are to find automated
solutions to these pain points and to establish a complete
automated workflow.

FIGURE 1. Regenerated test image and ground truth image pair.

C. GROUND TRUTH IMAGE AND TEST IMAGE
GENERATION
To effectively evaluate the object removal and background
restoration quality, a perfect background is needed as the
ground truth before applying object removal. And we have
come up with two methods to generate ground truth image
and test image.

One method is to select available images that are only
composed of background that are either procured from gallery
or image database and use them as ground truth images. Then,
we apply image overlap using image cloning software such as
Photoshop, and subsequently add object images on top of the
background image. The test images are generated composed
with the object and the background, as shown in figure 1.

The advantage of this method is the ground truth image
is the same as the background in the test image. The image
comparison result in the post-processing stage will be highly
accurate. But the problems for this method are the object
image has to be edited using image software cut to its own
shape before overlap to the background, and also the com-
posed image does not fully represent the natural scene taken
with both foreground object and background in the same
picture.

The other method of generating ground truth and test
images is by taking snapshot of the actual background and
object placed in front of the background using camera. When
large number of real-world test data images are needed, a sys-
tematic way of generating them is necessary.We have utilized
the latest technology of robotic arm system to help capture
these ground truth and test images.

We have a 6-dofmotion robotic arm setup in a closed-space
test lab, wherewe have full control of light intensity and back-
ground setup, as shown in figure 2. Different backgrounds
can be setup on multiple regions of the lab wall. They range
from single color to multiple colors, single texture to complex
texture, representing the background requirements of the test
cases. The objects from single to complex shapes in the
test cases requirements are placed in front covering part of

VOLUME 8, 2020 12969



D. Banerjee et al.: Object Removal Software Test Automation

FIGURE 2. Robotic arm pointing the camera at different test scenes.

FIGURE 3. Ground truth and test images captured using the robotic arm.

the backgrounds. The combination of the objects and the
backgrounds create the scenes for the ground truth and test
images. The challenge is to capture these images properly so
that the background in the ground truth image appears the
same in the composition test image for accurate comparison.

Using a high precision robotic arm, there will be only
±0.03 mm position error for every meter the robot moves.
This means the robotic arm is able to hold the camera device
and move it to the accurate position to take snapshots every
time. A 6-dof robotic arm has 6 joints, by rotating these joints
using controller the tip of the robotic arm can be extended
to the desired position to take snapshots. The robot position
can be stored to the controller and use robot programming
software like WINCAPS3 or ORiN2 to automate the robot
motions moving through each saved position in front of
different backgrounds. Using robotic arm for ground truth
and test image capture proves to be much more accurate than
manual capture by analyzing the comparison results. And it
also saves valuable time in this test data generating process.
On the camera side, the settings like focus and exposure
have to be set off from automatic mode. This is needed
to prevent exposure and sharpness difference between the
ground truth and the test images. The captured results are
shown in figure 3.

Generating ground truth and test images using image cap-
ture method has its advantages. The generated images have

more realistic compositions like the shadows and light expo-
sures. Also, when the required background and test images
are not available, we can use this method to create the scenes
and generate the test data. The downside for image capture
method is there will always be a delta between the ground
truth image background and the test image background. How-
ever, this delta can be minimized by using the robotic arm for
image capture and have the right camera settings. Depending
on the test case requirements, the image capture method and
the image overlap method can both be effective in generating
ground truth and test images.

D. GENERATION OF THE GREEN MASK BY OBJECT
DETECTION
The next test automation challenge is the removal of the
region selection. Using fingers or a pen to highlight the
removal region can be difficult on complex shapes. In addi-
tion, this approach has a large capacity for human error
over repeated attempts. We identify an approach to select
the object to be removed in an image by highlighting it in
a green mask. We apply saliency maps [15]–[17] to detect
objects in the images. The saliency maps are generated based
on the features of the images, such as color, intensity, etc.
The saliencymaps are normalized and overlaid on the original
image for object detection.

The saliencymaps can be created based on the graph-based
saliency algorithm. If we are given an image I the most sig-
nificant location of the images can be computed. The feature
maps based on color, intensity etc are computed and then
these feature maps are normalized for generate the saliency
map. M(i, j) corresponds to locations in the image I which
are unusual to its neighborhood and can be related to higher
values of the activation map.

To calculate the dissimilarity between the maps of M(i, j)
and M(p, q) the following formula is used.

d ((i, j) ‖ (p, q)) ,

∣∣∣∣log M (i, j)
M (p, q)

∣∣∣∣
Once the saliency map is generated a weight will be associ-
ated to the directed edge from node (i, j) to node (p, q).

w1 ((i, j) , (p, q)) , d ((i, j) ‖ (p, q)) � F (i− p, j− q) ,

where F (a, b) exp ,
(
−
a2 + b2

2σ 2

)
.

Here sigma is a free parameter of our algorithm. Once the
feature maps are formed comprising of individual features
like color, intensity etc the feature maps are normalized.
Winner Takes All Computation to detect the point of highest
salience in themap at any given time. This information is used
for compute object detection and recognition.

Once the saliency maps are generated and the objects are
detected, we use the map area to color the object and generate
the mask. Please refer to figure 4a, 4b and 4c for details of the
saliency map generation and the generation of the masks in
the image.

12970 VOLUME 8, 2020



D. Banerjee et al.: Object Removal Software Test Automation

FIGURE 4. (a) The original image from which the object (man diving into
the water) needs to be removed. (b) The saliency maps are generated and
overlaid on the image. Please note that the saliency maps are used for
object detection. We use MATLAB code for the saliency map generation.
(c) The saliency maps are generated, and the area of the saliency maps is
used for coloring the area and generating the mask.

We then use these masks in our test automation. The green
mask is selected using touch events, and the object removal
algorithms are applied to remove the area in the mask. The
object removal algorithm then regenerated the removed area.
The algorithm analyzes the features, such as color and luma
values of the adjoining pixels of the removed area, and then
regenerates the area.

E. OBJECT REMOVAL AND BACKGROUND RESTORATION
POSTPROCESSING ALGORITHM
In this paper, we propose a postprocessing algorithm for
analyzing the quality of a reconstructed region. The algorithm

FIGURE 5. Stepwise presentation of the algorithm: (a) Original image
with the object; (b) Masked object with green color; (c) Resultant image
after using the object removal feature; (d) Object segmentation from the
masked image; (e) Feature extraction from the removal image; (f) Color
segmentation using the luminance value.

is designed to segment the object from the image and find
the neighboring pixel blocks using the standard deviation.
Then, the luminance value is calculated for feature extrac-
tion. Finally, a computation is performed using SSIM (struc-
tural similarity index) and k-means clustering to obtain the
removal artifact percentage.

1) OBJECT SEGMENTATION
Object segmentation is required to identify the erased object
in the image. The object is defined by using a predefined
mask with RGB = (0, 255, 0) values. In this manner,
the object is segmented in the form of a binary image, which
is denoted as I (x, y) and satisfied I (x, y) = I (x, y, 1) ==
0, I (x, y, 2) == 1, I (x, y, 3) == 0.

2) FEATURE EXTRACTION
The information of the neighboring pixels is needed to extract
the information of the filled area in the output image. The
neighboring pixels of the object are identified by splitting
the binary image into overlapping blocks of b × b(32 × 32)
pixels. In this way, the whole image of sizeM ×N is divided
into (M − b + 1) × (N − b + 1) macroblocks. To identify

VOLUME 8, 2020 12971



D. Banerjee et al.: Object Removal Software Test Automation

FIGURE 6. Object removal/reconstruction artifact extraction: (a) Ground
truth background image; (b) Reconstructed background image after
object removal; (c) Color segmentation comparison between the output
and ground truth images; (d) Single color artifact extraction.

the blocks of interest, the standard deviation is calculated for
each macroblock. The maximum deviation is observed in the
blocks that contain the object pixels and neighboring pixels.
For feature extraction, the output image is also divided into
overlapping blocks of b× b(32× 32) pixels. The blocks that
had maximum deviation and contained the removal object are
selected for feature selection for further processing. Feature
selection is performed by calculating the luminance value
(Y = 0.299R + 0.587G + .114B) of each selected block.
Luminance quantifies the trichromatic intensity perception of
humans [4].

3) COMPUTATION
After identifying the blocks that contain the reconstructed
region and their neighbors in the output image, a computa-
tion is performed using SSIM (structural similarity index)
between the output image and the ground truth image on the
reconstructed region. A high SSIM score (close to 1) means
the object removal has performed well, and the reconstructed
background that is generated is almost identical to the original
ground truth image. For artifact detection and calculation on
the output image, color segmentation is performed on the
output image and compared to the ground truth image using
the k-means clustering algorithm. This approach highlights
the areas where there are color differences between the two
images. Then, the delta regions are extracted into a single
color, highlighting the artifacts. This process is demonstrated
in figure 6.

F. TEST AUTOMATION WORKFLOW
With the solutions to all three pain points, a complete test
automation workflow can be established. Before running

TABLE 2. Post processed image result scores comparison table.

the automation, background images are set as ground truth
images. The background images are then added with objects
layers on top. Using object detection, these objects are prede-
fined with green masks as the input images. When the object
removal test automation is executed on the input image,
a Perl script is written to open the Android test application,
to select the predefined mask using touch events, to perform
the removal, and to save the edited image. The postprocessing
algorithm evaluates the quality of the regenerated area based
on the features of the macroblocks that are near the object
that is being removed and then applies the SSIM (structural
similarity index) scores. The postprocessing algorithm also
applies the k-means clustering algorithm to the image to
perform color clustering to identify artifacts. A computation
is performed using k-means clustering to obtain the artifact
percentage. Please refer to figure 7 for details.

V. RESULTS
A. OBJECT REMOVAL PERFORMANCE RESULTS ON
IMAGE QUALITY
In our test automation, we test 200 test vectors, including
the dataset images from Caltech101 [18]. The images are
categorized with different backgrounds such as uniform, tex-
tured, repeated and cluttered. These different types of back-
grounds represent different challenges for the background
restoration algorithms. To compare the performance with
other object removal apps on the market, we perform the end-
to-end automated test on both the object removal app and the
3rd-party app. The postprocessed test scores are averaged and
are shown in table 2.

From this table, we can see that the object removal app and
the 3rd-party app performed similarly on the same type of
backgrounds, while the object removal app received slightly
better SSIM scores (approximately 1.55%) on all four types
of backgrounds. The SSIM scores comparison data are plot-
ted as bar graphs in figure 8.

The SSIM score measures how similar the comparison
images are; in this case, the images are the output image
and the ground truth image. These data show that the SSIM

12972 VOLUME 8, 2020



D. Banerjee et al.: Object Removal Software Test Automation

FIGURE 7. Flowchart of the end-to-end object removal test automation.

scores vary between different types of backgrounds. For
uniform colored backgrounds, it is easier to reconstruct the
background of the removed region. Therefore, this category
received the highest SSIM score. On the repeated background
images, the background contains even or uneven repeated
patterns. The background reconstruction algorithm must ana-
lyze these patterns and fill the removed space with the proper
patterns. This task proves to be quite challenging, and this
category received the lowest SSIM score. As an example,
figure 9a shows the image of a brick wall before the removal
of the blue poster region and the ground truth image of the
brick wall without the poster. In figure 9b, the left side is
the object removal app output of the reconstructed brick wall
image after poster removal, and the right side is the 3rd-party
output image. It is clear that both software solutions were

FIGURE 8. Comparison of object removal SSIM scores between the object
removal app and the 3rd-party app.

FIGURE 9. (a) Image of a brick wall with a blue poster and ground truth
image without the poster. (b) Object removal output images (left one
from the object removal app and right one from the 3rd-party app).

unable to reconstruct the wall pattern perfectly compared
to the ground truth. However, the left image’s reconstructed
pattern more closely resembles the actual pattern.

Another example of the textured background object
removal output results is shown in figure 10. Both object
removal software solutions remove the yellow sticky note on
the image from figure 1.

Both output images are able to reconstruct the removed
sticky note area with the proper surrounding texture. How-
ever, both images have an artifact of a skewed line on
the space separating the two textures. We also occasion-
ally observe that when selecting the removal regions with
the 3rd-party app, a diagonal line is applied to the image

VOLUME 8, 2020 12973



D. Banerjee et al.: Object Removal Software Test Automation

FIGURE 10. Textured background object removal output images from the
object removal app and the 3rd-party app.

FIGURE 11. Object removal test output artifact area percentage
comparison graph.

along with the removal region. This line creates an additional
artifact on the output result image. This issue emphasizes
the importance of artifact detection and measurement in the
object removal test automation.

The artifact percentage used in our test automation is
calculated by dividing the areas of the processed output
image highlighted with the artifact by the area of the
removed (masked) regions. The artifact percentage data from
table 1 is converted into a bar graph in figure 11. This graph
shows that the object removal app generally has smaller
artifact regions (approximately 26.3%) than the 3rd-party
app. The uniform background category shows almost zero
artifacts. Textured and complex/cluttered backgrounds have
a moderate region of artifacts. In addition, repeated back-
grounds have the largest region of artifacts, as expected. This
artifact result is aligned with the SSIM score result.

Figure 12 shows an example of the processed output
images for artifact detection. These images are created
by removing a butterfly from the flowers previously used
in figure 6. The left image in figure 12 is processed from the
object removal app, and the right image is processed from
the 3rd-party app. The highlighted regions have artifacts. The
image on the right clearly shows a larger highlighted area.

FIGURE 12. Processed artifact areas from the object removal app output
and the 3rd-party app output.

TABLE 3. Object removal latency result comparisons.

FIGURE 13. Latency comparison graph on object removal process.

From running the automated test on both object removal
software apps with the 200-test image dataset, we can
conclude the object removal app performs better than the
3rd-party app in object removal quality. In addition, we find
that the algorithm was most accurate for images with the
following characteristics:

1) Constant color background. (e.g., clear sky)
2) Small textures.
3) Sharp edges.
4) Small mask sizes.

B. OBJECT REMOVAL PERFORMANCE RESULTS ON
LATENCY
During the object removal test, we alsomeasure the latency of
the object removal process on the hardware accelerated object
removal app and the 3rd-party Android app. Themeasurement
is taken from Android logs, and it is measured across all four

12974 VOLUME 8, 2020



D. Banerjee et al.: Object Removal Software Test Automation

categories of backgrounds. The latency results are averaged
and are presented in table 3.

The latency comparison data are converted to bar graphs
shown in figure 13 for a better visual comparison.

From the results, we concluded that the latency for the
object removal is approximately 56% lower in the case of
the object removal app that use hardware acceleration than
that of the 3rd-party Android app. The hardware acceleration
is achieved by using signal processors, which executes the
object removal algorithms. The complexity of the object
removal algorithms increases with cluttered backgrounds,
and we observe that the latency increases as we test from
uniform backgrounds to cluttered backgrounds.

VI. CONCLUSION
The object removal test method and automation strategy pro-
vide an option for executing algorithm tests for each software
release and benchmarking the results by the software release.
New test contents can be added to the test automation frame-
work to expand the test coverage for more specific scenario
object removal algorithm testing.

The proposed test method and automation strategy can
be used for executing functional, performance, stability and
adversarial test cases. They can also be scaled to multiple
software products and produces consistent and reliable test
results. We are constantly reviewing the test plan and adding
new test cases according to the new features and optimiza-
tions that are added by the software development teams based
on the object removal feature. The goal is to scale up the test
automation so that test engineers can utilize their time for the
development of new feature tests and to ensure that this test
automation strategy can execute regression test cases reliably.

REFERENCES
[1] A. Kazakeviciute, C. J. H. Ho, and M. Olivo, ‘‘Multispectral photoa-

coustic imaging artifact removal and denoising using time series model-
based spectral noise estimation,’’ IEEE Trans. Med. Imag., vol. 35, no. 9,
pp. 2151–2163, Sep. 2016.

[2] A. Criminisi, P. Perez, and K. Toyama, ‘‘Region filling and object
removal by exemplar-based image inpainting,’’ IEEE Trans. Image Pro-
cess., Vol. 13, no. 9, pp. 1200–1212, Sep. 2004.

[3] C. Cho and S. Lee, ‘‘Effective five directional partial derivatives-based
image smoothing and a parallel structure design,’’ IEEE Trans. Image
Process., vol. 25, no. 4, pp. 1617–1625, Apr. 2016.

[4] X. Fu, J. Huang, X. Ding, Y. Liao, and J. Paisley, ‘‘Clearing the skies:
A deep network architecture for single-image rain removal,’’ IEEE Trans.
Image Process., vol. 26, no. 6, pp. 2944–2956, Jun. 2017.

[5] S. D. Rane, G. Sapiro, M. Bertalmio, ‘‘Structure and texture filling-in of
missing image blocks in wireless transmission and compression applica-
tions,’’ IEEE Trans. Image Process., vol. 12, no. 3, pp. 296–303,Mar. 2003.

[6] J. Wu, W. Kong, J. Mielikainen, and B. Huang, ‘‘Lossless compression
of hyperspectral imagery via clustered differential pulse code modulation
with removal of local spectral outliers,’’ IEEE Signal Process. Lett., vol. 22,
no. 12, pp. 2194–2198, Dec. 2015.

[7] D. Banerjee, K. Yu, and G. Aggarwal, ‘‘Robotic arm based 3D reconstruc-
tion test automation,’’ IEEE Access, vol. 6, pp. 7206–7213, 2018.

[8] D. Banerjee, K. Yu, and G. Aggarwal, ‘‘Hand jitter reduction algo-
rithm software test automation using robotic Arm,’’ IEEE Access, vol. 6,
pp. 23582–23590, 2018, doi: 10.1109/ACCESS.2018.2829466.

[9] D. Allman, A. Reiter, and M. A. L. Bell, ‘‘Photoacoustic source detection
and reflection artifact removal enabled by deep learning,’’ IEEE Trans.
Med. Imag., vol. 37, no. 6, pp. 1464–1477, Jun. 2018.

[10] D. Banerjee, K. Yu, and G. Aggarwal, ‘‘Image rectification software test
automation using a robotic Arm,’’ IEEE Access, vol. 6, pp. 34075–34085,
2018.

[11] D. Banerjee and K. Yu, ‘‘Robotic Arm-based face recognition software test
automation,’’ IEEE Access, vol. 6, pp. 37858–37868, 2018.

[12] J. A. Hashem, M. Pryor, S. Landsberger, J. Hunter, and D. R. Janecky,
‘‘Automating High-precision X-ray and neutron imaging applications with
robotics,’’ IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 663–674,
Apr. 2018.

[13] Y. Tian, X. Li, K. Wang, and F.-Y. Wang, ‘‘Training and testing object
detectors with virtual images,’’ IEEE/CAA J. Autom. Sinica, vol. 5, no. 2,
pp. 539–546, Mar. 2018.

[14] J. Schneider, C. Stachniss, and W. Forstner, ‘‘On the accuracy of dense
fisheye stereo,’’ IEEE Robot. Autom. Lett., vol. 1, no. 1, pp. 227–234,
Jan. 2016.

[15] J. Harel, C. Koch, and P. Perona, ‘‘Graph-Based Visual Saliency,’’ in Proc.
Neural Inf. Process. Syst. (NIPS), 2006.

[16] J. Harel. A Saliency Implementation in MATLAB. Accessed: Oct. 10, 2019.
[Online]. Available: http://www.klab.caltech.edu/~harel/share/gbvs.php

[17] X. Hou, J. Harel, and C. Koch, ‘‘Image signature: Highlighting sparse
salient regions,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 1,
pp. 194–201, Jan. 2012.

[18] L. Fei-Fei, R. Fergus, and P. Perona, ‘‘Learning generative visual models
from few training examples: An incremental Bayesian approach tested
on 101 object categories,’’ in Proc. Conf. Comput. Vis. Pattern Recognit.
Workshop, Jun./Jul. 2004.

DEBDEEP BANERJEE (Member, IEEE) received
the master’s degree in electrical engineering from
the Illinois Institute of Technology. He has more
than ten years of industry experience in the field
of software/systems engineering. He is currently a
Senior Staff Engineer and the Engineering Man-
ager with Qualcomm Technologies, Inc., USA.
He is also the Software/Systems Development
Engineer Test Lead of the computer vision project
and is responsible for test automation design, plan-

ning, development, deployment, code reviews, and project management.
He also works closely with the software/system teams. He has been working
with the Software Test Automation Team since the inception of the computer
vision project at Qualcomm and also involved in managing and developing
the robotic arm software used in the Computer Vision Laboratory.

KEVIN YU has contributed to test automation val-
idation for continuous integration and regression
tests for computer vision algorithms. He has also
validated computer vision engine features such as
image rectification for Android software products.
He is currently a Senior Test Engineer with Qual-
comm Technologies, Inc., USA.

GARIMA AGGARWAL has actively worked on
MATLAB postprocessing modules for CV fea-
tures and various other automation projects. She is
currently a Senior Test Engineer with Qualcomm
Technologies, Inc., USA.

VOLUME 8, 2020 12975

http://dx.doi.org/10.1109/ACCESS.2018.2829466

