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ABSTRACT The economic dispatch problems (EDPs) in a microgrid (MG) have been extensively inves-
tigated by a variety of emerging algorithms. In this paper, we propose two newly distributed dynamic
optimization algorithms to respectively study the EDPs under both cases without and with generation
constraints under a directed topology network. Two novel dynamic optimization algorithms are based on
the distributed incremental cost consensus (ICC), where the mismatch between total demand and power
generation is considered. Our algorithms only require the weight matrix of the directed network to be row
stochastic. The theoretical analysis on the convergence of the proposed algorithms is presented by using the
small gain theorem. It can be found that the algorithms are convergent at the geometric rate. Meanwhile,
the power output of the generators are proved to achieve the optimal solution of EDPs based on the proposed
algorithms. Finally, the corresponding conditions are also derived, and simulation studies illustrate the
correctness of our results.

INDEX TERMS Economic dispatch problem, optimization algorithms, smart grid, incremental cost con-
sensus, geometric convergence.

I. INTRODUCTION
The new emerging micro-grids (MGs) integrate various
technologies, concepts, smart infrastructure and advanced
management, and they are also equipped with intelligent
controllable electrical equipment. Compared with traditional
power grids, the micro-grid combines a variety of advan-
tages, such as being more reliable, safe, sustainable, resilient,
and so on [1]–[4]. Generators exist in the MG, and each
generator produces different amounts of power to supply
the entire loads’ demand. The economic dispatch prob-
lem (EDP) [5], [6] in an MG is derived from this scenario,
and its goal is to properly schedule the power output of each
generator so as not to waste power resources and at the same
time minimize the economic cost [7]–[9]. In this case, it can
be viewed as an optimization problem [10]–[12]. For years,
the EDP, as one of the most important optimization issues in
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the micro-grid community, has attracted widespread attention
from a number of researchers [13]–[21]. In order to tackle
this kind of problems, in the beginning, some centralized
optimization algorithms were proposed [22]–[24], the disad-
vantages of which have: (1) A powerful central controller is
needed to gather the global information such that it can deal
with huge amounts of data. (2) These algorithms are costly
and easy to be subjected to single-point-failure. (3) They lack
robustness and need to be re-established when generators and
loads need be added or removed in MGs [25]. In order to
overcome these deficiencies, some distributed optimization
algorithms are currently widely established [26]–[31].

Soon afterwards, some distributed algorithms on the basis
of multi-agent consensus are emerged to investigate the
EDPs [32]–[34], where the incremental cost (IC) of each
generator is selected as the consensus variable. In [32],
the authors firstly apply the multi-agent consensus theory
into the distributed algorithm, and then, a simplest distributed
optimization algorithm is designed to solve the EDP in anMG
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environment. Subsequently, in [33], a similar ICC algorithm
is proposed to solve the EDP under the different commu-
nication topology network. The proposed algorithm is the
simple gradient optimization algorithm that includes two
terms: consensus term and optimization term. In order to
solve the more complicated EDPs in an MG, an improved
power controller framework based on the incremental cost
consensus is developed in [34]. In that framework, each
generator includes two modules: a distributed economic dis-
patch module and a cooperative control module. In [35],
by developing an ICC algorithm, the EDP for islandedMGs is
investigated. In [36], a new ICC algorithm is proposed to deal
with the EDP with generation constraints, where the local
mismatch between total power generated and total demand is
considered as a feedback variable. In above mentioned algo-
rithms, the communication topology network is assumed as
undirected and connected, or their topology graph is weight-
balanced. Even, their weighted matrix in [35], [36] is doubly
stochastic. However, these assumptions are too strict to be
implemented in some practical applications and should be
relaxed. This motivates researchers to investigate the EDP
in an MG under the directed topology network with row or
column stochastic matrix. In [37], [38], the authors propose
some optimization algorithms with column-stochastic matrix
by employing the push-sum technique to solve a class of con-
sensus optimization problem in multi-agent systems (MASs).
However, using a column stochastic matrix in optimization
algorithms is impractical in many situations. For example,
when the network communication uses a broadcast mecha-
nism, each agent does not know itself out-neighbors let alone
to adjust its outgoing weights. In this case, a row stochastic
matrix is much easier to be implemented inmany applications
than a column stochastic matrix. Hence, the idea that a row
stochastic matrix is used in algorithm is motivated to intro-
duce [39], where each agent can individually determine the
weight values from the information that it receives from its
neighbors.

Our idea in this paper derives from the referred literatures
that have been presented, however, there are some differ-
ences. The more advanced algorithms with a row stochastic
matrix are motivated to solve the EDPs. Compared with
the algorithms [32]–[36], the matrices of our proposed two
optimization algorithms are row stochastic. Moreover, a dif-
ferent analysis approach is adopted to prove the geometric
convergence of these algorithms. In particular, our algorithms
are similar with one in [36], but the main differences have
the following: (1) The theoretical analysis is presented by
using small gain theorem method such that the geometric
convergence rate is obtained; (2) The weighted matrix is
row stochastic in our proposed algorithms by introducing an
auxiliary variable. From the above discussions, the biggest
challenge is to propose the more advanced algorithms with a
row stochastic matrix to solve the EDPs. This motivates us to
develop improved algorithms to investigate the various kind
of EDPs in an MG.

In this paper, two new algorithms are developed for respec-
tively solving EDPs without generation constraints and with
generation constraints under the directed topology network.
One algorithm is for EDP without generation constraints,
and another is for EDP with generation constraints. In those
algorithms, the mismatch between total demand and power
generation is considered. And, their main advantage is that
the weight matrix of the network topology is row stochastic
by introducing an auxiliary variable. The main contributions
of this paper include:

(1) Two new algorithms with row stochastic matrix are
developed to respectively tackle the EDPs in an MG without
generation constraints and with generation constraints under
the directed topology network, where the IC of each generator
is considered as consensus variable.

(2) The theoretical analysis on the geometric convergence
of the proposed algorithms is represented by using small gain
theorem method. It can be found that the power output of
the generators reach the optimal solution of EDPs, and the
incremental cost converges to a common constant.

(3) Based on our theoretical analysis, the algebraic condi-
tions related to some parameters including feedback gains,
cost coefficients and some constants are derived. Finally,
simulation studies illustrate the performance and scalability
of our algorithms. We also try to use our algorithm to deal
with EDP with varying demand.

II. PRELIMINARIES
A. GRAPH THEORY
In an MG, there exist N power generators, and its commu-
nication topology is depicted by a graph g = (V , ε, A),
where V = {1, 2, . . . , N } is a set of generators and
ε ⊆ V × V is a set of edge between generators. (i, j) ∈ ε
is the directed edge from i to j. Ni = {j ∈ ν| (j, i) ∈ ε} is a
set of neighbor generators of the i-th generator. A = (aij)N×N
is the connection weight matrix of graph g. If there are no
self-loops, it has aii = 0, and aij > 0 ⇔ j ∈ Ni. Otherwise,
aii > 0. The directed graph g is strongly connected if and
only if for any two distinct generators there is a path from
generator i to generator j. Here, assume that the network
topology graph is directed connected and the weight matrix
A is row stochastic, i.e.,

∑N
j=1 aij = 1.

B. EDP
In this paper, we suppose that the cost objective function
Ci (pi) of each generator is a simple quadratic cost function,
that is, Ci (pi) = αip2i + βipi + γi. Here, we investigate
the ordinary EDP with demand constraint and generator con-
straints as follows:

min
∑N

i=1
Ci (pi),

s.t.
∑N

i=1
pi =

∑N

i=1
pli = P0,

pmin, i ≤ pi ≤ pmax, i, (1)
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where αi > 0, βi ≥ 0 and γi ≥ 0 are the cost coefficients,
pi is the generation power of generator i, pli is the load
power of generator i, P0 is the total power demand, pmin, i
and pmax, i are the lower and upper bounds of the generation.
Obviously, it has

∑N
i=1 pmin, i ≤ P0 ≤

∑N
i=1 pmax, i. The

first constraint is called demand constraint, and the second
constraint pmin, i ≤ pi ≤ pmax, i is the generation constraint.
Denote the incremental cost for each generator as λi =

d Ci(pi)
d pi

= 2αipi + βi, and we select λi as the consensus
variable. If λi converges to a constant λ∗, according to the
constraints in (1), we have

λ∗ =
P0 +

∑N
i=1

βi
2αi∑N

i=1
1
2αi

. (2)

It follows from (2) that, without generation constraints, its
optimal solution is

p∗i =
λ∗ − βi

2αi
. (3)

When we consider the generation constraints in EDP (1),
its optimal solution is the following:

λ∗ =
P0 −

∑
i∈� pi +

∑
i/∈�

βi
2αi∑

i/∈�
1
2αi

,

p∗i =


λ∗ − βi

2αi
, i /∈ �p

pmin,i or pmax,i, i ∈ �p,

(4)

where �p is the subset of the generators with their limits
for the optimal assignment. The results (3)-(4) are presented
in [34].

III. DISTRIBUTED ALGORITHMS FOR EDP
Here, we propose respectively two algorithms based on the
ICC to solve the EDPwithout generation constraints and with
generation constraints. The convergence analysis ( λi (t) →
λ∗ and pi (t)→ p∗i ) of the proposed algorithms are presented,
and the theoretical results for solving EDP are obtained.

The following basic lemmas provide us with some known
results to be used later in this paper.
Lemma 1 [40]: If the topology network is strongly con-

nected and the weight matrix A is row stochastic, Then there
exists a strictly positive vector w = [w1,w2, . . . ,wN ]T such
that lim

t→∞
At = 1 · wT and wTA = wT . The vector w is called

as the left-Perron eigenvector of A.
Lemma 2 [41]: For any x ∈ RN , define x̂ = A∞x. There

exists a constant 0 < σ < 1 such that for all t:∥∥Ax (t)− x̂ (t)∥∥ ≤ σ ∥∥x (t)− x̂ (t)∥∥ .
Lemma 3 [42]: If the objective function fi satisfies that
(a) there exists a positive constant l such that
‖∇fi (x1)−∇fi (x2)‖ ≤ l ‖x1 − x2‖ holds;
(b) there exists a positive constant r such that

r‖x1 − x2‖2 ≤ 〈∇fi (x1)−∇fi (x2) , x1 − x2〉 holds. Then,
for any x ∈ R and x+ = x−α∇fi (x)with 0 < α < 2

l , we have
‖x+ − x∗‖ ≤ η ‖x − x∗‖ with η = max (|1− αl| , |1− αr|).

We define ‖si‖µ,K = max
k=0,..,K

1
µk
‖si (k)‖ and ‖si‖µ =

sup
k≥0

1
µk
‖si (k)‖ with µ ∈ (0, 1) and K is positive integer.

Lemma 4 (The Small Gain Theorem [43]): Given the infi-
nite sequence si = (si (0) , si (1) , si (2) , . . .). For each
i = 1, 2, . . . ,m and positive constant K , we have si →
s(i mod m)+1, i.e.,∥∥s(i mod m)+1

∥∥µ,K ≤ ri‖si‖µ,K + ωi
with constants ωi, r1, r2, . . . , rm ≥ 0 and r1 · r2 · · · rm < 1.
Then, it holds

‖s1‖µ ≤
ω1r2 · · · rm + ω2r3 · · · rm + · · · + ωm−1rm + ωm

1− r1r2 · · · rm
.

Lemma 5 (Bounded Norm Geometric Rate) [43]: If ‖si‖µ

is bounded, ‖si‖ converges at a global geometric rate O
(
µt
)
.

That is, if the small gain theorem holds for ‖si‖µ,∀i, ‖si‖ is
convergent at geometric rate O

(
µt
)
.

A. DISTRIBUTED ALGORITHMS FOR EDP WITHOUT
GENERATION CONSTRAINTS
In this subsection, we establish a distributed algorithm to
tackle the EDP without generation constraints. Let λi(t) and
pi(t) be the estimations of the optimal incremental cost and
the optimal power for iteration tth respectively. The dis-
tributed iterative algorithm to solve EDP (1) without genera-
tion constraints is developed as

λi (t + 1) =
∑

j∈Ni
aijλj (t)− ∈isi (t),

si (t + 1) =
∑

j∈Ni
aijsj (t)−

[
pi (t + 1)
yi (t + 1)

−
pi (t)
yi (t)

]
,

pi (t + 1) =
λi (t + 1)− βi

2αi
,

yi (t + 1) =
∑

j∈Ni
aijyj (t), (5)

where ∈i is a nonnegative constant with ∈1=∈2= . . . =∈N ,
si (t) is the local estimation of the mismatch with si(0) = 0,
yi(t) is the auxiliary variable with yi(0) = 1. And yi (t) > 0,
for ∀i,∀t .
Since the weight matrix A = (aij)N×N is row stochastic,

according to Lemma 1, it follows from the second formula
of (5) that∑N

i=1
wisi (t + 1)+

∑N

i=1
wiy
−1
i (t + 1) pi (t + 1)

=

∑N

i=1
wisi (t)+

∑N

i=1
wiy
−1
i (t) pi (t)

= . . . =
∑N

i=1
wisi (0)+

∑N

i=1
wipi (0),

which implies that∑N

i=1
wisi (t + 1)+

∑N

i=1
wiy
−1
i (t + 1) pi (t + 1), ∀t

is a constant. Here, wi, i = 1, 2, . . . ,N is the elements
of left-Perron eigenvector of the weight matrix A, and
some introductions on wi have been given in Lemma 1.
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We set si (0)= 0,∀i and take pi(0) as any values such that∑N
i=1 wipi (0) = P0. Hence, the initial values of (5) is:

λi (0) = 2αipi (0)+ βi,∑N

i=1
wipi (0) = P0,

si (0) = 0,
yi (0) = 1.

(6)

We can set wipi(0) = pli, from which, it satisfies the
condition (6).
Remark 1: Under the initial values (6),

∑N
i=1 wisi

(t + 1) = P0 −
∑N

i=1 wiy
−1
i (t + 1)pi(t + 1),∀t holds. When

t → ∞, si(t + 1) = 0 and yi(t + 1) = wi (see [39]) hold.
It means that

∑N
i=1 pi (t + 1) =

∑N
i=1 p

∗
i = P0, t → ∞,

which satisfies the equation constraint in (1).
From the initial condition (6),

∑N
i=1 wipi (0) = P0 means

that the value pi(0) for all i must be large enough such that
their weighted sum is total demand P0. Besides, wipi(0) = pli
means that the values pi(0) and pli have larger difference.
In order to solve this initial problem described in Remark 1,

the algorithm (5) is slightly modified as follows:

λi (t + 1) =
∑

j∈Ni
aijλj (t)− ∈isi (t),

si (t + 1) =
∑

j∈Ni
aijsj (t)

−

[
N

1
t+2

pi (t + 1)
yi (t + 1)

− N
1
t+1

pi (t)
yi (t)

]
,

pi (t + 1) =
λi (t + 1)− βi

2αi
,

yi (t + 1) =
∑

j∈Ni
aijyj (t). (7)

It follows from (7) that:∑N

i=1
wisi (t + 1)+ N

1
t+2
∑N

i=1
wiy
−1
i (t + 1) pi (t + 1)

=

∑N

i=1
wisi (t)+ N

1
t+1
∑N

i=1
wiy
−1
i (t) pi (t)

= . . . =
∑N

i=1
wisi (0)+ N

∑N

i=1
wipi (0),

then, the corresponding initial values are modified as
follows: 

λi (0) = 2αipi (0)+ βi,

N
∑N

i=1
wipi (0) = P0,

si (0) = 0,
yi (0) = 1.

(8)

We set Nwipi(0) = pli, which satisfies the condition (8).
Remark 2: Under the initial values (8), we can obtain

the same results as Remark 1. That is,
∑N

i=1 pi (t + 1) =∑N
i=1 p

∗
i = P0, t →∞ holds since si (t + 1) = 0, N

1
t+2 = 1

and yi (t + 1) = wi (see [39]) hold for t →∞.
The vector form of (7) is

λ (t + 1) = Aλ (t)−3s (t) ,

p (t + 1) =
1
2
α−1λ (t + 1)− π,

s (t + 1) = As (t)− [H (t + 1)− H (t)] ,

y (t + 1) = Ay (t) , (9)

where 3 = diag {∈i}, α = diag {αi}, π = diag
{
βi
2αi

}
,

H (t) = N
1
t+1 Y−1 (t) p (t) and Y (t) = diag {yi (t)}.

For the following analysis, we define some notations:

A∞ = lim
t→∞

At , A∞ = 1 · wT , λ̂ (t) = A∞λ (t) ,

ŝ (t) = A∞s (t) , s̄ (t) =
∑N

i=1
wisi (t),

λ∗i = λ
∗, ∀i, d = max

t

{∥∥∥Y−1 (t)∥∥∥} , τ = ‖A− IN‖ .
where w = [w1,w2, . . . ,wN ]T and

∑N
i=1 wi = 1.

Our idea to prove the convergence of algorithm is that:
Firstly, we construct this circle: λ (t)−λ̂ (t)→ s (t)−ŝ (t)→
λ̂ (t)−λ∗→ λ (t)− λ̂ (t) such that each arrow with the norm
‖ · ‖

µ,K is implemented and their norm ‖ · ‖µ,K is proved
to be bounded. Then, according to Lemma 4 and 5, we can
achieve that every term in the cycle is convergent at geometric
rate O

(
µt
)
.

Theorem 1: If the algorithm parameters satisfy η =

max (|1− ∈il| , |1− ∈ir|), 0 < ∈i < 2
l and

γ1 · γ2 · γ3 < 1,

µ−

(
η + ‖3‖N

(
1+

d ‖A∞‖
∥∥α−1∥∥

2

))
> 0,

1−
(
2σ (µ− σ)+ τdN

∥∥α−1∥∥ ‖3‖ (1+ µ)) > 0,
0 < σ < µ < 1,

(10)

where r, l are positive constants, and

γ1 =
‖3‖

µ− σ
,

γ2 =
τdN (1+ µ) (µ− σ)

∥∥α−1∥∥
1−

(
2σ (µ− σ)+ τdN

∥∥α−1∥∥ ‖3‖ (1+ µ)) ,
γ3 =

‖3‖N
(
1+

d‖A∞‖
∥∥α−1∥∥
2

)
µ−

(
η + ‖3‖N

(
1+ d‖A∞‖‖α−1‖

2

)) .
Then, distributed algorithm (7) with initial condition (8)
addresses EDP (1) without generation constraints. More
specifically, λi (t) and pi(t) tend to the optimal values λ∗ and
p∗i at the geometric rate O

(
µt
)
, respectively.

Proof: We implement this circle λ (t)− λ̂ (t)→ s (t)−
ŝ (t)→ λ̂ (t)− λ∗→ λ (t)− λ̂ (t) in its norm ‖ · ‖µ,K .

(1). The implementation of the first arrow
∥∥∥λ (t)− λ̂ (t)∥∥∥→∥∥s (t)− ŝ (t)∥∥ as follows.

According to (9), we have λ (t + 1) = Aλ (t)−3s (t) and
λ̂ (t + 1) = λ̂ (t)−3ŝ (t), then,∥∥∥λ (t + 1)− λ̂ (t + 1)

∥∥∥
=

∥∥∥Aλ (t)−3s (t)− Aλ̂ (t)+3ŝ (t)∥∥∥
≤

∥∥∥Aλ (t)− λ̂ (t)∥∥∥+ ∥∥3s (t)−3ŝ (t)∥∥ . (11)
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It follows from lemma 2 that∥∥∥λ (t + 1)− λ̂ (t + 1)
∥∥∥

≤ σ

∥∥∥λ (t)− λ̂ (t)∥∥∥+ ‖3‖ ∥∥s (t)− ŝ (t)∥∥ . (12)

Then, multiplying both sides of (12) by µ−(t+1) and taking
maxt=0,1,...,K−1 {·} on the both sides of (12) yields:∥∥∥λ− λ̂∥∥∥µ,K ≤ ‖3‖

µ− σ

∥∥s− ŝ∥∥µ,K , (13)

where 0 < σ < µ < 1.
(2). The implementation of the second arrow

∥∥s (t)− ŝ (t)∥∥
→

∥∥∥λ̂ (t)− λ∗∥∥∥ is as follows.
It follows from (9) that∥∥s (t + 1)− ŝ (t + 1)

∥∥
=
∥∥As (t)− ŝ (t)+ [(IN − A∞) (H (t + 1)− H (t))]

∥∥
≤ σ

∥∥s (t)− ŝ (t)∥∥+ τ ‖H (t + 1)− H (t)‖

≤ σ
∥∥s (t)− ŝ (t)∥∥+ τdN ‖p (t + 1)‖

+ τdN ‖p (t)‖ . (14)

where H (t) = N
1
t+1 Y−1 (t) p (t).

Due to p (t) = 1
2α
−1λ (t)− π , we have

‖p (t)‖ =

∥∥∥∥12α−1λ (t)− π
∥∥∥∥

=
1
2

∥∥∥α−1λ (t)− α−1λ̂ (t)+ α−1λ̂ (t)
−α−1λ∗ + α−1λ∗ − 2π

∥∥∥
≤

1
2

∥∥∥α−1∥∥∥ ∥∥∥λ (t)− λ̂ (t)∥∥∥+ 1
2

∥∥∥α−1∥∥∥ ∥∥∥λ̂ (t)− λ∗∥∥∥
+

∥∥∥∥12α−1λ∗ − π
∥∥∥∥ . (15)

Substituting (15) into (14) yields:∥∥s (t + 1)− ŝ (t + 1)
∥∥

≤ σ
∥∥s (t)− ŝ (t)∥∥+ τdN ∥∥α−1∥∥

2

∥∥∥λ (t + 1)− λ̂ (t + 1)
∥∥∥

+
τdN

∥∥α−1∥∥
2

∥∥∥λ̂ (t + 1)− λ∗
∥∥∥

+
τdN

∥∥α−1∥∥
2

∥∥∥λ (t)− λ̂ (t)∥∥∥
+
τdN

∥∥α−1∥∥
2

∥∥∥λ̂ (t)−λ∗∥∥∥+τdN ∥∥∥α−1λ∗−2π∥∥∥ . (16)

Multiplying both sides of (16) by µ−(t+1) and taking
maxt=0,1,...,K−1 {·} on the both sides of (16), we have∥∥s− ŝ∥∥µ,K
≤
σ

µ

∥∥s− ŝ∥∥µ,K + (τdN ∥∥α−1∥∥ (1+ µ)
2µ

)∥∥∥λ− λ̂∥∥∥µ,K

+

(
τdN

∥∥α−1∥∥ (1+ µ)
2µ

)∥∥∥λ̂− λ∗∥∥∥µ,K
+ τdN

∥∥∥α−1λ∗ − 2π
∥∥∥ . (17)

Because of
∥∥∥λ− λ̂∥∥∥µ,K ≤ ‖3‖µ−σ

∥∥s− ŝ∥∥µ,K , we have∥∥s− ŝ∥∥µ,K
≤

τdN (1+µ) (µ−σ)
∥∥α−1∥∥

1−
(
2σ (µ−σ)+τdN

∥∥α−1∥∥ ‖3‖ (1+µ))
∥∥∥λ̂− λ∗∥∥∥µ,K

+
τdNµ (µ− σ)

∥∥α−1λ∗ − 2π
∥∥

1−
(
2σ (µ− σ)+ τdN

∥∥α−1∥∥ ‖3‖ (1+ µ)) . (18)

(3). The implementation of the third arrow λ̂ (t) − λ∗ →
λ (t)− λ̂ (t) is as follows.
According to (9) and Lemma 3, we have∥∥∥λ̂ (t + 1)− λ∗

∥∥∥
=

∥∥∥λ̂ (t)−3ŝ (t)− λ∗∥∥∥
=

∥∥∥λ̂ (t)−3λ (t)+3λ (t)−3ŝ (t)− λ∗∥∥∥
≤

∥∥∥λ̂ (t)−3λ (t)− λ∗∥∥∥+ ∥∥3λ (t)−3ŝ (t)∥∥
≤ η

∥∥∥λ̂ (t)− λ∗∥∥∥+ ‖3‖ ∥∥λ (t)− ŝ (t)∥∥
≤ η

∥∥∥λ̂ (t)− λ∗∥∥∥+ ‖3‖ ‖λ (t)‖ + ‖3‖ ∥∥ŝ (t)∥∥ . (19)

Notice that

‖3‖ ‖λ (t)‖ = ‖3‖
∥∥∥λ (t)− λ̂ (t)+ λ̂ (t)− λ∗ + λ∗∥∥∥

≤ ‖3‖

∥∥∥λ (t)− λ̂ (t)∥∥∥+ ‖3‖ ∥∥∥λ̂ (t)− λ∗∥∥∥
+ ‖3‖

∥∥λ∗∥∥ . (20)

Besides,

ŝ (t + 1) = ŝ (t)− A∞ [(H (t + 1)− H (t))] ,

then, we have

ŝ (t) = ŝ (0)− A∞N
1
t+1 Y−1 (t) p (t)+ A∞NY−1 (0) p (0) .

Hence ŝ (t) = A∞Np (0)−A∞N
1
t+1 Y−1 (t) p (t) holds due

to ŝ (0) = A∞s (0) = 0, we have

‖3‖
∥∥ŝ (t)∥∥
≤ dN ‖3‖ ‖A∞‖ ‖p (t)‖ + N ‖3‖ ‖A∞‖ ‖p (0)‖

≤
dN ‖3‖ ‖A∞‖

∥∥α−1∥∥
2

∥∥∥λ (t)− λ̂ (t)∥∥∥
+
dN ‖3‖ ‖A∞‖

∥∥α−1∥∥
2

∥∥∥λ̂ (t)− λ∗∥∥∥
+ dN ‖3‖ ‖A∞‖

∥∥∥∥12α−1λ∗ − π
∥∥∥∥

+N ‖3‖ ‖A∞‖ ‖p (0)‖ . (21)
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Substituting (20) and (21) into (19), we have∥∥∥λ̂ (t + 1)− λ∗
∥∥∥

≤

(
η + ‖3‖N

(
1+

d ‖A∞‖
∥∥α−1∥∥

2

))∥∥∥λ̂ (t)− λ∗∥∥∥
+ ‖3‖N

(
1+

d ‖A∞‖
∥∥α−1∥∥

2

)∥∥∥λ (t)− λ̂ (t)∥∥∥
+ ‖3‖N

∥∥λ∗∥∥+ dN ‖3‖ ‖A∞‖ ∥∥∥∥12α−1λ∗ − π
∥∥∥∥

+ ‖3‖ ‖A∞‖N ‖p (0)‖ . (22)

Multiplying both sides of (22) by µ−(t+1) and taking
maxt=0,1,...,K−1 {·} on the both sides of (22), we have∥∥∥λ̂− λ∗∥∥∥µ,K

≤

‖3‖N
(
1+

d‖A∞‖
∥∥α−1∥∥
2

)
µ−

(
η + ‖3‖N

(
1+ d‖A∞‖‖α−1‖

2

))∥∥∥λ− λ̂∥∥∥µ,K

+

µN
(
d ‖3‖ ‖A∞‖

∥∥∥ 1
2α
−1λ∗ − π

∥∥∥+6)
µ−

(
η + ‖3‖N

(
1+ d‖A∞‖‖α−1‖

2

)) , (23)

where 6 = ‖3‖ ‖λ∗‖ + ‖3‖ ‖A∞‖ ‖p (0)‖.
According to (13), (18) and (23), it has:

(i):
∥∥∥λ− λ̂∥∥∥µ,K ≤ γ1∥∥s− ŝ∥∥µ,K + ω1,

(ii):
∥∥s− ŝ∥∥µ,K ≤ γ2∥∥∥λ̂− λ∗∥∥∥µ,K + ω2,

(iii):
∥∥∥λ̂− λ∗∥∥∥µ,K ≤ γ3∥∥∥λ− λ̂∥∥∥µ,K + ω3,

Applying the small gain theorem and Lemma 5 into the
circle λ (t)−λ̂ (t)→ s (t)−ŝ (t)→ λ̂ (t)−λ∗→ λ (t)−λ̂ (t),
we have the convergence condition as follows:

γ1 · γ2 · γ3 < 1,

µ−

(
η + ‖3‖N

(
1+

d ‖A∞‖
∥∥α−1∥∥

2

))
> 0,

1−
(
2σ (µ− σ)+ τdN

∥∥α−1∥∥ ‖3‖ (1+ µ)) > 0,
0 < σ < µ < 1,

(24)

which implies that the algorithm (7) is geometric convergent
at the rate O

(
µt
)
for all t . �

B. DISTRIBUTED ALGORITHM WITH
GENERATION CONSTRAINTS
Regarding the EDP (1) with generation constraints, we design
the distributed algorithm as follows:

λi (t + 1) =
∑

j∈Ni
aijλj (t)− ∈isi (t)

pi (t + 1) =


pmin,i, λi (t + 1) < λmin,i
λi (t + 1)− βi

2αi
, λmin,i≤λi (t + 1)≤λmax,i

pmax,i, λi (t + 1) > λmax,i

si (t + 1) =
∑

j∈Ni
aijsj (t)

−

[
N

1
t+2

pi (t + 1)
yi (t + 1)

− N
1
t+1

pi (t)
yi (t)

]
,

yi (t + 1) =
∑

j∈Ni
aijyj (t), (25)

where λmin,i = 2αipmin,i + βi and λmax,i = 2αipmax,i + βi.
The initial conditions are also (8).

For analyzing the convergence of the algorithm (25),
the same approach is employed. The same circle λ (t) −
λ̂ (t) → s (t) − ŝ (t) → λ̂ (t) − λ∗ → λ (t) − λ̂ (t) is
constructed such that each arrow with the norm ‖ · ‖µ,K is
implemented.

In the following, three cases are considered according to
the difference of expression pi (t + 1). The second case is the
same as the algorithm (7). In the following, we discuss the
two cases: pi (t + 1) = pmin,i and pi (t + 1) = pmax,i.

Case 1: If pi (t + 1) = pmin,i, the implementation of each
arrow in our circle is updated as follows:

(i):
∥∥∥λ− λ̂∥∥∥µ,K ≤ ‖3‖µ−σ

∥∥s− ŝ∥∥µ,K ;
(ii):

∥∥s− ŝ∥∥µ,K ≤ τ
µ−σ

∥∥∥λ̂− λ∗∥∥∥µ,K + τdµ
µ−σ
‖pmin‖;

(iii):
∥∥∥λ̂− λ∗∥∥∥µ,K ≤ ‖3‖

µ−(η+‖3‖)

∥∥∥λ− λ̂∥∥∥µ,K
+
‖3‖‖λ∗‖+(1+d)‖A∞‖‖3‖N‖pmin‖

µ−(η+‖3‖)
;

where pmin =
[
pmin,1, pmin,2, . . . , pmin,N

]T .
Case 2: If pi (t + 1) = pmax,i, the implementation of each

arrow in our circle is updated as follows:

(i):
∥∥∥λ− λ̂∥∥∥µ,K ≤ ‖3‖µ−σ

∥∥s− ŝ∥∥µ,K ;
(ii):

∥∥s− ŝ∥∥µ,K ≤ τ
µ−σ

∥∥∥λ̂− λ∗∥∥∥µ,K + τdµ
µ−σ
‖pmax‖ with

pmax =
[
pmax,1, pmax,2, . . . , pmax,N

]T ;
(iii):

∥∥∥λ̂− λ∗∥∥∥µ,K ≤ ‖3‖
µ−(η+‖3‖)

∥∥∥λ− λ̂∥∥∥µ,K
+
‖3‖‖λ∗‖+(1+d)‖A∞‖‖3‖N‖pmax‖

µ−(η+‖3‖)
;

where pmax =
[
pmax,1, pmax,2, . . . , pmax,N

]T .
On the basis of discussions above, we apply the small gain

theorem to our circle, and we have the following theorem
directly.
Theorem 2: Distributed algorithm (25) with initial con-

dition (8) deals with EDP (1) with generation constraints.
Specifically, λi(t) and pi(t) converge to the optimal values
λ∗ and p∗i at the geometric rate O

(
µt
)
, respectively, if the

algorithm parameters satisfy η = max (|1− ∈il| , |1− ∈ir|),
0 < ∈i < 2

l and

γ1 · γ2 · γ3 < 1,

µ−

(
η + ‖3‖

(
1+

d ‖A∞‖
∥∥α−1∥∥

2

))
> 0,

1−
(
2σ (µ− σ)+ τd

∥∥α−1∥∥ ‖3‖ (1+ µ)) > 0,
‖3‖

µ− σ
·

τ

µ− σ
·

‖3‖

µ− (η + ‖3‖)
< 1,

0 < σ < µ < 1,

(26)
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FIGURE 1. Test system. (a) The structure diagram of the micro-grid test system with five buses; (b) The
communication topology of the five generators.

where r, l are positive constants, and

γ1 =
‖3‖

µ− σ
,

γ2 =
τdN (1+ µ) (µ− σ)

∥∥α−1∥∥
1−

(
2σ (µ− σ)+ τdN

∥∥α−1∥∥ ‖3‖ (1+ µ)) ,
γ3 =

‖3‖N
(
1+

d‖A∞‖
∥∥α−1∥∥
2

)
µ−

(
η + ‖3‖N

(
1+ d‖A∞‖‖α−1‖

2

)) .
Proof: The implementation of each arrow in the circle

λ (t)− λ̂ (t)→ s (t)− ŝ (t)→ λ̂ (t)−λ∗→ λ (t)− λ̂ (t) are
similar with ones in Theorem 1. Here, we omit its proof and
directly give the results. �

IV. SIMULATION EXAMPLES
Two studies are used to verify the effectiveness of algo-
rithms (7) and (25). Based on the results, the convergence
of the proposed algorithms are shown. Then, we try to
use the algorithm (25) to deal with EDP with time-varying
demand.

Fig.1(a) shows the structure diagram of theMG test system
with five buses. Each bus has a generator and a load. The
solid line and dashed lines between two buses represent the
communication links, where the solid line means that the
link between two buses is bi-directional. The communication
topology is given in Fig. 1(b). And, the connection weight
values are: a11 = 1/2, a51 = 1/2, a12 = 1/2, a22 =
1/2, a23 = 1/2, a33 = 1/2, a34 = 1/2, a44 = 1/2, a14 =
1/4, a45 = 1/4, a55 = 1/2.

From the communication topology in Fig. 1(b), we can
see that the topology graph is directed and connected,
and the weight matrix A is row stochastic and is not
column stochastic. By the simple calculation, the left-
Perron eigenvector of the weighted matrix A is w =

[0.2857, 0.1429, 0.1429, 0.1429, 0.2857]T . The cost param-
eters, generation capacities, and load demand of the five
buses in this MG are given in Table 1. We set the
initial values of the proposed algorithms as p (0) =

[50.0, 14.3, 17.9, 21.4, 14.3]T , λ(0) = 2 ∗ p(0) ∗ α + β =
[4.65, 6.53, 9.88, 8.94, 4.65]T and s (0) = [0, 0, 0, 0, 0]T .

TABLE 1. Parameters of the five-bus in this MG.

FIGURE 2. Results of the algorithm (5) without generation constraints.
(a) The incremental cost of the five generators; (b) The power outputs of
the five generators; (c) The estimated mismatch; (d) The balance between
the total power generated and total demand.

Case A: Optimal analysis without Generation Constraints
In this subsection, algorithm (7) is considered to solve

the EDP without generation constraints. The feedback gain
∈1 = ∈2 = ∈3 = ∈4 = ∈5 = 0.03. Based on our algo-
rithm (7), the simulation results are shown in Fig.2. Fig.2(a)
shows that the incremental cost converges to the optimal value
λ∗ = 7.03 $/kW , and the optimal power outputs for the five
generators are p∗1 = 30.8962 kW , p∗2 = 23.2332 kW , p∗3 =
21.4396 kW , p∗4 = 18.3609 kW and p∗5 = 26.0697 kW ,
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FIGURE 3. Results of the algorithm (23) with generation constraints.
(a) The incremental cost of the five generators; (b) The power outputs of
the five generators; (c) The estimated mismatch; (d) The balance between
the total power generated and total demand.

which are seen in Fig.2(b). Fig.2(c) shows that the mismatch
si(t) between demand and power generated converges to zero,
and the balance between the total power generated and total
demand is achieved, which is shown in Fig.2(d). Since the
generation constraints are not considered, p∗5 = 26.0697 kW
exceeds its generation constraint 18 kW . These results verify
our algorithm (7).

Case B: Optimal analysis with Generation Constraints
In this subsection, algorithm (25) is applied to solve the

EDP with generation constraints. The feedback gain ∈1 =
0.01,∈2 = 0.02,∈3 = 0.07,∈4 = 0.05,∈5 = 0.03.
Based on our algorithm (25), the simulation results are shown
in Fig.3. Fig.3(a) shows that the incremental cost converges to
the optimal value λ∗ = 7.3894 $/kW , and the optimal power
outputs for the five generators are p∗1 = 32.8158 kW , p∗2 =
25.4824 kW , p∗3 = 23.1423 kW , p∗4 = 20.5540 kW and
p∗5 = 18.00 kW , which are seen in Fig.3(b). Fig.3(c) shows
that the mismatch si(t),∀i between demand and generation
converges to zero, and the balance between the total power
generated and total demand is shown in Fig.3(d). Since
the generation constraints are considered, p∗5 is restricted
to 18 kW , which verify our algorithm (25).
Case C: Optimal analysis with varying demand
In this subsection, we apply the proposed algorithm (25)

to address the EDP with varying demand, where the demand
of each generator is increased by 2 kW . In that case, the total
demand changes from 120 kW to 130 kW . We set the feed-
back gain as ∈1 = ∈2 = ∈3 = ∈4 = ∈5 = 0.03.
Based on our algorithm (25), the simulation results are shown
in Fig.4. Fig.4(a) shows that the incremental cost converges
to the new optimal value λ∗ = 7.8285 $/kW , and the optimal
power outputs for the five generators are p∗1 = 35.1513 kW ,

FIGURE 4. Results of the algorithm (23) with generation constraints.
(a) The incremental cost of the five generators; (b) The power outputs of
the five generators; (c) The estimated mismatch; (d) The balance between
the total power generated and total demand.

p∗2 = 28.2290 kW , p∗3 = 25.2764 kW , p∗4 = 23.3107 kW
and p∗5 = 18.00 kW , which are seen in Fig.4(b). Fig.4(c)
shows that the mismatch si(t) between demand and gener-
ation converges to zero, and the balance between the total
power generated and total demand is achieved, which can
be seen in Fig.4(d). p∗5 is still restricted to the generation
constraint of 18 kW . From the results, the power outputs for
each generator increases as the demand increases such that
the balance between generation and demand is achieved.

V. CONCLUSION
In this paper, two newly distributed ICC-based optimization
algorithms are proposed to respectively solve the EDPs with-
out generation constraints and with generation constraints.
The theoretical analysis on the convergence of the proposed
algorithms is presented by using the small gain theorem.
It can be found that the algorithms are convergent at the geo-
metric rate. At the same time, the optimal EDPs are achieved
under the proposed algorithms. The corresponding conditions
are also obtained. Finally, simulation studies illustrate the
correctness of our results.
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