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ABSTRACT Authentication is an important primitive of cryptography. With the rapid progress of network
communication, the urgent data needs to ensure it integrity and privacy, therefore, the authentication of
multi-receiver has a significant impact on the development of network interaction. R. Safavi-Nalni and
H. Wang showed that authentication scheme based on Reed-Solomon code is unconditionally secure and
allows multiple messages to be authenticated, but the number of receiver to verify is less than q, where
the messages are in Fq. In 2014, the secure multi-receiver authentication scheme base on linear code was
proposed, however, this scheme can not realize any a given access structure. In this paper, we present a multi-
receiver authentication scheme to realize any a given ideal access structure, and demonstrate that our scheme
is unconditionally secure and allows r messages to be authenticated with each receiver own private key.

INDEX TERMS Multi-receiver authentication scheme, access structure, adversary structure, linear code.

I. INTRODUCTION
Authentication [9], [10] is an important primitive of cryp-
tography. The difference between authentication scheme and
encryption scheme is that encryption scheme pays more
attention to data privacy [11], [12], while authentication
scheme [13], [14] is more attention to the integrity of data.
The traditional model of authentication scheme is that a single
sender sends a message with the tag to a receiver by a public
channel. With the rapid progress of network communication,
the urgent data needs to ensure it integrity and privacy, there-
fore, the authentication of multiple receivers has a significant
impact on the development of network interaction.

In the multi-receiver authentication [15], a sender broad-
casts an authenticated message with the tag such that all the
receivers can independently verify the message with their
own private keys. In this authentication scheme, it needs to
prevent multiple malicious receivers to make a substitution
attack, fake a message or impersonate the transmitter.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kuo-Hui Yeh .

Secret sharing scheme [16]–[18] is to divide the secret
into several pieces and then distribute them to different par-
ticipants. Only qualified sets can recover the secret and no
information of this secret is available to any unqualified
sets. In principle, every linear code can be used to construct
secret sharing schemes [19], [20], [24]. But determining the
access structure [21]–[23] is very hard as characterizing the
minimal codewords of the underlying linear code is a hard
problem. Massey [4] used linear codes to construct secret
sharing schemes and indicated that the main problem is to
characterize what types of access structure can be realized
by linear codes. McEliece et al. [5] made a pioneering work
in 1981 for secret sharing based on linear codes, they con-
structed a threshold scheme with Reed-Solomon code and
pointed out the equivalence between Shamir’s secret share
and Reed-Solomon codes.

The subject of study in this paper is multi-receiver authen-
tication scheme for general access structure. Namely, three
parties, a trusted authority, a sender and receivers, want
to transmit messages to receivers by a public channel that
the malicious groups cannot make a substitute or fake
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the messages. The authentication scheme has been exten-
sively studied for two reasons, firstly authentication is a
foundational primitive for cryptography and secondly it has
many practical applications. For example, authentication
scheme has been proposed in Internet of things, an efficient
authentication mechanism for providing secure communica-
tion between the users [10], [29], road condition monitor-
ing [30], biometrics template privacy [31], smart grid [32]
and so on.

A. OUR CONSTRUCTION
Tang et al. [7] provided a method to achieve a linear code for
any given access structure, it is equivalent to solving a system
of quadratic equations constructed by the given access struc-
ture and the corresponding adversary structure.We use Tang’s
method to present a multi-receiver authentication scheme
based on J. Zhang and F. Fu (2014) [8] that perform a given
access structure, which can realize an ideal linear codeC with
minimum distance more than or equal to 2 (a linear code
is ideal [25] if the length of code is n + 1, where n is the
number of participants). There are less number of malicious
groups in our scheme than J. Zhang and F. Fu (2014) that can
corrupt receiver. The scheme is unconditionally secure and
allows r messages to be authenticated with each receiver own
private key.

B. RELATED WORK
Desmedt et al. [2] first gave an authentication scheme of
single message for multi-receivers. In this scheme, there
is only one message and multi-receivers can verify it. The
sender broadcasts the message with tag by a public channel
and each receiver can verify it using his/her own private key.
Safavi-Naini and Wang [6] extended the DFY scheme [2]
to be an authentication scheme of multiple messages for
multi-receivers based on the idea of Shamir’s secret sharing.
Wang [14] constructed a multi-sender authentication codes.
Zhang et al. [8] constructed multi-receiver authentication
scheme based on generalization linear code, it allows arbi-
trarily many receivers to check the integrity of messages, and
the minimal group of receivers that can successfully make a
substitution attack is determined by the minimal codeword of
the dual code.

Massey [4] gave the definite of the minimum codeword
and pointed out that there is one-to-one relationship between
minimum qualified set of secret sharing scheme and mini-
mum codeword of the dual code. Ding et al. [23] constructed
some linear codes whose covering structure can be deter-
mined, and used them to construct secret sharing schemes
with interesting access structures. Cramer [1] constructed a
linear secret sharing scheme based on algebraic geometric
codes. Tang et al. [7] provided a method to judge whether
there exist an ideal linear code to realize a given access
structure, it is equivalent to solving a system of quadratic
equations constructed by the given access structure and the
corresponding adversary structure.

TABLE 1. Meaning of some symbols.

The remainder of this paper is organized as follows.
Section 2 introduces definitions and the relationships
between secret sharing schemes and linear codes; section 3
adopts the method of Tang et al. to obtain the ideal linear code
and constructs an authentication scheme for a given access
structure; section 4 is the security analysis of the scheme.
Section 5 is conclusion.

II. PRELIMINARIES
In this section, some notations is listed, we recall Shamir’s
secret sharing scheme and introduce the definition of linear
code and general secret sharing, and the connection of them.
Finally, we modify the definition of the minimal codeword
slightly.

A. SHAMIR’S SECRET SHARING SCHEME
The threshold secret sharing schemes was presented inde-
pendently by Shamir [26] and Blakley et al. [27] in 1979.
Shamir’s scheme uses polynomial interpolation, while Blak-
ley’s scheme is based on finite geometries. We demonstrate
the Shamir threshold scheme here.

Secret sharing is a cryptosystem consisting of a distribu-
tion algorithm and a reconstruction algorithm. The Shamir’s
scheme of the distribution algorithm and the reconstruction
algorithm are following,

Distribution Algorithm: let Fq be a field finite, q be a prime
and q > n. s, s ∈ Fq, is the secret to be shared in n participants
{p1, p2, . . . , pn},

1. A dealer D secretly choose (randomly and indepen-
dently) t − 1 elements of Fq, a1, a2, . . . , at−1;

2. For 1 ≤ i ≤ n, D computes yi = f (xi), where f (x) =
s+

∑t−1
j=1 ajx

j;
3. For 1 ≤ i ≤ n, D chooses n distinct nonzero elements

x1, x2, . . . , xn, xi ∈ Fq, and secretly distributes (xi, yi) to
the participant pi.
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Reconstruction Algorithm:Without loss of generality, sup-
pose that participants p1, p2, . . . , pt want to determine the
secret s. The Lagrange interpolation formula is an explicit
formula for the polynomial f (x) of degree at most t − 1. The
formula is as follows:

f (x) =
t∑
j=1

yj
∏

1≤k≤t,k 6=j

x − xk
xj − xk

The t participants know the shares yi = f (xi), 1 ≤ i ≤ t ,
and they can compute s = f (0), that is,

s =
t∑
j=1

yj
∏

1≤k≤t,k 6=j

xk
xj − xk

.

Therefore, any t or more than t participants altogether can
reconstruct the secret s, while any less than t participants
collusion can obtain no information about the s.
There is an alternative method, based on linear equation.

The t participants can obtain t linear equations according
f (x) = s +

∑t−1
j=1 ajx

j. This can be written in matrix form
as follows,

1 x1 . . . x t−11
1 x2 . . . x t−12
...

...
. . .

...

1 xt . . . x t−1t

 ·


s
a1
...

at−1

 =

y1
y2
...

yt

 .

The coefficient matrix A is a Vandermonde matrix and
rank(A) = t , s, a1, . . . , at is the unique solution. Hence, the t
participants can obtain the secret s. In fact, the coefficient
matrix of Shamir’s secret sharing scheme is also the generator
matrix of the Reed-Solomon code, and the multi-receiver
authentication scheme of Safavi-Naini and Wang [6] is based
on the Reed-Solomon code.

The (t, n) threshold secret sharing is far too simple for
many applications because it assumes that every participant
has equal privilege to the secret. Therefore, more research
works considered the general secret sharing schemes.
In this paper, we main consider multi-receiver authentication
scheme for general access structure based on ideal linear
code. The next section is the definition of linear code and the
corresponding general secret sharing.

B. LINEAR CODE AND GENERAL SECRET SHARING
Definition 1 (Linear Code): Let Fn+1q be the vector space

over finite field Fq. A linear subspace C of Fn+1q is known as
q-array linear code.
Let c = (c0, c1, . . . , cn) ∈ Fn+1q be a codeword of C .

supp(c) = { i | i ∈ [0, n], ci 6= 0} is known as support of c.
TheHamming weightWt(c) of c is defined as the number

of non-zero coordinates, i.e.,

Wt(c) = #{ci| ci 6= 0, 0 ≤ i ≤ n}.

Theminimum distance d(C) of C is the minimum Ham-
ming weight of all non-zero vectors in C , that is,

d(C) = min{Wt(c)| c ∈ C/{0}}.

A [n + 1, k, d] linear code C is a linear subspace of Fn+1q
with dimension k and minimum distance d . Let G = (g0,
g1, . . . , gn ) be the generator matrix of C , that is, the row
vector of G generate the linear code C .

The dual code C⊥ of C is defined as

C⊥ = {x ∈ Fn+1q | (x, c) = 0 for all c ∈ C}.

Lemma 1: Suppose that C is a linear code, H =

(h0, h1, . . . , hn) is the check matrix of C , the minimum dis-
tance of C is d if and only if any d − 1 columns of H are
linearly independent and there exist d linearly dependence.
Definition 2: A codeword c = (c0, c1, . . . , cn) ∈ Fn+1q is

minimal if

i) c is a non-zero codeword whose leftmost nonzero com-
ponent is 1;

ii) c covers no other codeword c′ in C whose leftmost non-
zero component is 1.

Definition 3 (General Secret Sharing): A general secret
sharing scheme is a policy of breaking the secret, s, divided
into n pieces s1, s2, . . . , sn to be shared among the partici-
pants P = {p1, p2, . . . , pn}, with si secretly distributed to pi
such that

i) S ⊆ P is a qualified subset of participants if the secret s
can be reconstructed by the shares {si | pi ∈ S};

ii) S ′ ⊆ P is an unqualified subset of participants if
the secret s cannot be reconstructed by the shares
{si | pi ∈ S ′}.

Suppose that a secret sharing scheme is constructed from
C , the secret s ∈ Fq is to share among n participants, denoted
by p1, p2, . . . , pn. To compute the shares of s, a dealer chooses
randomly a vector u = (u0, u1, . . . , uk−1) ∈ Fkq such that
ug0 = s, there are qk−1 such vector u ∈ Fkq and the dealer
computes the codeword s = (s, s1, . . . , sn) = u·G in C . Then
securely send si to participant pi as share for i = 1, 2, . . . , n.
In principle, every linear code can determine a secret shar-

ing policy [3]. Noted that ug0 = s, and it is easy to determine
the secret s by the shares of S iff g0 =

∑
pi∈S

xi gi.

Proposition 1: Let G be a generator matrix of linear code
C . In the secret sharing scheme based on C , a set of shares
{si1 , si2 , . . . , sim} determine the secret s if and only if there is
a codeword

(1, 0, . . . , 0, ci1 , 0, . . . , 0, cim , 0, . . . , 0) (1)

in the dual code C⊥, where cij 6= 0 for at least one j, 1 ≤ i1 ≤
· · · ≤ im ≤ n and 1 ≤ m ≤ n.
If there exist a codeword as (1) in C⊥, then g0 is a linear

combination of gi1 , gi2 , . . . , gim . That is,

g0 = −
m∑
j=1

cij · gij .
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Then the participants pi1 , pi2 , . . . , pim together can recover
the secret s by

s = u · g0 = −u
m∑
j=1

cij · gij

= −

m∑
j=1

cij · (u · gij ) = −
m∑
j=1

cij · sij .

A group of participants A ⊆ [1, n] is known as qualified
set if they can recover the secret by combining their shares,
then any group of participants containing this group can also
recover the secret. A group of participants is called a minimal
access set if they can recover the secret with their shares, any
of its proper subgroups cannot do so. A ⊆ [1, n] is known
as qualified set of linear code C if there is c ∈ C⊥ such that
c0 = 1 and supp(c)⊆ A∪ {0}, where supp(c)= {i | i ∈ [0, n],
ci 6= 0}.
All collection of qualified sets is known as access struc-

ture. Suppose 0 = {f1, f2, . . . , fz} is an access structure,
without loss of generality, we assume that no subset in 0

contains another subset of 0. Then 0 is known as aminimal
access structure.

A subset R of [1, n] is known as an unqualified set if it can’t
recover the secret s. The collection of the unqualified sets is
known as adversary structure. Let R denote the collection
of all maximal unqualified set of 0.
As [8], we consider which a coalition of malicious

receivers can successfully make a substitution attack to a
fixed receiver pi and produce a fake authenticated message
to be accepted by receiver pi, thus we modify the definition
of the minimal codeword slightly [4].
Definition 4: Let C ∈ Fn+1q be a linear code and j ∈

[1, n+1]. A codeword c is called j-minimal if c is a non-zero
codeword whose jth component is 1 and it covers no other
codeword c′ in C whose jth component is 1.

III. AUTHENTICATION SCHEME
In this section we develop multi-receiver authentication
scheme for general access structure based on linear code.
Firstly, we recall the general definition of multi-receiver
authentication scheme. Most notably, in order to realize any
access structure on multi-receiver authentication scheme,
we introduce the algorithm to obtain the adversary structure
R for the given access structure 0, and then determine the
generator matrix of the linear code.

A. GENERAL DEFINITION OF AUTHENTICATION SCHEME
In a multi-receiver authentication scheme, there is a trusted
authority to generate and distribute the required keys. The
scheme has three phases as following,
i) Key Generation and Distribution. The trusted author-

ity center privately sends the private keys to the sender
and the receivers, respectively.

ii) Broadcast. For a message m, the sender generates an
authenticated message using his/her key and broadcasts
the authenticated message.

iii) Verification. Each receiver verifies the received
message.

Tang et al. demonstrate that finding linear codes for an
access structure 0 is equivalent to solving a system of
quadratic polynomial equations which is constructed from 0

and R. Next we first introduce an algorithm for determining
R from 0 [28].

B. ALGORITHM OF OBTAINING R
For a more convenient description, the collection of partici-
pants P = {p1, p2, . . . , pn} is denoted by {x1, x2, . . . , xn} in
the algorithm below. Q = {xb11 · x

b2
2 · · · · · x

bn
n | bi ∈ {0, 1}},

0 = {f1, f2, . . . , fm} is a subset of Q. F(x) =
n∏
j=1

xj and R[l]

is the lth polynomial of R.
Example 1: Suppose 0 = {x1x2x3, x3x4x5, x3x5x6} is an

access structure of a secret sharing scheme with participants
{x1, x2, x3, x4, x5, x6}.
The maximal adversary structure is

R = {x1x2x4x5x6, x1x3x4x6, x2x3x4x6, x1x3x5, x2x3x5}.

C. DETERMINE LINEAR CODE FOR GIVEN
ACCESS STRUCTURE
Suppose that given an access structure

0 = {f1, f2, . . . , fz},

where fi ⊆ {p1, p2 . . . , pn} for i = 1, . . . , z. We denote 0 by
a matrix as following:

0 =


h11 h12 . . . h1n
h21 h22 . . . h2n
...

...
. . .

...

hz1 hz2 . . . hzn

 .

where hij ∈ F∗q if pj ∈ fi, else hij = 0 for i ∈ [1, z], j ∈ [1, n].
And define a matrix Hz×(n+1) with form:

H = (1 0) =


1 h11 h12 . . . h1n
1 h21 h22 . . . h2n
...

...
...

. . .
...

1 hz1 hz2 . . . hzn

 .

where all elements in the first column of H are 1.
We shall assume that the access structure mentioned in the

rest of the paper is a minimal access structure, the adversary
structure mentioned as following is a maximal adversary
structure and each participant pi is in some subset of 0,
therefore H has no columns with all 0.
Lemma 2 [24]: Suppose that C ⊆ Fn+1q is any linear code.

Then a subset R ⊆ [1, n] is an unqualified set of C iff there
is a codeword c = (c0, c1, . . . , cn) ∈ C such that c0 = 1 and
ci = 0 for all i ∈ R.

According to [7], in fact, Lemma 2 gives a method for
finding a linear code to realize a given access structure. Let
H be defined as above where all hij ∈ F∗q were unknown
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Algorithm 1 DeterminingR From 0

Input: 0 = {f1, f2, . . . , fm} with participants {x1, x2, . . . , xn}
Output: R

InitiallyR := {F(x)};
1: for i from 1 to m do
2: Rtemp := ∅;
3: for l from 1 to |R| do
4: if fi | R[l] then
5: Rtemp := Rtemp ∪ {

R[l]
xj
|xj divides fi};

6: else
7: Rtemp := Rtemp ∪ {R[l]};
8: end if
9: end for
10: R := Max(Rtemp);
11: end for

for pj ∈ fi. Suppose that we have found the corresponding
adversary structure of 0 by algorithm 1:

R = {R1,R2, . . . ,Rt }.

We define matrix

G =


1 g1,1 g1,2 . . . g1,n
1 g2,1 g2,2 . . . g2,n
...

...
...

. . .
...

1 gt,1 gt,2 . . . gt,n

 .

where gij = 0 if pj ∈ Ri and gij ∈ F∗q for pj /∈ Ri.
A linear code is ideal if the length of code is n + 1,

where n is the number of participants. The following theorem
demonstrates whether there exist an ideal linear code for a
given access structure.
Theorem 1: There is a linear code for a given access struc-

ture 0 iff the following system of quadratic equation

GHT
= 0,

has a solution for gij ∈ F∗q, pj ∈ Ai and hij ∈ F∗q, pj /∈ Ri.
The theorem illustrates if the equation has a solution, then

there exist an ideal linear code C ∈ Fn+1q to realize the
given access structure and the linear code C is the row span
of matrix G. In the ideal linear code, each participant in 0

owns only one component of the code, hence he owns only
the corresponding a column of matrix G and matrix H.
Our scheme is slightly different from the general definition

of authentication scheme. In order to realize authentication
scheme for general access structure based on ideal linear
code, it first needs to call adversary structure generating
algorithm to obtain R for the given general access structure
0, and achieve the generator matrix of the linear code which
is corresponding to the 0.

D. AUTHENTICATED SCHEME
Suppose that given an access structure 0, call algorithm 1 to
obtain the corresponding adversary structure R. According
to the above, the ideal linear code C is determined by the
matrix G. Without loss of generality, suppose that the row

of the matrix G are linearly independent, C is with mini-
mum distance d(C) > 2, and the minimum distance of the
dual code C⊥ is d(C⊥) > 2. The authenticated scheme is
following,
i) Generate Matrix. Given an access structure 0 =

{f 1, . . . , fz}, and call algorithm 1 to generate R = {R1,
R2, · · · , Rt }, according to the above definition to obtain
the generator matrix

G =


1 g1,1 g1,2 . . . g1,n
1 g2,1 g2,2 . . . g2,n
...

...
...

. . .
...

1 gt,1 gt,2 . . . gt,n

 .

Make the matrix G public.
ii) Key Generation and Distribution. The trusted author-

ity randomly chooses a matrix P ∈ F(r+1)×t
q

P =


p0,1 p0,2 . . . p0,t
p1,1 p1,2 . . . p1,t
...

...
. . .

...

pr,1 pr,2 . . . pr,t

 ,

and distributes P to sender.
Compute

K = P ·G =


K00 K01 . . . K0,n
K10 K11 . . . K1,n
...

...
. . .

...

Kr0 Kr1 . . . Kr,n

 ,

then distributes 1th to nth columns of K to receiver
p1, p2, . . . , pn, respectively.

iii) Broadcast. For message m ∈ Fq, the sender computes

Tj(m) =
r∑

v=0

pv,j · mv

as the tag of m, where j = 1, 2, . . . , t and let T (m) =
(T1(m),T2(m), . . . ,Tt (m)). Broadcast M = (m,T (m)).

iv) Verification. The receiver pi, i = 1, . . . , n, accepts the
message M = (m,T (m)) if

r∑
v=0

Kv,i · mv =
t∑
j=1

gj,i · Tj(m).

Correctness. The receiver pi, i = 1, . . . , n receives the the
messageM = (m,T (m)) and computes by his/her private key
Ki = (K0i,K1i, . . . ,Kri).
They verify that

r∑
v=0

Kv,i · mv =
r∑

v=0

(pv,1 · g1,i + · · · + pv,t · gt,i) · mv

=

r∑
v=0

(
t∑
j=1

pv,j · gj,i) · mv

=

t∑
j=1

(
r∑

v=0

pv,j · mv) · gj,i

=

t∑
j=1

Tj(m) · gj,i.
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In the authentication scheme we construct, a generator
matrix G is determined for any given access structure and
published, the trusted authority chooses randomly a matrix as
the secret key and generates the private key using matrix G,
then he transmits the shares of private key to each receiver,
and distributes secret key to the sender. The sender computes
the tag of the message m with the secret key, and broadcast m
and the tag. In the verification phase, each receiver can verify
the integrity of m with his/her private key.

IV. SECURITY
In a traditional model of authenticated scheme, there are
three parties involved: sender, receivers, andmalicious group.
When sender sends the messages to receivers by a public
channel, the malicious group may fake or substitute the
messages transmitted by the public channel. In this section,
we analyze the security of the above schemes. Notice that
a tagged message (m′,T ′1, . . . ,T

′
t ) is accepted by receiver

pi iff
r∑

v=0
Kv,i · (m′)v =

t∑
j=1

gj,i · T ′j (m). Therefore, if the

malicious group makes a substitution attack to receiver pi,

they must know the label
r∑

v=0
Kv,i · (m′)v for m′ ∈ Fq. So the

security of the scheme is similar with [9] that depends on
the hardness of finding the secret key P. However, the first
column of the generate matrix of our scheme is all ′1′, the
number of malicious groups of our scheme is less than [8]
that can corrupt receiver. Suppose that a group of k malicious
receivers collaborate to recover P and make a substitution
attack.

Without loss of generality, we assume that the malicious
receivers are p1, p2, . . . , pk ,m1, . . . ,mr are themessages that
are sent to each malicious receiver. Each malicious receiver
pi has some informations as following, i = 1, 2, . . . , k ,

K0i
K1i
...

Kri

 = P


g1i
g2i
...

gti

 ,

and

PT ·


1 1 . . . 1
m1 m2 . . . mr
...

...
. . .

...

mr1 mr2 . . . mrr



=


T1(m1) T1(m2) . . . T1(mr )
T2(m1) T2(m2) . . . T2(mr )

...
...

. . .
...

Tt (m1) Tt (m2) . . . Tt (mr )


The group of malicious receivers, p1, p2, . . . , pk , combines

their informations, and they have s system of linear equations

that

PT ·


1 1 . . . 1
m1 m2 . . . mr
...

...
. . .

...

mr1 mr2 . . . mrr

 =

T1(m1) . . . T1(mr )
T2(m1) . . . T2(mr )

...
. . .

...

Tt (m1) . . . Tt (mr )



P ·


g11 g12 . . . g1k
g21 g22 . . . g2k
...

...
. . .

...

gt1 gt2 . . . gtk

 =

K01 K02 . . . K0k

K11 K12 . . . K1k
...

...
. . .

...

Kr1 Kr2 . . . Krk


Lemma 3: Suppose thatU is the subspace of Ftq generated

by {gj| j = 1, 2, . . . , k}, where gj is the jth column of
the generator matrix G. If dim U ≤ t − 1, there exists
qt−dimU matrices P such that the above system of equations
hold.

Proof:We would like to demonstrate that the malicious
receivers combining their informations cannot determine the
matrix P. In the other words, the matrix satisfying the above
equations is not unique.
The elements in matrix P can be treat as t × (r + 1)

variables,

(p0,1, . . . , pr,1, p0,2, . . . , pr,t )

and the above equations can be written in the following
form,

p0,1 + m1 · p1,1 + · · · + mr1 · pr,1 + 0 · · · + 0 = T1(m1)

. . .

p0,1 + mr · p1,1 + · · · + mrr · pr,1 + 0 · · · + 0 = T1(mr )
...

p0,t + mr · p1,t + · · · + mrr · pr,t + 0 · · · + 0 = Tt (mr )

g1,1 · p0,1 + 0+ · · · + 0+ g2,1 · p0,2 + 0+ · · · + 0

+ · · · + gt,1 · p0,t + 0 · · · + 0 = K01

. . .

g1,k · p0,1 + 0+ · · · + 0+ g2,k · p0,2 + 0+ · · · + 0

+ · · · + gt,k · p0,t + 0 · · · + 0 = K0k

...

g1,k · pr,1 + 0+ · · · + 0+ g2,k · pr,2 + 0+ · · · + 0

+ · · · + gt,k · pr,t + 0 · · · + 0 = Krk

Suppose that 
1 1 . . . 1
m1 m2 . . . mr
...

...
. . .

...

mr1 mr2 . . . mrr

 = Mr ,
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The coefficient matrix can be written as,

MT
r

MT
r

. . .

MT
r

g1,1 · E g2,1E . . . gt,1 · E
...

. . .
...

g1,k · E g2,k · E . . . gt,k · E
...

...
...

...
...

...

g1,k · E g2,k · E . . . gt,k · E



,

where E is the identity matrix with rank(E) = r + 1. Notice
that the generated space by rows of Mr is contained in the
space Fr+1q generated by gi,j · E if gi,j 6= 0 for i ∈ [1, t], j ∈
[1, k]. Therefore, the rank of the coefficient matrix is t · r +
dimU . However, dimU ≤ t−1, the system of equations above
has qt·(r+1)−t·r−dimU = qt−dimU solutions.

From the lemma 3, the security of the scheme is as
following.
Theorem 2: The above scheme is an unconditionally

secure multi-receiver authentication scheme for general
access structure against a coalition of up to d(C⊥)− 2 mali-
cious receivers in which each key can be used to authenticate
up to r messages.

Proof: We main consider the substitution attack. Sup-
pose that the group of malicious receivers are p1, . . . , pk ,
the sender has transmitted m1, . . . ,mr to every receiver. The
malicious receivers want to generate a valid tag b1g1,k+1
+ · · · + btgt,k+1 for mr+1 such that it is accepted by receiver
pk+1. They try to guess the value of K0,k+1+K1,k+1 ·mr+1+
· · · + K1,k+1 · mrr+1 and construct b1g1,k+1 + · · · + btgt,k+1
such that

b1g1,k+1 + · · · + btgt,k+1 = K0,k+1 + · · · + K1,k+1 · mrr+1.

Suppose that d(C⊥) is the minimum distance of C⊥.
According to Lemma 1, any d(C⊥)− 1 column of the gener-
ator matrixG are linearly independent, and there exist d(C⊥)
column of G linearly dependent.

G =


1 g1,1 g1,2 . . . g1,n
1 g2,1 g2,2 . . . g2,n
...

...
...

. . .
...

1 gt,1 gt,2 . . . gt,n

 = (g0, g1, . . . , gn),

K = P ·G =


K00 K01 . . . K0,n
K10 K11 . . . K1,n
...

...
. . .

...

Kr0 Kr1 . . . Kr,n


= (K0,K1, . . . ,Kn),

We assume that g1, g2 . . . , gk are linearly independent.
If gk+1 is not contained in the subspace of Ftq generated by
1th, 2th, . . . , k + 1th column of G,

Suppose that k = d(C⊥)−1, we assume that g1, g2 . . . , gk
are linearly independent and add gk+1, g1, g2 . . . , gk+1 are
still linearly independent, the malicious receivers p1, . . . , pk
cannot obtain any information about Kk+1. If g1, g2 . . . , gk
are linearly independent and only g0, g1 . . . , gk are linearly
dependent, the malicious receivers p1, . . . , pk cannot make a
substitution attack to any another receiver.

If gk+1 is contained in the subspace of Ftq generated by
g1, g2 . . . , gk of G, the k + 1th column gk+1 can be linear
representation by

a1g1 + · · · + akgk .

The malicious receivers p1, . . . , pk can make a substitution
attack to pk+1 by combining their k private key,

Kk+1 = P · gk+1 = P · (a1g1 + · · · + akgk )

= a1P · g1 + · · · + akP · gk
= a1 · K1 + · · · + ak · Kk

Therefore, k is most up to d(C⊥) − 2. According to
Lemma 3, there exists qk−d(⊥)+2 matrices P satisfying the
equations above.

The information held by the group of the malicious
receivers allows them to calculate q equally likely different
tags for mr+1 and hence their probability of success is 1/q.
Our scheme is main to realize multi-receiver authentication
scheme for general access structure based on ideal linear
code. The first column of the generator matrix of the ideal
linear code is all ’1’, there are less malicious groups than F.
Fu (2014) that can corrupt any a receiver in our scheme.
Theorem 3: The group that is minimal substitution

receivers to receiver pj is determined completely by j-minimal
codeword whose the first component is 0 in C⊥.

Proof: The coalition of malicious receivers V can suc-
cessfully make a substitution attack to receiver pj, by Propo-
sition 1 and Theorem 3, if and only if gj is contained in
the subspace of Ftq generated by {gi| pi ∈ V }, where gi
represents the i-th column of the generator matrix G. Their
private key of receiver pj is a linear combination of the V
receivers private keys, and any a participant cannot obtain the
information of the first column of P. Therefore, receiver pj
can accept the faked message determined completely by j-
minimal codeword whose the first component is 0 in C⊥.
Corollary 1: The group that can fake an authenticated

message being accepted by receiver pj contains any support
of j-minimal codeword excluding {j} in C⊥.

In fact, it is NP-hard to determine all substitution groups,
which is corresponding to j-minimal codeword, to receiver
pj. Further, by theorem 3, the minimal substitution group
to pj is determined by j-minimal codeword whose the first
component must be 0. Therefore, the number of minimal
substitution groups to any receiver pj in our scheme are less
than J. Zhang and F.Fu.
Example 2: Given an access structure 0={(1, 2, 4, 5),

(1, 2, 3, 6), (3, 4, 5, 6)}.
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Then R ={(2, 4, 5, 6), (2, 3, 5, 6), (2, 3, 4, 6), (2, 3, 4, 5),
(1, 4, 5, 6), (1, 3, 5, 6), (1, 3, 4, 6), (1, 3, 4, 5), (1, 2, 5, 6),
(1, 2, 3, 5), (1, 2, 4, 6), (1, 2, 3, 4)}

Let

H = (1 0) =

 1 h11 h12 0 h14 h15 0
1 h21 h22 h23 0 0 h26
1 0 0 h33 h34 h35 h36

 .

G =



1 g11 0 g13 0 0 0
1 g21 0 0 g24 0 0
1 g31 0 0 0 g35 0
1 g41 0 0 0 0 g46
1 0 g52 g53 0 0 0
1 0 g62 0 g64 0 0
1 0 g72 0 0 g75 0
1 0 g82 0 0 0 g86
1 0 0 g93 g94 0 0
1 0 0 0 g10,4 0 g10,6
1 0 0 g11,3 0 g11,5 0
1 0 0 0 0 g12,5 g12,6



.

There exists the solution for the equation GHT
= 0 in

F7
q. That is, g64 = g−182 (−g72g94 + g82g94), g62 = g72,
g53 = g−172 (g72 − g82)g93, g52 = g82, g46 = g86, g35 = g75,
g31 = g−182 g41g72, g24 = g64, g21 = g31, g13 = g53,
g12,6 = g31g86(g31− g41)−1, g12,5 = g41g75(−g31+ g41)−1,
g11,5 = g12,5, g11,3 = g93, g11 = g41, g10,6 = g12,6,
g10,4 = g94, h11 = −g

−1
41 , h12 = g31h11g

−1
72 , h14 =

(−1−g31h11)g
−1
64 , h15 = −g

−1
12,5, h21 = (g12,6−g86)h11g

−1
12,6,

h22 = −g41h12h21, h23 = (−1 − g41h21)g
−1
53 , h26 = −

−1
g12,6,

h33 = g31h23(g31 − g41)−1, h34 = h14 + g93h14h33, h35 =
h15 + g93h15h33, h36 = −g93h26h33
Let Fq = F5. The r = 3 messages are m1 = 1, m2 = 2,

m3 = 3. Suppose that the matrix G of the ideal linear code
for given access structure is

G =



1 2 0 3 0 0 0
1 1 0 0 4 0 0
1 1 0 0 0 3 0
1 2 0 0 0 0 2
1 0 4 3 0 0 0
1 0 2 0 4 0 0
1 0 2 0 0 3 0
1 0 4 0 0 0 2
1 0 0 2 3 0 0
1 0 0 0 3 0 3
1 0 0 2 0 1 0
1 0 0 0 0 1 3



.

the generator matrix is

G′ =


1 2 0 3 0 0 0
1 2 0 0 0 0 2
1 0 4 3 0 0 0
1 0 0 2 3 0 0
1 0 0 2 0 1 0

 .

and the dual codeC⊥ has minimum distance d(C⊥) = 5. The
corrupted receivers are at most 3.

TABLE 2. Minimal substitution groups to receiver p3 in example 2.

The trusted authority randomly chooses P ∈ F4×5
q , for

instance,

P =


3 2 2 0 2
0 4 3 0 2
0 1 2 3 1
3 3 0 1 3

 .

The trusted authority computes

K = P ·G′ =


4 0 3 4 0 2 4
4 3 2 3 0 2 3
2 2 3 4 4 1 2
0 2 0 2 3 3 1

 .

and distributes the i-th column of K to the receiver pi as
his/her private key.

Suppose p1, p2, p3 are corrupted and they have the authen-
ticated messages. They have information about the key
matrix P:

PT


1 1 1
1 2 3
1 4 4
1 3 2

 =

1 2 4
0 3 4
2 1 4
4 0 4
3 4 3



P


2 0 3
2 0 0
0 4 3
0 0 2
0 0 2

 =

0 3 4
3 2 3
2 3 4
2 0 2


This system of linear equations has 25 solutions.

Suppose that the corrupted receiver would like to make a
substitution attack to receiver p3. The 4-minimal codewords
in C⊥ is following:

(2001214), (3211004), (0131134),

4-minimal codeword with the first component of 0 is the
only one: (0 1 3 1 1 3 4).

The support of 4-minimal codeword with the first compo-
nent of 0 is {2, 3, 5, 6, 7}.

So minimal substitution group to receiver p3 must contain
the support {2, 3, 5, 6, 7}, in fact, just all receivers together
except receiver p3 could make a substitution attack.
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As it sees the example above, it is 3 groups that can make
a minimal substitution attack to receiver 3 based on J. Zhang
and F.Fu, however, it is just 1 group that can make a minimal
substitution attack based on our scheme.

V. CONCLUSION
In this paper, we present a multi-receiver authentication
scheme for any a given access structure that is corresponding
an ideal linear code. The scheme is unconditionally secure
and allows r messages to be authenticated with each receiver
own private key. There are less number of malicious groups
than F. Fu (2014) that can corrupt any a receiver, because
the malicious group to any a receiver is corresponding to the
minimal codeword in C⊥ whose the first component is 0.
In the future, we will investigate the consistent characteristics
of the access structure that can realize an ideal linear code,
which is inspired by the designed example above.
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