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ABSTRACT This paper presents the dynamic modeling process of a powered parafoil (PPF). The PPF is
composed of parafoil and payload equipped with a propeller. The payload is suspended to the parafoil via
two suspending points, therefore the motion of the payload relative to the parafoil must be considered in
the dynamic and control study. The proposed model of the PPF is derived from the Lagrangian equations
and dynamic constraints with six degree of freedom (DOF) of the parafoil and two DOF of the payload.
In the modeling process, the velocity, angular rate and force constraints are introduced and the detailed
modeling process is provided. Time-domain response of the PPF under different conditions are calculated
and the dynamic characteristics of the PPF are analyzed. A series of simulations are implemented to illustrate
the manipulation characteristics. Furthermore, the dynamic model is validated by comparing the simulation
results with the experimental data.

INDEX TERMS Powered parafoil, constraint analysis, flexible-wing vehicle, dynamic modeling.

I. INTRODUCTION
Parafoil is a kind of flexible wing aero decelerator which
is entirely made of fabric and has a low aspect ratio. This
characteristic allows the parafoil to be packed before deploy-
ment and be inflated when deployed from a high altitude.
The use of parafoil has substantially enhanced airdrop capa-
bilities during the last several decades. Many novel results
about the application of the parafoil have been reported in
literature [1]–[7].

The concerned powered parafoil (PPF) is composed of
parafoil and payload with a propeller equipped on the back
of it [8]. The payload is connected to the parafoil via two
suspending points to reduce the relative yaw angle. The
control inputs for PPF involve lateral brake deflection and
longitudinal thrust provided by the propeller. The lateral
control is added to the PPF by pulling steering lines on
the trailing edge of the parafoil. In the past decades, var-
ious control methodologies were applied to the control of
the PPF [9]–[15]. The modeling of a PPF is more compli-
cated than a rigid-body aircraft because it is difficult to ana-
lyze the internal constraints. In the preliminary research, the
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connection between the parafoil and the payload is regarded
as rigid for simplicity. Therefore, the simplest models of PPF
with six degrees of freedom (DOF) [10], [16], [17] or four
DOF [18] were established by ignoring the relative motion of
the payload. The translational and rotational motions of the
whole PPF are investigated based on these models. However,
the relative motions affect the actual attitudes of the payload
in practice, which then influence the thrust direction. There-
fore, a more accurate model should be introduced in the study.
A complicated model with nine DOF is proposed by adding
three rotational DOF of the payload to the six DOF model
of the parafoil [8], [19]–[21]. However, this model is only
applicable to parafoil vehicles with only one suspending point
between the paraloil and the payload.

The deformation about the roll axis of the PPF with two
suspending points is generally very small and can be ignored.
Therefore, the dynamics of this type of PPF can be described
by an eight DOF model. A nonlinear model with eight DOF
was proposed in [22], where the moment about the yaw axis
was elaborately modeled. The deformation of the parafoil due
to deflection was also taken into account. In [23], flight con-
trol of a powered paraglider was described and experimental
results were compared with the proposed model, however
without theoretical analysis of the motion characteristics.
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Ref. [24] developed an eight-DOF equations of motion based
on analytical mechanics with fewer differentiations than the
Lagrangian approach, and the validity of the proposed model
was only verified through simulation rather than comparing
the simulation with flight test. By eliminating the coupling
effects between parafoil and payload, Ref. [25] and [26]
established an auxiliary matrix to simplify the modeling
process.

In this paper, the detailed derivation of the model of
the PPF with eight DOF is presented. The model consists
of six DOF of the parafoil and two DOF of the payload.
A spring and damper model is utilized to model rotational
constraints [25]. In addition, internal forces and moments,
which are applicable to the PPF design, are considered as
states. This model is available for simulating the unmanned
PPF and the numerical simulations are carried out to illustrate
the characteristics of the PPF. The results are further com-
pared with experimental data.

The remaining parts of the paper are organized as fol-
lows: In section II, the modeling problem is formulated.
In section III, the detailed description of the constraints is pre-
sented. Then we present the simulation analysis in section IV.
In section V, the simulation results are compared with the
experimental data, which validates the dynamic model. The
concluding remarks are presented in section VI.

II. MOTION EQUATIONS
A practical PPF is shown in Fig. 1. In this paper, we address
the modeling problem of the PPF. Several reasonable hypoth-
esis are described as follows [26].

1) The parafoil keeps its aerodynamic structure
unchanged when inflated;

2) The center of gravity (CG) of the parafoil is just the
aerodynamic pressure center;

3) The lift of payload is ignored, and we only consider its
aerodynamic drag;

4) The ground is a flat plane.

FIGURE 1. Powered parafoil.

A. COORDINATE CONFIGURATION
To facilitate the analysis, three main coordinate systems are
established, including geodetic coordinate system (inertial
coordinate system) 6I , parafoil-fixed coordinate system 6c
and payload-fixed coordinate system 6p. These coordinate
systems are fixed to a fixed point at the ground, the CG of
the parafoil Oc and the CG of the payload Op, respectively.
In addition, two auxiliary coordinate systems, the rigging
coordinate system 6r and wind coordinate system 6w, are
established to calculate aerodynamic forces of the parafoil.

As shown in Fig. 2, the axis directions of the coordinate
systems are described as follows. The inertial coordinate
system 6I is defined as OI xI yI zI . The positive direction
of zI -axis is taken downward. The xI -axis and yI -axis are
properly chosen to ensure that the OI xI yI -plane is horizontal.
To simplify the simulation of the PPF, the origin of 6I is
selected at the initial position of CG of the parafoil. The
positive direction of xI -axis is appropriately chosen in the
direction of North. The parafoil-fixed coordinate system 6c
is defined as Ocxcyczc. The zc-axis is chosen in the direction
from Oc to Cm, where Cm is the middle point of the two
suspending points. The xc-axis is in the symmetry plane of
the parafoil and is perpendicular to zc-axis. The yc-axis is
defined so that6c forms a right-hand coordinate system. The
payload-fixed coordinate system 6p is defined as Opxpypzp
with the assumption that the payload is symmetric. The xp-
axis is chosen in the direction of the thrust. The zp-axis is
perpendicular to xp-axis and is taken downward. The 6p is
also a right-hand coordinate system while the yp-axis is taken
rightward and is perpendicular to the Opxpzp-plane. The axes
of the parafoil-fixed coordinate system are parallel to those
of the payload-fixed coordinate system when the relative
attitude between the parafoil and the payload is zero.

FIGURE 2. Coordinate systems.
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Auxiliary coordinate system 6r is obtained by rotating 6c
around the yc-axis by µ, which indicates the rigging angle.
The 6r is defined as Orxryrzr and the xr -axis is parallel to
the bottom surface of the parafoil. The origin of the wind
coordinate system6w is the CG of the parafoil and is defined
as Owxwywzw. The xw-axis is chosen in the direction of the
airflow, which is defined by the airspeed of the parafoil. This
makes the 6w a dynamic coordinate. The zw-axis is in the
symmetry plane of the parafoil and is perpendicular to the
Owxwyw-plane.
All the coordinate systems except 6I are determined by

Eulerian angles, including roll angle ζ , pitch angle θ and yaw
angle ψ about 6I . The transformation from 6I to the related
coordinate system is determined by the transformation matrix

TI−∗ =

 cθcψ cθ sψ −sθ
sζ sθcψ − cζ sψ sζ sθ sψ + cζ cψ sψcθ
cζ sθcψ + sζ sψ cζ sθ sψ − sζ cψ cψcθ

 (1)

wherein for arbitrary angle α, sinα ≡ sα , cosα ≡ cα .

B. MOTION EQUATIONS OF THE PAYLOAD
The payload has translational motion and rotational motion
with respect to the force and moment acting on it. For sim-
plicity, the payload is assumed to be rigid in the modeling
process.

The forces acting on the payload are gravity FGp , aerody-
namic force Fap, tension of suspension lines F

te
p and the thrust

provided by the propeller Fthp , which are described in 6p.
The action points of the gravity, thrust and aerodynamic
force are the CG of the payload for its regular shape, and
thus the moments of the three in 6p are ignored. Therefore,
the basic equations of motion for the payload can be obtained
by applying the Lagrange approach. The most general form
of these equations in 6p are

∂Pp
∂t
+ ωp ×Mp = Fap + FF

G
p + Fthp + Ftep

∂Hp

∂t
+ Vp × Pp + ωp ×Hp =Mte

p (2)

where P and H are momentum and moment of momentum,
respectively. Vp =

[
up vp wp

]T and ωp =
[
pp qq rp

]T
denote the velocity and angular rate of the payload, respec-
tively, and the superscript T here is the transpose symbol. The
subscript p means that the vector is in 6p. The superscripts
a, G, te and th represent aerodynamic force, gravity, tension
of suspension lines and thrust, respectively. Pp and Hp are
defined as {

Pp = mpVp

Hp = Jpωp
(3)

where Jp is the matrix of moment of inertia.
Let TI−p

(
ζp θp ψp

)
be the transformation matrix from

6I to 6p, then the gravity is expressed as FGp =

T T
I−p
[
0 0 mpg

]T , where mp is the mass of payload and g
is the gravitational acceleration. The aerodynamic lift of the

payload can be ignored for its aerodynamic shape. Therefore,
Fap is just the aerodynamic drag and can be defined as

Fap = −0.5ρ
∣∣Vp

∣∣ SpCDpVp (4)

where ρ, CDp and Sp are the air density, the drag coefficient
and the characteristic area of the payload, respectively.
It is assumed that the payload is linked to the parafoil via

two suspending points, CR and CL . Thus, Ftep is defined as
Ftep = FtepR + FtepL wherein F

te
pR and F

te
pL are the tensions acting

at CR and CL , respectively. Let lp and l be the distance from
Cm to Op and Cm to CR, respectively. Then, the distance
between Cm and CL is also l. The moment produced by
suspension lines is given as

Mte
p = LpR × FtepR + LpL × FtepL (5)

where LpR =
[
0 l −lp

]T and LpL =
[
0 −l −lp

]T are the
positions of CL and CR in 6p, respectively. Substituting LpR
and LpL into Eq. (5) yields

Mte
p =

 0
l
0

−
 0

0
lp

× FtepR

+

−
 0
l
0

−
 0

0
lp

× FtepL

=

 0
l
0

× (FtepR − FtepL
)
−

 0
0
lp

× (FtepR + FtepL
)

=

 0
l
0

× (FtepR − FtepL
)
−

 0
0
lp

× Ftep (6)

The constraints of the tension will be analyzed later.

C. MOTION EQUATIONS OF THE PARAFOIL
As mentioned above, the parafoil is a kind of flexible wing.
However, for the sake of simplicity, the parafoil is assumed
to have a fixed structure in shape.

The forces acting on the parafoil are gravity FGc , aerody-
namic force Fac and tension of suspension lines F

te
c which are

represented in 6c. Using the Lagrange approach, the basic
equations of motion for the parafoil in 6c are

∂Pc
∂t
+ ωc × Pc = Fac + FGc + Ftec

∂Hc

∂t
+ Vc × Pc + ωc ×Hc =Ma

c +Mte
c (7)

where Vc =
[
uc vc wc

]T and ωc =
[
pc qc rc

]T are the
velocity and angular rate of the parafoil, respectively. The
subscript c is the parafoil-fixed coordinate system6c. For the
light weighted aircraft with its geometric density close to the
air, the apparent mass should be included in calculating the
moment and the momentum of moment. Therefore, the fol-
lowing equation holds[

Pc
Hc

]
= [Aa + Ar ]

[
Vc
ωc

]
(8)
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where Aa and Ar are the inertia matrix of the apparent mass
and real mass, respectively. Ar is determined by the mass and
geometric shape of the parafoil as

Ar =
[
mcI3 03×3
03×3 Jc

]
(9)

where I3, 03×3 and Jc are the third-order identity matrix,
zero matrix and moment of inertia, respectively. Let b, c̄
and t represent the spanwise, mean chord and thickness of
the parafoil, respectively. Then, Jc can be simply defined
as

Jc ≈

 b2 + t2 0 0
0 c2 + t2 0
0 0 b2 + c2

 (10)

The detailed calculation of inertial matrix Aa refers
to [7].

To facilitate the derivation, Eq. (8) can be depicted in the
form of [

Pc
Hc

]
=

[
A1 A2
A3 A4

] [
Vc
ωc

]
(11)

where Ai (i = 1, 2, 3, 4) is the third-order submatrix of
[Aa + Ar ].

Let TI−c
(
ζc θc ψc

)
be the transformation matrix from

6I to 6c, then the gravity is expressed as FGc =

T T
I−c
[
0 0 mcg

]T , where mc is the mass of the parafoil. The
aerodynamic force of the parafoil is composed of aerody-
namic lift and aerodynamic drag, and the auxiliary coordi-
nates are utilized to calculate the aerodynamic force. Let
Tc−r

(
0 µ 0

)
and Tw−r

(
β π − α 0

)
be the transformation

matrix from 6c to 6r and 6w to 6r , respectively. In Tw−r ,
α and β are the angle of attack and sliding angle, which are
defined as 

α = tan−1
(
ua
wa

)
β = tan−1

(
va
|Va|

2

)
where Va =

[
ua va wa

]T
= Tc−r (Vc + Vw) is the airspeed

of the parafoil andVw is the external wind disturbance. Then,
the aerodynamic force is given as

Fac = T Tc−rTw−rQSc

CD0 + CDα2α
2
+ CDδsδs

CYββ

CL0 + CLαα + CLδsδs

 (12)

where CD0, CDα2 and CDδs are the drag coefficients, CL0,
CLα and CLδs are the lift coefficients, CYβ is the side -
force coefficients, Sc is the characteristic area of the parafoil,
and Q = 0.5ρ|Va|

2 represents the dynamic pressure, respec-
tively. δs is the symmetric deflection and is defined as
δs = min {δR, δL} [25], where δR and δL are the deflec-
tion control of the right and left trailing edge, respectively.
With the aerodynamic derivative coefficients Clβ , Clp etc.,

the aerodynamic moment Ma
c is defined as

Ma
c = T Tc−rTw−rQSc

×


b
(
Clββ +

b
2 |Va|

(
Clppc + Clrrc

)
+ Clδaδa

)
c̄
(
Cm0 + Cmαα +

c̄
2 |Va|

Cmqq
)

b
(
Cnββ +

b
2 |Va|

(
Cnpp+ Cnrr

)
+ Cnδaδa

)


(13)

where δa = δL − δR is the asymmetric deflection.
In 6c, Ftec is defined as Ftec = FtecR + FtecL with FtecR and

FtecL are the tensions acting on CR and CL , respectively. Let
lc be the distance from Cm to Oc, the moment produced by
suspension lines is given as

Mte
c = LcR × FtecR + LcL × FtecL (14)

where

LcR = T Tc−p

 0
l
0

+
 0
0
lc

 ,
LcL = T Tc−p

 0
−l
0

+
 0
0
lc

 (15)

are the position ofCR andCL in6c, respectively. Substituting
Eq. (15) into Eq. (14), we obtain

Mte
c =

T Tc−p
 0
l
0

+
 0
0
lc

× FtecR

+

−T Tc−p
 0
l
0

+
 0
0
lc

× FtecL

= T Tc−p

 0
l
0

× (FtecR − FtecL
)
+

 0
0
lc

× (FtecR + FtecL
)

= T Tc−p

 0
l
0

× (Tc−p (FtecR − FtecL
))+

 0
0
lc

× Ftec

(16)

III. CONSTRAINT ANALYSIS AND DYNAMIC MODELING
OF THE PPF
Eq. (2) and (7) give the basic motion equations of the PPF,
and it is sufficient to establish a six DOF dynamic model
of the PPF without considering the relative motion between
the payload and parafoil. However in eight DOF dynamic
model, the constraints, including velocity constraint, angular
rate constraint and force constraint should be considered and
dealt with.

A. VELOCITY CONSTRAINT
The payload has the relative pitch and yaw motions to the
parafoil. According to Fig. 2, the middle point Cm of sus-
pending points CR and CL is fixed to both 6c and 6p,
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and the velocity of Cm can be defined respectively as{
Vcc = Vc + ωc × Lcc
Vpc = Vp + ωp × Lpc

(17)

where Lcc =
[
0 0 lc

]
and Lpc =

[
0 0 −lp

]
are the

positions of Cm in6c and6p, respectively.If we redefineVcc
and Vpc in 6I , Eq. (17) can then be rewritten as

T TI−c (Vc + ωc × Lcc) = T TI−p
(
Vp + ωp × Lpc

)
(18)

Differentiating Eq. (18) gives

T TI−c (ωc × (Vc + ωc × Lcc))+ T TI−c
(
V̇c + ω̇c × Lcc

)
= T TI−p

(
ωp ×

(
Vp + ωp × Lpc

))
+T TI−p

(
V̇p + ω̇p × Lpc

)
(19)

which can be reformulated as

V̇c + ω̇c × Lcc − T Tc−p
(
V̇p + ω̇p × Lpc

)
= −ωc × (Vc + ωc×Lcc)+T Tc−p

(
ωp ×

(
Vp+ωp×Lpc

))
(20)

This gives three equations of the velocity constraint.

B. ANGULAR RATE CONSTRAINT
According to the principles of theoretical mechanics,
the angular rate constraint of the PPF is given as ppqp

rp

− Tc−p
 pcqc
rc

 =
 0 0 − sin (θr )
0 1 0
0 0 cos (θr )

 0
θ̇r
ψ̇r

 (21)

where θr and ψr are relative pitch angle and relative yaw
angle, respectively. To facilitate the constraint analysis,
Eq. (21) can be reformulated as 0

qp
rp

− Tc−p
 pcqc
rc


=

−1 0 − sin (θr )
0 1 0
0 0 cos (θr )

 0
θ̇r
ψ̇r


+

−1 0 − sin (θr )
0 1 0
0 0 cos (θr )

 pp0
0


=

−1 0 − sin (θr )
0 1 0
0 0 cos (θr )

 pp
θ̇r
ψ̇r

 (22)

which is equivalent to pp
θ̇r
ψ̇r


=

 0 0 − sin (θr )
0 1 0
0 0 cos (θr )

−1 0
qp
rp

− Tc−p
 pcqc
rc



=

−1 0 − tan (θr )
0 1 0
0 0 1/ cos (θr )

 0
qp
rp

− Tc−p
 pcqc
rc


(23)

The first row of Eq. (23) can be rewritten as

pp = − tan (θr ) rp +
cos (ψr )
cos (θr )

pc +
sin (ψr )
cos (θr )

qc

⇒ cos (θr ) pp = − sin (θr ) rp + cos (ψr ) pc + sin (ψr ) qc
(24)

Differentiating Eq. (24) we obtain

−θ̇r sin (θr ) pp + cos (θr ) ṗp
= −θ̇r cos (θr ) rp − sin (θr ) ṙp − ψ̇r sin (ψr ) pc
+ cos (ψr ) ṗc + ψ̇r cos (ψr ) qc + sin (ψr ) q̇c (25)

which also is

K1ω̇p −K2ω̇c = K3ωp +K4ωc (26)

where 

K1 =

[
cos (θr ) 0 sin (θr )

]
K2 =

[
cos (ψr ) sin (ψr ) 0

]
K3 =

[
θ̇r sin (θr ) 0 −θ̇r cos (θr )

]
K4 =

[
−ψ̇r sin (ψr ) ψ̇r cos (ψr ) 0

]
This gives the angular rate constraint.

C. FORCE CONSTRAINT
According to Newton’s third law, the forces acting on the
suspending points CR and CL are described as

FtecR = −T
T
c−pF

te
pR,F

te
cL = −T

T
c−pF

te
pL

⇒ Ftec = −T
T
c−pF

te
p (27)

Therefore, the effect of the difference between tensions
expressed in Eq. (6) and Eq. (16) can be reformulated 0

l
0

× (FtepR − FtepL
)

=

 0 0 l
0 0 0
−l 0 0

(FtepR − FtepL
)

=

 1 0
0 0
0 1

[mtex
mtez

]

=
[
E1 E2

] [mtex
mtez

]
(28) 0

l
0

× (Tc−p (FtecR − FtecL
))

= −

 0 0 l
0 0 0
−l 0 0

(FtepR − FtepL
)
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= −

 1 0
0 0
0 1

[mtex
mtez

]

= −
[
E1 E2

] [mtex
mtez

]
(29)

where E1 =
[
1 0 0

]T and E2 =
[
0 0 1

]T . mtex and mtez
are the first and third terms of the momentMte

pd produced by(
FtepR − FtepL

)
and Mte

pd is defined as

Mte
pd =

 0
l
0

× (FtepR − FtepL
)

(30)

The configuration of the PPF allows relative yawing motion
about the zc-axis, and the moment due to the tensions is given
in Eq. (16). We assume that mtecz, which is the third term
of Mte

c , is proportional to ψr , ψ̇r , and the third component
of Ftec . Then, m

te
cz can be described as

mtecz =
[
0 0 1

]
Mte

c

= ET2

−T Tc−p ([E1 E2
] [mtex

mtez

])
+

 0
0
lc

× Ftec


= −

(
kF teczψr + cψ̇r

)
(31)

where k and c are positive constants, and F tecz is the zc-axis
component of Ftec . Eq. (31) can be rewritten as

ET2 (S (lcE2)− kψr )T Tc−pF
te
p

+ET2 T
T
c−p

[
E1 E2

] [mtex
mtez

]
T Tc−pF

te
p = cψ̇r (32)

where S (·) : R3
→ so (3) transforms a vector into a

skew-symmetric matrix, such that x× y = S (x) y for any
x, y ∈ R3. This gives one equation of the force constraint.

D. DYNAMIC MODEL OF THE PPF
Substituting Eq. (3) and Eq. (11) into Eq. (2) and Eq. (7),
respectively. Then we obtain

ApV̇p + ωp × ApVp = Fap + FGp + Fthp + Ftep (33)

Jpω̇p+ωp × Jpωp=
[
E1 E2

] [mtex
mtez

]
− lpS

(
ET2
)
Ftep (34)

A1V̇c+A2ω̇c+ωc×(A1Vc+A2ωc)=Fac+F
G
c +F

te
c (35)

A3V̇c + A4ω̇c + Vc × (A1Vc + A2ωc)

+ωc × (A3Vc + A4ωc)

=Ma
c − T

T
c−p

([
E1 E2

] [mtex
mtez

])
+lcS

(
ET2
)
Ftec (36)

Let ẋ =
[
V̇p ω̇p V̇c ω̇c Ftec mtex mtez

]T
be the time derivative

of the states, then we have 17 equations with Eq. (33), (34),
(35), (36), (20), (25) and (31) to calculate the states.
In summary, the motion of equations of the PPF can be

described as

ẋ = M−1F (37)

whereM and F are defined in Eq. (38) and Eq. (39), as shown
at the bottom of this page.
The eight DOF dynamic model of the PPF is obtained by

applying the constraints of Eq. (19) and (21). The auxiliary
states, Ftec , m

te
x and mtez , which are useful in mechanical anal-

ysis, are calculated at the same time.

IV. NUMERICAL SIMULATION AND ANALYSIS
The dynamic model of the PPF is established for numerical
simulation of the practical equipment. The basic motion char-
acteristics, including translational and rotational motions,
can be primarily investigated through numerical simulation.
The characteristic parameters of the concerned PPF and the
aerodynamic parameters of the parafoil are listed in Table 1
and Table 2.

M =



Ap 03×3 03×3 03×3 −I3 03×1 03×1
03×3 Jp 03×3 03×3 S

(
lpE1

)
−E2 −E1

03×3 03×3 A1 A2 T Tc−p 03×1 03×1
03×3 03×3 A3 A4 S (lcE1)T Tc−p T Tc−pE2 T Tc−pE1

−T Tc−p T Tc−pS
(
Lpc

)
I3 −S (Lcc) 03×3 03×1 03×1

01×3 K1 01×3 K2 01×3 0 0
01×3 01×3 01×3 01×3 −ET1 (S (lcE1)− kψr )T Tc−p −ET1 T

T
c−pE2 −ET1 T

T
c−pE1


(38)

F =



−S
(
ωp
)
ApVp + Fap + FGp + Fthp

−S
(
ωp
)
Jpωp

−S (ωc) (A1Vc + A2ωc)+ Fac + FGc
−S (Vc) (A1Vc + A2ωc)− S (ωc) (A3Vc + A4ωc)+Ma

c
−S (ωc) (Vc + S (ωc)Lcc)+ T Tc−pS

(
ωp
) (
Vp + S

(
ωp
)
Lpc

)
K3ωp + K4ωc
cψ̇r


(39)
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TABLE 1. Characteristic parameters of the PPF.

TABLE 2. Aerodynamic parameters of the parafoil.

A. STEADY FLIGHT
The PPF will operate in a steady state without manipula-
tion. In this section, the initial velocity condition is set as
Vc = Vp =

[
8.3 0 1.2

]
m/s and the Euler angles are set to

be zero. Fig. 3 and Fig. 4 show the time responses of the
velocity and attitude of the PPF. From Fig. 3, it can be seen
that vymaintains 0 m/s since there is no turningmanipulation.
Combining Fig. 3 and Fig. 4, we see that the horizontal
and vertical velocities along xI and zI -axis converge to the
specific value, respectively. And the Euler angles also obtain
steady states after oscillations. After a period of regulation,
the velocity of the PPF along xI and zI axis, vx and vz, main-
tain at 8.23 m/s and 1.27 m/s, respectively. Fig. 4 illustrates
that the Euler angles and the relative rotation angles. The

FIGURE 3. Velocity of steady flight.

FIGURE 4. Euler angles of steady flight.

pitch angle θc oscillates in 50 s and then maintains the value
of 5◦ until the end, while the relative pitch angle θr maintains
-4.69◦ after 31 s.

B. DEFLECTION CONTROL
The flight direction of the PPF is regulated by the deflection
of trailing edge. The left trailing edge is pulled down steadily
and δL is set as 30% at 20 s. Therefore, the PPF turns
left due to the deflection control. The corresponding motion
characteristics are shown in Fig. 5 - Fig. 7. Fig. 5 indicates
the velocity in 6I . The horizontal trajectory of the PPF is a
circle. Therefore, the velocities along xI and yI after 20 s is
sine-wave shaped. Actually, the magnitude of the horizontal
velocity remains the same with steady flight without wind
disturbance. The Euler angles of the PPF are shown in Fig. 6.
According to Fig. 6, the final values of θc and ψr are the
same with those of the steady flight, respectively. ζc main-
tains 3.18◦ and ψr converges to zero after oscillation. The
responses of different δL of 30%, 50% and 80% are shown
in Fig. 7. The radii of the circular trajectories are 254.5 m,

FIGURE 5. Velocity of deflection control (Left, 30%).
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FIGURE 6. Euler angles of deflection control (Left, 30%).

FIGURE 7. Turning response of different deflection control.

152.3m and 94.3m, respectively. Fig. 7 shows that ψ̇c and δL
are positively correlated.

In the control of the PPF, the asymmetric deflection of
δR and δL correspond to the turning and direction manipu-
lation, while the symmetric deflection control of δR and δL
mainly control the longitudinal dynamics. This characteristic
provides the parafoil-based aero vehicles the flare-landing
capability, also called soft-landing. Fig. 8 - Fig. 9 show
the velocity and attitude response of flare-landing control
with δR and δL reaching their maxima at 20 s. As shown
in Fig. 8, the horizontal velocity maintains 4.54 m/s after
4.02 s of flare-landing control, and then maintains 5.03 m/s
after 21.5 s. The vertical velocity increases to 2.08 m/s at
23 s after a short time of decrease. If we pull down the
trailing edge to the maximum 1.43 s before landing, then we
obtain the landing velocity of 5.23 m/s in horizontal direction
and 0.61 m/s in vertical direction, which are much lower
than that of steady flight. It means that the PPF can achieve
soft-landing with low reluctant velocity which will cause
little or even no damage to the equipment. Fig. 9 illustrates the
attitudes of flare-landing. The pitch angle increases rapidly

FIGURE 8. Velocity of flare-landing.

FIGURE 9. Euler angles of flare-landing.

from 5◦ to 16.7◦ at the beginning and oscillates from 16.7◦ to
-4.5◦ only within 3.1 s. The steady values of pitch angle and
relative pitch angle are both alleviated due to flare-landing.

The coupling between the longitudinal and lateral control
is an important factor to be addressed in dynamic analysis.
The coupling effect of the deflection on the longitudinal
dynamics is shown in Fig. 10. The thrust of 50 N and δL of
20%, 40% and 60% are added to simulation at 20 s. It is clear
that the deflection has a limited impact on the longitudinal
velocity. Therefore, the coupling factor is ignored in the
design of longitudinal controller.

C. THRUST CONTROL
The thrust provided by the propeller is another control input
for the PPF, which is applied to control longitudinal position.
Fig. 11 and Fig. 12 show the velocities and Euler angles of the
PPF with thrust input. Fig. 11 shows the velocity response
of 50 N thrust. The lateral velocity vx is almost constant
after 24.6 s of vibration. However, the longitudinal velocity
decreases from 1.27 m/s to 0.75 m/s, with a transient time
of 33.5 s after the thrust is added. According to Fig. 12,
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FIGURE 10. Coupling effect of deflection on longitudinal control.

FIGURE 11. Velocity of thrust control.

FIGURE 12. Euler angles of thrust control.

the relative pitch angle also stays unchanged compared with
Fig. 4, while the pitch angle increases to 8.8◦.
The longitudinal motion responses of different thrusts are

illustrated in Fig. 13. For the given model, the thrust of

123.2 N can make the PPF fly at a fixed altitude. As shown
in Fig. 13, the altitude of the PPF decreases with the thrust of
50 Nand 90 N , and increases with the thrust of 130 N .

FIGURE 13. Altitude of different thrust control.

Since the thrust input affects the pitch angle, the thrust
interacts with the deflection control. The horizontal responses
of different thrust inputs with δL = 30% are shown in Fig. 14.
The radii of the horizontal trajectories are 254.6 m, 252.4 m
and 243.3 m, corresponding to the thrust of 50 N , 90 N and
130 N . It is concluded that the longitudinal control affects the
lateral control

FIGURE 14. Coupling effect of thrust on lateral control.

D. WIND RESPONSE
The mean geometric density of the parafoil is close to the air.
As a result, the PPF is sensitive to the wind. In this section,
the wind speed is set to be Vw =

[
3 −2 0

]
m/s and is added

to the model at 20 s. And the deflection is set to be 30% on
the left. Fig. 15 shows the trajectory of the PPF subject to the
wind. It is shown that the trajectory becomes a curve which
is in line with the wind direction, instead of a circle. Fig. 16
illustrates the velocity of the PPF. Compared with Fig. 6,
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Fig. 17 shows that the pitch angle is substantially affected by
the wind.

FIGURE 15. Trajectory of the PPF in wind.

FIGURE 16. Velocity of the PPF in wind.

FIGURE 17. Euler angles of the PPF in wind.

V. VALIDATION OF THE PROPOSED MODEL
To evaluate the validity of the dynamic model, the numerical
simulations are carried out and the results are compared with
the experimental data.

The experimental data of a free flight test, which
was implemented for the model validation, is shown
in Fig. 18 - Fig. 20. The initial condition of the simulation is
set according to the experimental data. As mentioned above,
the dynamics of the PPF is very sensitive to the wind. While
in reality, the wind speed is time-varying at low altitudes and
it is hard to measure. Therefore, the wind is assumed to be
constant and the mean wind speed is used in the simulation.
Fig. 18 shows the horizontal trajectory of the experimental
and the simulated data. The corresponding simulation lasts
for 65 s. The simulated trajectory is a little different from
the practical trajectory. However, the difference is acceptable.
Fig. 19 shows the velocities in 6I . According to Fig. 19,
the calculated velocities are quite close to the corresponding
experimental ones with similar low-frequency components.
The comparison of Euler angles are shown in Fig. 20. The
numerical simulation agrees with that of the experimental
data.

FIGURE 18. Horizontal trajectory of the flight test.

FIGURE 19. Velocity of the flight test.
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FIGURE 20. Euler angle of the flight test.

In summary, the results indicate that the developed model
matches the practical dynamics well.

VI. CONCLUSION
To achieve the precise simulation of the PPF, the nonlinear
model based on Lagrangian equations and dynamic con-
straints was proposed. The model was obtained as a state-
vector equation by eliminating all the internal forces and
the detailed motion equations were derived and presented.
The numerical simulations were performed based on the pro-
posed model to investigate the dynamic characteristics and
the control ability. The simulation results with deflection in
the presence of wind disturbance indicate the unique charac-
teristics of the PPF. Moreover, the lateral and the longitudinal
dynamics are coupled in control. In particular, the PPF has
the soft-landing capability and the model was implemented
to derive the proper altitude for landing control. The numer-
ical simulation results were compared with the experimental
data, which indicates that the developed model describes the
dynamics of the PPF considerably well. This can provide a
solid foundation for further aerodynamic identification and
control development.
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