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ABSTRACT External analysis serve as a cogent approach for multimode process detection in recent years.
However, external analysis approach may not detect faults well because of the imprecise extraction of
relations between variables. This paper proposes a fault detection approach for multimode processes, called
improved nonlinear external analysis regression. External regression models between external variables
and main/quality variables are established to remove mode-change-related information in the main/quality
variables, ensuring that the following work is performed under a single mode. The remaining information
in the main and quality variables is employed to develop an internal regression model for fault detection.
Compared with existing approaches, the proposed approach has the following advantages: (1) In external
regression models, applying kernel orthogonal projections to latent structures resulted in a relatively smaller
number of loadings, reduced model complexity and, not least, efficient extraction of mode-change-related
information in main and quality variables. (2) Internal regression model has the capacity to improve sepa-
ration performance of output-related information and output-unrelated information. (3) Two comprehensive
and perspicuous detection statistics are designed to accurately detect process faults. To experimentally verify
the stability and superiority of the method, it is applied to a penicillin fermentation process for fault detection.

INDEX TERMS Fault detection, kernel orthogonal projections to latent structures, improved nonlinear
external analysis regression, penicillin fermentation process, multimode processes.

I. INTRODUCTION
In recent years, to minimize cost and maximize profit, mul-
timode production has become increasingly popular, while
processes are getting more and more complex. Hence, pro-
cess detection, which plays an important role in ensuring
production safety, for multimode processes is particularly
important. Multivariate statistical techniques [1]–[8], such
as the principal component analysis (PCA) and partial least
squares (PLS), have been integrated into multimode methods
to extract statistical characteristics of different modes for
effective process detection [9]–[12]. As a result, some effec-
tive approaches have been obtained, such as global models
[13]–[15], mixture models [16]–[18], multiple models [19]
and adaptive models [20], [21].

For a global model, the common subspace model is estab-
lished to achievemultimode process detection, which has lim-
itation in describing each operating mode due to inaccurate
extraction of statistical characteristics. On the basis of which,
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multiple models and mixture models were adopted. Partic-
ularly, Zhao et al. [22], [23] proposed multiple PCA mod-
els and multiple PLS models based on similarities between
any two models. A comprehensive subspace decomposi-
tion by between-mode relative analysis was developed to
check the specific changes of variables from one mode to
another [24]. Bayesian inference-based finite Gaussian mix-
ture models were proposed to solve a multimodal distribution
of multimode processes [25]. On the other hand, some adap-
tive multimode models such as mode clustering, unfolding,
and piecewise linear model were developed to achieve the
fault detection of dynamic or nonlinear multimode processes
[26]–[28]. In addition, hidden Markov models have also been
considered in recent years because of their strong theoretical
and stochastic features [29], [30].

As a mode change is due to different operating conditions
that are often determined by mode-change-related variables,
it can be eliminated by removing the mode-change-related
variables and their influence on the other variables. Hereby,
an external analysis-based method [31] was proposed.
Ge et al. [32] developed a nonlinear external analysis method
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for online monitoring. However, the correlation between
main and quality variables has not been considered. Then,
an external analysis-based regression model [33] was con-
structed for robust soft sensing, in which principal compo-
nent regression (PCR) [34], [35] and PLS were employed
to construct the regression model. Remarkably, in reference
[33], the corresponding nonlinear tools were introduced to
resolve the nonlinear relationships although they were not
described in detail. As a result, nonlinear external analysis
regression (NEAR)model, such as kernel partial least square-
based EAR (KPLS-EAR), could be established. However,
for KPLS, there is some cross information between output-
related and output-unrelated spaces, this reduces the accuracy
of KPLS-EAR. Furthermore, although the shortcoming of
KPLS can be resolved by some new nonlinear tools [36]–[41],
due to different purposes of modeling, the characteristics of
industrial data may not be accurately described if one existing
nonlinear tool is utilized directly during all modeling phases.

Based on the above considerations, we propose a new
multimode process detection approach by integrating ker-
nel orthogonal projections to latent structures (KOPLS) and
improved PLS (IPLS) [42] into external analysis, which we
refer to as the improved NEAR (INEAR). A new exter-
nal model–internal model–detection structure is designed to
clearly show the model. The INEAR achieves the following
objectives. First, two nonlinear external regression mod-
els based on KOPLS are established, with mode-change-
related information in main and quality variables completely
removed. Specifically, KOPLS is applied to analyze correla-
tion between external variables and main variables, and then,
the same is true for external variables and quality variables.
Thus, the remaining information in the main and quality
variables extracted by this method is more accurate than
that extracted by KPLS-EAR. Second, one internal regres-
sion model based on IPLS is established, with output-related
and output-unrelated information completely separated. The
above external and internal analyses provide a simpler and
more accurate model than the NEAR methods, especially
KPLS-EAR. Finally, comprehensive and perspicuous detec-
tion statistics are designed to track process change, ensuring
the accuracy of detection information. The proposed detec-
tion method is applied to a penicillin fermentation process
(PFP), which has several operating modes, under varying
initial conditions, set points, and/or pH, etc. The detection
results show that the proposed method can improve the detec-
tion performance for PFP.

The rest of this paper is organized as follows. Section II
briefly describes IPLS and KPLS-EAR. In Section III, details
regarding INEAR are given. Section IV presents an online
detection strategy. In Section V, the proposed method is
applied to a PFP formodel validation. Finally, the conclusions
of this study are drawn in Section VI.

II. IPLS AND KPLS-EAR
In this section, IPLS is first described, following which the
original NEAR (that is, KPLS-EAR) is given. IPLS is a

regression method that can accurately analyze the correlation
between input and output. KPLS is integrated into external
analysis to obtain the KPLS-EAR.

A. IPLS
For input matrix X ∈ Rn×r and output matrix Y ∈ Rn×l ,
where n, r , and l represent the numbers of samples, process
variables, and quality variables, respectively, IPLS [42] is
given as follows:

Step 1: PLS is performed on X and Y to obtain the regres-
sion coefficient matrix V

Y = XV+ Ỹ (1)

Here, XV and Ỹ are the principal and residual information of
Y, respectively.

Step 2: Singular value decomposition (SVD) is performed
on VVT as:

VVT
= [P1 P2]

[
3 0
0 0

][PT
1

PT
2

]
(2)

Here,P1 ∈ Rr×q, P2 ∈ Rr×(r−q),3=diag
{
λ1, λ2, · · · , λq

}
,

q is the number of nonzero singular values, and P1PT1 and
P2PT2 are the projection matrices of X.

Step 3: X is projected onto the projection matrices:

X = X̂+ X̃ = XP1P1
T
+ XP2P2

T
= T1P1

T
+ T2P2

T (3)

Here, P1 and P2 are treated as the loading matrices of X
and X̃, respectively; T1 = XP1 and T2 = XP2 are the
score matrices of X and X̃, respectively; and X̂ = T1PT

1 and
X̃ = T2PT

2 are the output-related information and output-
unrelated information, respectively.

Thus, orthogonal decompositions on X andY are com-
pleted, and the IPLS model can be given as:{

X = T1PT
1 + T2PT

2

Y = XV+ Ỹ
(4)

To realize online detection, the corresponding detection
statistics are established. For online data xnew ∈ Rr , the
detection statistics are computed as:T

2
x̂ = tTx̂

[
TT
1T1

/
(n− 1)

]−1
tx̂

T2
x̃ = tTx̃

[
TT
2T2

/
(n− 1)

]−1
tx̃

(5)

Here, tx̂ = PT
1 xnew and tx̃ = PT

2 xnew are new score vectors
of the output-related subspace and output-unrelated subspace,
respectively.

B. KPLS-EAR
Generally, a mode change is due to different operating con-
ditions that are assumed to be related to outside of pro-
cess. Variables that directly impact operating conditions are
defined as external variables E .Other variables are referred
to as main variablesX and quality variablesY [33]. Although
the main and quality variables are not directly related to the
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operating conditions, they may be influenced by external
variables. Therefore, the external variables and the infor-
mation in the main/quality variables influenced by external
variables, should be eliminated as normal changes in the
external variables are not considered as process faults. For the
situation where nonlinear relations between variables exist in
multimode processes, KPLS [43] is utilized to establish the
KPLS-EAR model and detection scheme.
Modeling:
1) The regression model between E and X is employed

using KPLS to obtain mode-change-unrelated informa-
tion Fx :

X = TQT
+ Fx (6)

Here, T is the score matrix of 8(E), Q is the loading matrix
of X. Fx is robust to mode change, that is, it is only sensitive
to process faults. Thereby, it is appropriate to be analyzed to
achieve effective detection information.

2) The same model between external variables and quality
variables is employed to obtainmode-change-unrelated infor-
mation Fy.
3) KPLS is utilized to Fx and Fy to obtain the correlation

between them.
Detection:
1) For the online data enew and xnew, the mode-change-

unrelated information in xnew is computed as:

x̃new = xnew − x̂new = xnew −QUTknew (7)

Here, x̂new = QUTknew is the mode-change-related informa-
tion, where U is the score matrix of X, knew = K

(
E, eTnew

)
is

the new kernel vector, and tnew = UTknew is the new score of
xnew.
2) The new score of x̃new is computed as:

tnew,x = UT
x knew,x (8)

Here,Ux is the score matrix of Fx , and knew,x=K
(
Fx , x̃Tnew

)
.

3) The corresponding detection statistics (T2 and Q) of the
principal component subspace (PCS) and residual subspace
(RS) are computed [36].

III. IMPROVED NONLINEAR EXTERNAL ANALYSIS
REGRESSION (INEAR) MODEL
In this section, two external models based on KOPLS is first
established. To achieve fault detection, an IPLS-based inter-
nal regression model between the residual information in the
main variables and that in the quality variables is established.
Fig. 1 shows the principle of the established INEAR model.

A. EXTERNAL MODEL
We consider historical data H ∈ Rn×c, where n and c rep-
resent the numbers of samples and process variables, respec-
tively, and n � c. Based on an external analysis, H can be
divided into three parts: external variables E ∈ Rn×ce , main
variablesX ∈ Rn×cx , and quality variablesY ∈ Rn×cy , where
ce + cx + cy = c.

FIGURE 1. Overview of INEAR algorithm.

To separate input-related (i.e.,mode-change-related) infor-
mation inX andY, a regression model between E andX/Y is
established. Although the existing nonlinear regression algo-
rithms have similar steps in extracting input-related informa-
tion, KOPLS is more advantageous. Compared with other
algorithms, KOPLS requires a smaller number of loadings.
The KOPLS model is easier to understand and interpret.
In addition, in the external model, the mode-change-related
information only needs to be removed, without being ana-
lyzed in detail. Therefore, KOPLS is utilized to develop the
external regression model.

In this method, E and X are regarded as input and output,
respectively, and the correlation between them is analyzed
by KOPLS [37]. The same is true for E and Y. As a result,
the KOPLS model between the external and main variables is
given as:8(E)= 8̂x (E)+ 8̃x (E)

X = Tx,p
(
TT
x,pTx,p

)−1
TT
x,pTxP

T
x + XE

(9)

Here, 8̂x (E) and 8̃x (E) are the principal and residual infor-
mation of 8(E), respectively, which are orthogonal to each

other; X̂ = Tx,p
(
TTx,pTx,p

)−1
TTx,pTxP

T
x is the full infor-

mation influenced by E, where Px is the predictive loading
matrix of X composed of eigenvectors corresponding to the
first C highest eigenvalues of XTKX, Tx = XPx is the
predictive score matrix of X, and Tx,p is the predictive score
of E, which is similar to the final matrix of step 8 when cal-
culating the correlation betweenE andX in Table 1.XE is the
information uninfluenced by E, i.e., mode-change-unrelated
information, which is further analyzed to establish the fault
detection model, as it is unrelated to the mode change.

Similarly, another KOPLS model between the external and
quality variables is given as:{

8(E)=8̂y (E)+ 8̃y (E)

Y = Ty,p
(
TT
y,pTy,p

)−1
TT
y,pTyP

T
y + YE

(10)

Here, 8̂y (E) and 8̃y (E) are the principal and residual
information of 8(E), respectively, which are orthogonal to

each other; Ŷ = Ty,p
(
TT
y,pTy,p

)−1
TT
y,pTyP

T
y is the full
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TABLE 1. KOPLS algorithm [37].

information influenced by E, where Py, Ty, and Ty,p are the
predictive loading matrix of Y, predictive score matrix of Y,
and predictive score matrix of E, respectively, as shown in
Table 1. YE is the information uninfluenced by E, i.e., mode-
change-unrelated information, which is further analyzed to
establish the fault detection model. It is worth noting that the
specific information of XE and YE may be different, as they
are obtained based on different model structures.

So far, the mode-change-related information in X and Y
is completely removed, and the remaining information (i.e.
XE and YE) has no relation with mode change. This means
that the correlation analysis betweenXE andYE is performed
under a single mode, which can reduce the complexity of
model, and improve the accuracy of model. Next, the regres-
sionmodel (that is, internal model) betweenXE andYE needs
to be accurately built to achieve process detection.

B. INTERNAL MODEL
Compared with OPLS, IPLS is more advantageous in separat-
ing output-related information and output-unrelated informa-
tion, which is themain purpose of the internalmodel. Besides,
IPLS can directly identify whether a fault is output-related
based on the two detection statistics of the training model,
whereas OPLS needs to further analyze the output-unrelated
information.

XE and YE are regarded as input and output, respectively.
The internal model based on IPLS can be obtained as follows:{

XE = TE1P
T
E1
+ TE2P

T
E2

YE= XEVE + ỸE
(11)

Here, VE ∈ Rcx×cy is the regression coefficient matrix
between XE and YE; PE1 ∈ Rcx×qx and PE2 ∈ Rcx×(cx−qx )

are the loading matrices of PCS and RS of XE, respec-
tively; TE1 ∈ Rn×qx and TE2 ∈ Rn×(cx−qx ) are the
score matrices of PCS and RS of XE, respectively; ỸE
is the residual of YE; and qx is the number of loadings.
Based on the above analysis, the faults occurring in a
multimode process, can be detected based on the appro-
priate detection scheme, which is introduced in the next
section.

IV. FAULT DETECTION BASED ON INNEAR
Online data enew ∈ Rce and xnew ∈ Rcx are first preprocessed
to remove the mode-change-related information in xnew, and
then, the operating status is detected based on the detection
statistics computed from the mode-change-unrelated infor-
mation in xnew. Based on KOPLS (Eq. (9)), mode-change-
related information in xnew can be computed:

x̂new =
[(

TTx,pTx,p
)−1

TTx,pTxP
T
x

]T
tnew,x (12)

Here, tnew,x =
(
Tx3

−1/2
x

)T
knew,x ∈ RC×1 is the pre-

dictive score of enew, and knew,x ∈ Rn is the new kernel
vector [37].

The mode-change-unrelated information in xnew can be
computed as:

xE,new = xnew − x̂new (13)
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Finally, the detection statistics can be computed as:

T 2
p = tTp

(
TTE1

TE1

n− 1

)−1
tp =

(
PTE1

xE,new
)T

×

(
TTE1

TE1

n− 1

)−1
PTE1

xE,new (14)

T 2
r = tTr

(
TTE2

TE2

n− 1

)−1
tr =

(
PTE2

xE,new
)T

×

(
TTE2

TE2

n− 1

)−1
PTE2

xE,new (15)

Here, tp = PTE1
xE,new and tr = PTE2

xE,new are the new score
vectors of PCS and RS of xE,new, respectively.

Based on above computation, it can be known that mode-
change-related information of online data must be removed
first, which ensures that the establishment of detection statis-
tics is similar to that under the single mode. Therefore, mode
change can be distinguished from process faults, and the
fault detection can be achieved whether the mode change by
the proposed detection scheme. As worthy of mention, PCA
[44] can be performed on X̂/Ŷ to establish the corresponding
detection statistics (T 2 and Q) to detect the mode-change-
related faults. If either T 2 or Q is greater than or equal
to the control limit, a mode-change-related fault is said to
have occurred. Otherwise, mode-change-related variables are
normal, and the following detection scheme is given.

As tp and tr contain output-related information and
output-unrelated information, respectively, if T 2

p is greater
than or equal to the corresponding control limit [45]–[47],
an output-related fault is said to have occurred; if T 2

p is
lower than the corresponding control limit and T 2

r is greater
than or equal to the corresponding control limit, an output-
unrelated fault is said to have occurred; if both the statistics
are lower than the corresponding control limit, the operational
process is normal. Fig. 2 shows the flowchart of the fault
detection scheme.

V. SIMULATION: PENICILLIN FERMENTATION PROCESS
Penicillin ferments under different operating modes when
the initial conditions, set points, and/or pH, among others,
are set differently. Therefore, the PFP [48], shown in Fig.
3, is a good representative example of a multimode pro-
cess. It contains 17 process variables (Table 2) [49]. The
hot water flow rate in the entire process is not considered
when it is 0; the other 16 process variables are selected for
detection. According to the operating conditions of Pensim
V2.0, CO2, pH, and temperature are highly related to mode
change, and temperature is affected by cold-water flow rate
that is related to outside of process. Therefore, CO2, pH, and
cold-water flow rate are selected as the external variables.
During the PFP, both biomass and penicillin ferment in the
culture volume, and they are affected by process variables
[50]. In addition, although temperature is related to biomass

FIGURE 2. Flow chart of detection scheme based on INEAR.

FIGURE 3. Penicillin fermentation process diagram.

TABLE 2. Description of variables [49].

and penicillin, it is also directly affected by some process
variables. As a result, the biomass concentration, culture vol-
ume, temperature, and penicillin concentration are selected
as the quality variables. The rest are selected as the main
variables.
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FIGURE 4. Detection results of fault 1: (a) INEAR, (b) PLS-EAR, (c) KPLS-EAR, (d) KOPLS-EAR.

In this simulation, the data generated using Pensim V2.0
[51] includes two modes, namely mode 1 and mode 2, each
of which contains 200 sample points. Table 3 lists the specific
settings of the two modes. In addition, based on the purpose
and applicability of the experiment, three types of faults were
introduced. Fault 1 is a step fault of the substrate feed rate
under mode 1. Faults 2 and 3 are step and ramp faults of
the substrate feed rate under mode 2, respectively. The three
faults occur in the 141st hour and remain until the end. The
magnitude or slope of the above three faults are 0.5, 0.7, and
0.9, respectively. The above data are used to demonstrate the
validity and stability of the proposed method by comparing
with the PLS-based EAR (PLS-EAR) [33], KPLS-EAR [33],
[43], and KOPLS-based EAR (KOPLS-EAR) [33], [37].

Figs. 4, 5, and 6 show comparisons of the above four
methods when the slope or magnitude of the above three
faults is 0.7. Mode 1 is used as the training mode. Based
on the cross-validation, both the loadings of the external

TABLE 3. Description of the two modes.

model, as shown in (9) and (10), are set to 2, and the
loading of the internal model is set to 5. As comparative
experiments, the corresponding loadings of PLS-EAR and
KPLS-EAR are set to 2, 3, and 5, respectively. All the load-
ings of KOPLS-EAR are set to 1. These results show that
the loadings of KOPLS are lower than that in the others.
As there are only three external variables, the loading advan-
tage of KOPLS in this simulation is not clearly reflected.
However, studies [37], [52]–[53] have shown that the number
of KOPLS loadings is significantly lower than that in other
methods.
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FIGURE 5. Detection results of fault 2: (a) INEAR, (b) PLS-EAR, (c) KPLS-EAR, (d) KOPLS-EAR.

Fig. 4(a) shows that although there are some false alarms
between the 40th and 60th sample points, T2

r barely detects
the fault 1. In addition, T2

p detects a step fault between the
141st and 200th sample points. This indicates that an output-
related fault occurred under mode 1, which is also consistent
with the fact. However, Fig. 4(b) shows that the fault is
detected by T2 and Q only between the last 10 sample points,
and there is a certain false alarm. Therefore, the PLS-EAR
cannot detect fault 1. Fig. 4(c) shows that only T2 detects
a step fault with some missing alarms, which demonstrates
that INEAR performs more accurately although detection
results of INEAR and KPLS-EAR are similar. Both detection
statistics accurately detect a step fault using KOPS-EAR,
as indicated in Fig. 4(d). Compared with INEAR, this
illustrates that output-related and output-unrelated infor-
mation had not been completely separated. The above
results indicate that INEAR performs more accurately

and effectively for output-related faults under single mode
process.

As shown in Fig. 5(a), a ramp fault is detected by T2
p from

the 143th sample point until the end. Moreover, T2
r detects

the fault with a large number of missing alarms, and it can
even be considered that T2

r substantially fails to detect the
fault. PTE1

PE2 ≈ 0 is taken in the actual simulation instead
of the SVD-based theoretical result PTE1

PE2 = 0. Therefore,
there may be some output-related information in the output-
unrelated subspace. As a result, T2

r has some alarms dur-
ing the fault occurrence period. The above detection result
also confirms the detection scheme given in Section IV: an
output-related fault is determined only when T2

p is greater
than the control limit. Fig. 5(b) shows the detection results
of PLS-EAR. There are some missing and false alarms in
T2 and Q, and the detection results of the two statistics are
similar, indicating that the mode- change-related information
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FIGURE 6. Detection results of fault 3: (a) INEAR, (b) PLS-EAR, (c) KPLS-EAR, (d) KOPLS-EAR.

had not been completely removed and that output-related
and output-unrelated information had not been completely
separated. Both detection statistics barely detect fault 2 using
KPLS-EAR, as indicated in Fig. 5(c), which shows that this
method loses the ability to detect fault 2. Fig. 5(d) shows fault
2 is effectively detected by T2 and Q. The output-related and
output-unrelated information had not been accurately sepa-
rated although fault 2 is detected, which makes this method
may not be able to effectively identify output-unrelated faults,
as the output-unrelated fault will be mistaken for output-
related fault once it is detected by T2. Therefore, we can
conclude that INEAR outperforms the other three methods
in detecting output-related faults in multimode processes.

As shown in Fig. 6(a), fault 3 is detected by T2
p, but is

barely detected by T2
r , indicating that the step output-related

fault of mode 2 is detected by the proposed method. For
comparison, Fig. 6(b) shows that the fault is barely detected
by T2 and Q, and there are some false alarms at the beginning.

For KPLS-EAR and KOPLS-EAR, the detection results are
similar to fault 1. Thereby, the above results prove that the
proposed method can more accurately detect faults in multi-
mode processes. Combined with the detection results of fault
1 and fault 2, the proposed method can not only accurately
detect faults but can also effectively identify the different
types of faults under different modes.

To demonstrate the multimode detection results of the four
methods more accurately, the fault detection rates (FDRs)
and false alarm rates (FARs) of the above three faults are
given, as listed in Table 4 and Table 5, where INEAR
keeps relatively high FDRs in output-related indicator T2

p
for all consider faults, and simultaneously keeps very low
FARs in both detection statistics. These results indicate that
INEAR performs quite stable and accurate for output-related
faults in multimode processes. Remarkably, the FDRs of
fault 2 of T2

p are lower than those of the other two faults;
this is due to the characteristics of fault 2. As we can
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TABLE 4. FDRS of INEAR, PLS-EAR, KPLS-EAR, and KOPLS-EAR.

TABLE 5. FARS of INEAR, PLS-EAR, KPLS-EAR, and KOPLS-EAR.

know from PFP, fault 2 increases in a serrated shape, and
some fault values are even lower than normal. In contrast,
PLS-EAR has rather low (high) FDRs (FARs) in both detec-
tion statistics for all consider faults, and simultaneously the
FDRs/FARs of both statistic are similar, which indicates
that the faults are basically not detected. For KPLS-EAR,
although FDRs of Q for all consider faults are 0, FDRs of
T2 are obviously lower than those of T2

p. In addition, except
for fault 1, the FARs of Q are slightly more than T2

r . It can
be concluded from these results that the detection ability
of KPLS-EAR is weaker than INEAR. For KOPLS-EAR,
FDRs (FARs) of both detection statistics are slightly greater
than (lower than) those of T2

p and T2
r . However, the high

FDRs of Q reveal the output-related and output-unrelated
information had not been completely separated. The above
comparisons demonstrate that INEAR outperforms PLS-
EAR, KPLS-EAR, and KOPLS-EAR in stably and accurately
determining the output-related faults occurring in multimode
processes.

VI. CONCLUSION
In this paper, a new external model–internal model–detection
structure is proposed, with INEAR as a new fault detec-
tion method for multimode processes. During the external
modeling phase, KOPLS is applied to establish a regression
model between the external and main/quality variables to
accurately remove mode-change-related information. During
the internal modeling phase, IPLS utilizes the full correla-
tion between XE and YE to establish the regression model,
thus completely separating the output-related and output-
unrelated information. Lastly, during the detection phase,
faults can be accurately detected. PFP was considered as an
application example, with its variables divided into external,
main, and quality variables to detect different faults under two
modes. The detection results show that the proposed method
performs quite stably and accurately in detecting output-
related faults in multimode processes.

This study only addresses the fault detection in multimode
processes containing nonlinear external variables and linear
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main and quality variables. The fault detection in multimode
processes with all variables nonlinear and fault diagnosis
using the INEAR deserve future work. Besides, in this simu-
lation, mode-change-related information is defaulted to nor-
mal, as the faults of CO2, pH, and cold-water flow rate cannot
be given by Pensim V2.0. However, it is often abnormal in
some industry processes, which will bring some bad conse-
quences. Thus, in the future work, the mode-change-related
faults should be specifically analyzed and researched.
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