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ABSTRACT Automatic nailfold capillary segmentation is a challenging task owing to noise and large
variabilities in images caused by insufficient focusing and low visibility of the capillaries. This task can
be useful to detect and estimate the severity of autoimmune diseases of connective tissues or learning the
status of white blood cells based on the cells’ blood flow on the nailfold capillary. Previous studies have
addressed this task using manual, semi-automated, and automated segmentation method. However, further
improvement is still required. With the recent progress of deep learning on medical imaging, we herein
propose dual attention deep learning based on U-Net for nailfold capillary segmentation, named DA-CapNet.
Our DA-CapNet improves the U-Net architecture by integrating a dual attention module that can capture a
better representation of feature maps from input images. Furthermore, DA-CapNet is compared with three
baselines: adaptive Gaussian algorithm, SegNet, the original U-Net. We experimentally demonstrate that our
proposed method outperforms these baselines.

INDEX TERMS Nailfold capillary, segmentation, dual attention, deep learning

I. INTRODUCTION
Nailfold capillaroscopy is a non-invasive, inexpensive, and
reproducible imaging technique to evaluate microcirculations
under a nailfold, which is a small vessel under the nail. The
nailfold capillary could provide the status of white blood cells
based on the cells’ blood flow in the microvessel using a
light source of specific wavelength [1], [2]. This technique is
typically used to monitor the microcirculations by analyzing
the morphology of nailfold capillary such as shape, length,
and width [3], [4]. The morphology feature could be used
to detect and estimate the severity of autoimmune diseases
of connective tissue such as systemic sclerosis. To observe
the morphology of the nailfold capillary or to analyze white
blood cells in the capillary, each of the capillary must be
segmented as it is crucial for the analysis. However, nailfold
capillary segmentation is a challenging task owing to sen-
sitivity to external factors when capturing nailfold capillary
images (e.g., air bubbles trapped in the oil, or reflection owing
to light source attached to the microscopy); moreover, large
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variabilities in the images caused by insufficient focusing and
low visibility of the capillaries render the segmentation of
the entire capillary from the background difficult, as shown
in Figure 1.

FIGURE 1. Nailfold capillary under the finger nail. The figure on the right
shows the capillaries in red. As shown, the image lacks focus and contains
light reflection as noise during the recording and scanning the finger nail.

In general, nailfold capillary segmentation has been
addressed using three approaches: manual, semi-automated,
and automated segmentation. Manual segmentation depends
heavily upon human-recognizable features and requires
experts to perform certain tasks, rendering it impractical
for real applications [4]–[7]. Semi-automated segmentation
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requires initial human intervention tomark the outer and inner
parts of each capillary and requires considerable data analy-
sis, which may cause bias and mistakes [1]. Isgro et al. [8]
used an automated segmentation method by combining a
local threshold and the Simultaneous Truth and Performance
Level Estimation (STAPLE) algorithm to distinguish nail-
fold capillaries. However, the segmentation results were
contaminated by noise and required post-processing such as
morphological operations. To accelerate and facilitate nail-
fold capillary segmentation to benefit disease detection, it is
necessary to develop an automated and precise method to
segment nailfold capillary from images.

Recently, deep convolutional neural network (DCNN)
methods have been proposed for semantic segmentation.
Some of them are FCN [9], U-Net [10], DeconvNet [11],
DeepLab [12], and SegNet [13]. Even though these methods
have been effectively applied on medical image segmen-
tation tasks, such as liver [14], pancreas [15], MRI [16],
[17], and multiorgan [18], to the best of our knowledge,
no DCNN method has been proposed for nailfold capillary
segmentation. To perform nailfold capillary segmentation,
two challenges must be addressed: (1) large variability in the
images caused by insufficient focusing and low visibility of
the capillaries complicating the segmentation of the entire
capillary from the background (2) limited number of labeled
training data, as previous studies on nailfold capillary used a
private dataset. Therefore, DCNN methods that are proposed
should be able to manage these two challenges. To address
these issues and inspired by a large adaptation of U-Net and
the attention mechanism [19], [20], we propose an improved
U-Net using a dual attention module named DA-CapNet,
which is designed to effectively extract contextual features of
nailfold capillary from input images in an end-to-end manner.
The integration of the dual attention module to U-Net allows
for the optimization and performance improvement of its
network.

In summary, our contributions are as follows:
1) We propose a dual attention module that com-

bines the benefits of previous attention modules,
squeeze-excitation (SE) [19] and convolution block
attention module (CBAM) [20], which is then inte-
grated into the U-Net architecture. Using the dual
attention module can yield a better feature representa-
tion from the input image that has a large variability
caused by insufficient focusing and low visibility of the
capillaries.

2) We perform extensive experiments on a new collected
nailfold capillary dataset and show that our method out-
performs conventional methods and the original U-Net
without an attention module.

The remainder of this paper is organized as follows: in
Section II, related works are provided; in Section III, the
proposed method and the baseline network used as the bench-
mark are described. The acquisition of input data, exper-
imental settings, and results are addressed in Section IV.
In Section V, the conclusions of this study are provided.

II. RELATED WORKS
A. DEEP-LEARNING-BASED SEGMENTATION
Deep learning has progressed rapidly and achieved state-
of-the-art performance in many computer vision tasks,
such as object detection, image classification, instance seg-
mentation, semantic segmentation, image captioning, and
object tracking [21]. Unlike traditional handcrafted meth-
ods, a data-driven deep-learning approach extracts dis-
criminative features from the data itself, where these fea-
tures contain different information at different levels of its
networks [22], [23]. One of the most popular deep-learning
models is based on a convolutional neural network (CNN),
which could achieve a similar level performance to a
human [24]. Therefore, it is not surprising that CNNs are
currently often used inmedical image processing, particularly
for image segmentation tasks (e.g., pancreas [15], liver [14],
MRI [16], [17], andmultiorgan [18]). The first work involved
U-Net, which produced the best accuracy and won the ISBI
challenge 2015 for the segmentation of neuronal structures in
electron microscopic stacks [25]. Other variants of CNN have
achieved state-of-the-art performances on benchmark seman-
tic segmentation tasks, such as SegNet [13], DeepLab [12],
and DeconvNet [11]. Among these methods, U-Net is the
most widely used architecture in medical image process-
ing owing to its simplicity in building encoder and decoder
paths with skip connections, affording efficient information
flow and excellent performances as it is able to delineate
complex-shaped objects well in biomedical images [25].
U-Net also resulted in an outstanding performance when the
training process was combined with an excessive data aug-
mentation and weighted loss [10]. Therefore, our study was
motivated by U-Net with modifying and integrating several
additional attention modules in the decoder path to learning
better discriminative features from the input dataset than the
original U-Net structure.

B. CAPILLARY SEGMENTATION
Most studies regarding nailfold capillary have focused on
pattern description and classification; studies regarding nail-
fold capillary segmentation are scarce. Paradowski et al. [26]
proposed an automated technique to detect an avascular area
from a nailfold capillary image. Jones et al. [27] proposed
a classification method based on morphological features
and established a high correlation between morphology and
disease. Nivedha et al. [28] and Suma et al. [29] employed
a nonlinear support vector machine and fuzzy logic ker-
nels for nailfold capillary image classification to identify
healthy, hypertensive, and diabetic patients. In general, nail-
fold capillary classification is used to identify diseases such
as scleroderma, Raynaud’s phenomenon, systemic lupus
erythematosus, and progress systemic sclerosis. Addition-
ally, Tama et al. [30] used a binarization algorithm to con-
duct nailfold capillary segmentation. They specifically used
images from recorded nailfold microcirculation videos as
input. Bourquard et al. [1] utilized a semi-manual method
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to segment capillaries; however, the expert should have
marked the outer and inner parts of each capillary repeti-
tively that may lead to concentration loss and, thus, mis-
labeling. Semi-manual methods are also highly dependent
on the physician’s experience. Isgro et al. [8] used a com-
bination of local threshold and the STAPLE algorithm to
distinguish nailfolds. However, the segmentation results were
still contaminated with noise and required post-processing,
such as morphological operations. Suma et al. [31] classify
nailfold capillary to diagnose vascular dysfunction in the
Indian Population using several machine learning algorithms
such as Logistic Regression, CNN, and Random Forest.

C. ATTENTION MECHANISM
Attention mechanism is critical in human perception.
Humans do not proceed a whole scene at once but sequen-
tially exploit a partial glance of a scene and carefully
focus only on salient portions to visually capture a better
understanding. Hence, several studies have been performed
to insert the attention module on the CNN architecture;
this has been proven to improve the performances in
large-scale image classification tasks [19], [20], [32], [33].
Wang et al. [32] proposed the residual attention net-
work, which employs an attention module based on an
encoder–decoder structure. By obtained refined featuremaps,
the network could not only perform better but was also more
robust to noisy input images compared with the original
CNN. Hu et al. [19] exploited an inter-channel relationship
for an attention module named the squeeze-and-excitation
(SE) module. Global pooling feature maps are used to com-
pute a channel-wise attention part. Unlike SE,Woo et al. [20]
proposed the convolutional block attention module (CBAM)
that exploits both spatial and channel-wise attention. Despite
these improvements, only a handful of studies used attention
mechanisms in medical image classification tasks. In this
study, to learn a better representation of feature maps com-
pared with using the conventional method, we developed a
new attention module named the dual attention module by
utilizing the advantages of SE and CBAM.

III. PROPOSED METHOD
In this section, the proposed method including the baseline
network U-Net is described: the dual attention mechanism
and dual attention U-Net for nailfold capillary segmentation,
named DA-CapNet.

A. U-NET
We first describe U-Net [10], a baseline network for our pro-
posed method. U-Net is a convolutional-based deep-learning
architecture that yields high performance due to its network
combined with the training strategy using excessive data
augmentation. Owing to its capability, U-Net has become a
popular deep-learning method in medical image segmenta-
tion. It is namedU-net owing to its symmetric U-shape, which
comprises encoder and decoder paths. The encoder is similar
to the typical CNN; it downsamples the dimension of spatial

information progressively while simultaneously increasing
the number of channels per layer. Meanwhile, every step in
the decoder upsamples the feature maps followed by a convo-
lution layer, thus increasing the spatial information dimension
of the output feature maps. To produce better localization,
U-Net uses skip connections at every level of the decoder by
concatenating the output of the upsampling layers with the
feature maps of the encoder at the same level.

B. DUAL ATTENTION MODULE
The attention mechanism proposed herein is defined as a
dual attention module inspired by the SE [19] and CBAM
modules [20]. The benefits of SE and CBAM are combined to
better capture contextual information for segmentation com-
pared with the original U-Net. Details of the dual attention
module are shown in Fig.2b. The first building block is SE,
which comprises squeeze and excitation processes. In the
squeeze process, local descriptors that statistically convey the
entire image using global average pooling (GAP) is produced.
Meanwhile, the excitation operator maps those descriptors to
a set of channel weights. Here, SE assigns adaptive weights
to each channel when creating the output feature maps to
focus on feature maps that provide ameaningful impact based
on the GAP output. The second building block is CBAM,
which highlights significant features in addition to channels
and spatial dimensions. Here, CBAM is used to sequentially
highlight channel and attention modules as it can learn what
object to focus and where the important position and location
from the input image. Therefore, both attention modules in
CBAM are able to learn efficiently which information or path
of the image is to be highlighted or suppressed.

Given an intermediate feature maps F as the input, our dual
attention module produces refined feature maps as F ′, where
F ∈ RH×W×C and F ′ ∈ RH×W×C . The overall dual attention
process can be summarized as follows:

F ′ = FSE ⊕ FCBAM , (1)

where FSE and FCBAM are the output feature maps of the
SE and CBAMmodules, respectively; F ′ is the element-wise
addition of these two output feature maps. The process of FSE
is formulated as follows:

FSE = Scaling(Me(Ms(conv(F))))⊗ conv(F), (2)

Ms = GAP(conv(F)), (3)

Me = σ (MLP(Ms)), (4)

whereMs,Me, GAP, andMLP denote the feature maps of the
squeeze module and excitation module, global average pool-
ing, and multilayer perceptron, respectively. Furthermore,
we produce FCBAM by sequentially calculating the channel
feature maps and spatial feature maps. The process is calcu-
lated as follows:

FCBAM = Msp(Mc(F)⊗ F)⊗ (Mc(F)⊗ F), (5)

Mc(F) = σ (MLP(AvgPool(F))+MLP(MaxPool(F))), (6)

Msp = σ (conv(
[
AvgPool(F ′);MaxPool(F ′)

]
)), (7)
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FIGURE 2. Overview of the proposed network for nailfold capillary segmentation. (a) Network architecture of DA-CapNet. The
network was modified from the original U-Net which consists of smaller number of output channels in its layer. In decoder part,
the network employed several dual-attention modules. (b) Dual attention module. The attention mechanism proposed herein is
defined as a dual attention module inspired by the SE [19] and CBAM modules [20].

where Mc(F) and Msp are the output feature maps of the
channel and spatial attention modules, respectively.

C. DA-CAPNET
The proposed attention mechanism is incorporated with the
U-Net architecture to exploit local information. The com-
plete architecture of the dual-attention-based U-Net proposed
herein is shown in Fig. 2a. The network was modified from

the original U-Net, which is smaller compared with the orig-
inal U-Net. It consists of an encoder path on the left side,
bottleneck layer in the middle, and decoder path on the right
side. In the encoder path, the DA-CapNet receives a single
channel input of size 256 × 256. The network consists of
four encoder blocks, in which each block extracts the feature
maps using two convolutional layers with a pooling layer
downsampling the feature maps and then passes them down
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FIGURE 3. The procedure of data acquisition process. (a) The image of nailfold capillary area (indicated by blue area). (b) Recording
capillary using dino-lite microscope. (c) An image of nailfold capillary.

to the next block. Each convolutional layer has a filter size of
3×3 followed by the Rectified Linear Unit (ReLU) activation
function and each the pooling layer has the size of 2 × 2.
In the fourth encoder block, a dropout layer is added for
regularization to avoid overfitting. We set 8, 16, 32, and 64 as
the numbers of output channel for the first, second, third,
and fourth block, respectively. In between the encoder and
decoder parts, one block serves as a bottleneck layer that
has two 3 × 3 convolutional layers followed by a dropout
layer. The dimension of the output channel in this block is
set to 128. The decoder part consists of four decoder block.
Each decoder block has an upsampling layer with stride 2
to produce a segmentation mask of the same size as the
input image. Each layer in the decoder is concatenated with
the corresponding crop features from the respective block
in the encoder to obtain more contextual information and
reconstruct a precise location of the segmentation map. The
concatenating process called skip connection was followed
by convolutional layers comprising 3× 3 kernels.
As in Fig. 2a, several dual attention modules are added

in the decoder part. Each module obtains the input feature
from its previous decoder blocks. The details of dual attention
modules are shown in Fig. 2b. The upper part of the dual
attention module contains a convolution layer and squeeze
and excitation blocks. The output of the convolution layer is
multiplied with the output feature from squeeze and excita-
tion processes. The lower part of the dual attention module
consists of channel and spatial attention blocks in series,
whereby performance based on [20] is expected. Those two
parts are processed in parallel and added up at the end of the
module to obtain refined features.

D. OPTIMIZATION
The weights are learned by minimizing the loss function in
Eq. 8. Nailfold capillary image segmentation is considered
as a pixel classification problem. In medical image segmen-
tation, an imbalanced sample number of classes between
background and foreground images often cause the learning
process to be trapped in the local minima of the loss function,

resulting in a network whose predictions are heavily biased
toward the background. According to Jaeger et al. [34], a loss
function based on jointly learning the binary cross-entropy
(BCE) and dice coefficient are employed. We directly use
the predicted probabilities instead of thresholding and con-
verting them into a binary mask. The dice coefficient could
effectively manage the imbalanced classes between the back-
ground and foreground in pixel-wise segmentation. Our loss
function Ltotal is formulated as follows:

Ltotal = 0.5 ∗ BCE(y, ŷ)

−DiceCoefficient(y, ŷ), (8)

BCE(y, ŷ) = −(y log(ŷ)+(1−y)log(1− ŷ)), (9)

DiceCoefficient(y, ŷ) =
2
∑N

i=1 yiŷi∑N
i=1 y

2
i +

∑N
i=1 ŷ

2
i

, (10)

where y is the ground truth label, ŷ prediction label, and N
number of pixels.

IV. EXPERIMENT SETTINGS
This section first describes the dataset for the experiments,
pre-processing, and data augmentation to enlarge our dataset,
experimental setting, and evaluation metrics. Subsequently,
we compare our proposed method with the baseline method,
which is a handcrafted method using the adaptive Gaussian
threshold. We compare our proposed method with U-Net
using different attention modules.

A. DATASET
The dataset was recorded from seven healthy participants
of age 20–35. Permission to perform experiments involv-
ing human participants was obtained from the Korean IRB
(P01-201903-11-002). The overall procedure of data acqui-
sition is described in Fig. 3. The image of the nailfold capil-
lary area (indicated by blue area) is captured using dino-lite
microscope. Capillaroscopy videos were recorded from the
third and fourth finger of the participants from their non-
dominant hand using a handheld digital microscope designed
for nail microcirculation analysis with a 500x magnification
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rate. Following [3], the recording process was conducted as
follows:

1) Participants were seated at in a room (of temperature
20–25 degrees Celsius) and were given time to relax
and adapt to the new environment.

2) The fingers to be recorded were cleaned.
3) On each observed finger, a drop of vegetable oil was

deposited to render the skin more transparent such that
capillaries become more visible.

4) The video of each finger was recorded within 1–2 min.
The target area of the nailfold capillary was marked in
blue, as shown in Fig. 3(a).

Using this procedure, we build out dataset by extracting
images from the videos. A total of 40 images, 30 for training,
and 10 for testing were prepared. The ground truth was
created manually by a human expert using annotation tools.
Three salient capillaries were selected and annotated in each
image.

B. IMPLEMENTATION DETAILS
The original images contain channels of red, green, and
blue. In this study, we used only the green channel, as it
reveals more information related to the nailfold capillary
compared with the red and blue channels [28]. The images
were then resized to 256×256 to reduce the processing time.
In the adaptive Gaussian threshold method, a median blurring
filter of kernel size five was added to smooth the input
image and reduce ambient noise. To generate more training
data and avoid overfitting for further improving the perfor-
mance, an augmentation technique was applied. Specifically,
the resized images were rotated, shifted, and zoomed-in to
produce 3000 training data with the respective ground truth.
Our network architecture was trained with random samples
of batch size 2. The training was conducted using the ADAM
optimizer with an initial learning rate of 10−4 and a weight
decay of 10−5. The training process was implemented using
the Keras library on Tensorflow, on a computer equipped with
NVIDIA GeForce GTX 1080.

C. EVALUATION METRICS
As the segmented area is small compared to the background,
a general accuracy formula cannot be used, which might
provide a false interpretation owing to data imbalance. There-
fore, an intersection over union (IoU) known as the Jaccard
index, which is a statistic measure to verify the similarity
and diversity of sample sets, was used. As shown in Eq. (11)
IoU measures the similarity of the finite sample sets and is
defined as the intersection size divided by the size of the
sample sets union. IoU is useful when we have imbalanced
numbers of pixels within an image, as it provides the same
weight to all classes. The precision and recall in Eq. (12)
and (13) were calculated as the evaluation metrics. Precision
adequately describes the purity of positive detection rela-
tive to the ground truth. Precision calculates the number of
pixels within an object are predicted as a matching ground

FIGURE 4. Quantitative segmentation performance is presented as box
plots. The y axis denotes the IoU scores, while the x axis represents
different segmentation methods. The median of DA-CapNet is the highest
among those of other methods with small variance.

FIGURE 5. Quantitative segmentation performance is presented as box
plots. The y axis indicates the precision scores, while the x axis represents
different segmentation methods. The median of DA-CapNet is the highest
among those of other methods.

FIGURE 6. Quantitative segmentation performance is presented as box
plots. The y axis indicates the recall scores, while the x axis shows the
segmentation methods. The median of DA-CapNet is the highest among
those of the other methods.

truth annotation. Meanwhile, recall effectively described the
completeness of positive predictions relative to the ground
truth,

IoU (A,B) =
|A ∩ B|
|A ∪ B|

=
|A ∩ B|

|A| + |B| − |A ∩ B|
, (11)

Precision =
TP

TP+ FP
, (12)

Recall =
TP

TP+ FN
, (13)

where TP is true positive, FP is false positive, and FN is false
negative.
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FIGURE 7. Quantitative results. We compare segmented results using DA-CapNet against other method using
image 1–5 in test data. (a) Ground truth. (b) Adaptive gaussian threshold. (c) SegNet. (d) U-Net (e) DA-CapNet.
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FIGURE 8. Grad-CAM visualization. We compare Grad-CAM [35] visualization
among all methods on all test samples. Grad-CAM visualizes the importance
of the spatial location information in the convolution layers using the
gradients. (a) Ground truth. (b) SegNet. (c) U-Net (d) DA-CapNet.
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V. RESULTS AND DISCUSSION
A. RESULTS
Our proposed method was evaluated using the collected
dataset in terms of the metrics mentioned in Section 3C. The
three baselines used in this study are the adaptive Gaussian
threshold, SegNet, and the original U-Net. First, all results are
presented in terms of the IoU or the Jaccard index, as shown
in Fig. 4. From the whisker diagram, the DA-CapNet outper-
forms the other methods. DA-CapNet resulted in an increase
of 0.43 in IoU scores over the adaptive Gaussian threshold,
0.09 over the original U-Net, and SegNet. The overall perfor-
mance in terms of IoU is 0.218, 0.556, 0.559, and 0.6431 for
adaptive Gaussian threshold, SegNet, original U-Net, and
DA-CapNet, respectively.

Furthermore, we compared the performances of
DA-CapNet against adaptive Gaussian threshold, SegNet,
and original U-Net in terms of precision. Fig. 5 shows
that our DA-CapNet outperforms the other methods signif-
icantly. Finally, the recall scores of DA-CapNet, adaptive
Gaussian threshold, SegNet, and original U-Net are shown
in Fig. 6, where the best result performance is shown by
DA-CapNet. Subsequently, we compared the performances
between the original U-Net and DA-CapNet. Ground truth
images and their segmentation results using original U-Net
and DA-CapNet are shown in Table 1. All these experiments
with three evaluation metrics demonstrated that DA-CapNet
achieved the best performance compared with the other meth-
ods. By adding the dual attention, it increases the network
parameters from original U-Net with 485,813 parameters
to 489,047 parameters in DA-CapNet. Despite this slightly
increases parameter, we believe that our dual attention mod-
ule helps to improve the performance results.

In addition to the quantitative results, we provide the qual-
itative results on the segmented images using our method
compared with the adaptive Gaussian threshold, SegNet, and
original U-Net, as shown in Fig. 7. The adaptive Gaussian
threshold produces the worst performance, particularly in the
eight-row image of Fig. 7b was owing to ambient noise. The
SegNet and original U-Net could segment the nailfold cap-
illary better than the adaptive Gaussian threshold. However,
the segmented images by SegNet and original U-Net are not
as accurate as the images produced by DA-CapNet. Follow-
ing these results, we apply the Grad-CAM [35] to visualize
SegNet, original U-Net, and DA-CapNet using images from
the test set. Therefore, we can visualize the importance of the
spatial location information in the convolution layers using
the gradients. The Grad-CAM visualization can be found
in Fig. 8.

B. DISCUSSION
In this subsection, we further discuss the dual attention model
used in our proposed method. An experiment was conducted
to demonstrate the effectiveness of the proposed dual atten-
tion module for the improvement of feature representation.
The performance of DA-CapNet was compared with that of

TABLE 1. Comparison results between the original U-net and DA-CapNet.

TABLE 2. Comparison result of different attention module integrated on
U-Net. All three methods have the same architecture except the attention
module.

the original U-Net integrated with only the SE or CBAM
module. It is noteworthy that these three models have the
same underlying architecture except the attention module and
were trained using the same setting for a fair comparison.
Experimental results with different attention modules are
shown in Table 2. The U-Net + CBAM module performed
better compared with the U-Net + SE module by 0.06 points
in terms of mean IoU. However, DA-CapNet performed even
better by 0.08 points and 0.02 points compared with the
U-Net + SE and U-Net + CBAM modules, respectively.
The proposed DA-CapNet is the most effective segmenta-
tion approach, defeating U-NET with a single SE module or
CBAM module without additional complicated modules.

VI. CONCLUSION
We herein proposed a new deep-learning-based method for
a nailfold capillary segmentation, named DA-CapNet. The
DA-CapNet is an improvement of the well-known U-Net
model through the integration of a dual attention module into
several layers of U-Net; it yielded better feature representa-
tions from an input image with large variability caused by
insufficient focusing and low visibility of capillaries com-
pared with conventional methods. The proposed method was
evaluated on a new collected dataset for the nailfold capillary
segmentation. Extensive experimental results demonstrated
its superiority compared with the state-of-the-art methods.
For the future work, we plan to combine the DA-CapNet
with an object detection network for detecting and counting
white blood cell to implement a human immune monitoring
condition.
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