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ABSTRACT In this work, a computer-aided tool is developed to predict relevant physical and mechanical
properties that are involved in the selection tasks of metallic materials. The system is based on the
use of artificial neural networks supported by big data collection of information about the technological
characteristics of thousands of materials. Thus, the volume of data exceeds 43k. The system can access an
open online material library (a website where material data are recorded), download the required information,
read it, filter it, organise it and move on to the step based on artificial intelligence. An artificial neural
network (ANN) is built with thousands of perceptrons, whose topology and connections have been optimised
to accelerate the training and predictive capacity of the ANN. After the corresponding training, the system is
able to make predictions about the material density and Young’s modulus with average confidences greater
than 99% and 98%, respectively.

INDEX TERMS Artificial intelligence, big data, material selection, multilayer feedforward networks, neural

network, property prediction, software-based web browser control.

LIST OF SYMBOLS AND ABBREVIATIONS
ADAM  Adaptive Moment Estimation

Al Artificial intelligence

ANN Atrtificial Neural Networks

Bn ADAM algorithm parameter

€ ADAM stability factor

£ Prediction error of a neural network
n ADAM step size

f Error function

g Gradient of the error function
HTML  HyperText Markup Language

m ADAM first moment estimate

v ADAM second moment estimate
w Weights vector

I. INTRODUCTION

The physical and mechanical properties of a material have
a fundamental role in the performance of industrial compo-
nents. A correct operation depends, to a large extent, on the
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characteristics of the materials that constitute it as insufficient
material properties can cause premature component failure.

In this work, the density and Young’s modulus have been
chosen as study variables due to their relevance in engineer-
ing materials selection tasks. These two characteristics have
been profusely applied and investigated, which enables the
construction of Ashby diagrams [37], which is an efficient
tool in the selection of materials.

Knowing the properties of the materials involved in indus-
trial designs has importance; however, obtaining these data
often requires access to a large amount of resources, which
are generally not available. A multitude of tests are needed
to obtain really significant information, which implies that
sufficient time, personnel and facilities must be available
at a cost [1]. The process of characterisation of a mate-
rial may require a battery of tests that requires a consider-
able amount of time and the investment of vast amounts of
resources.

The use of a methodology this is based on trial and error
should not be considered since each test implies, as previ-
ously indicated, a considerable consumption of resources that
are generally scarce. To develop a material from scratch, and
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after a long testing period, realise that it is not valid or does
not satisfy the initial specifications, is not possible.

Although extensive libraries of materials with abundant
and very detailed information exist, some data needed to per-
form the work is not always available [2]. Even the most basic
information may not be accessible or available, especially
when dealing with infrequent, recently developed or the latest
technology materials. However, the industry demands that
our designs should be taken to their limits, which implies
increased use of technological materials [3].

Material libraries can be used to extract trends or general
characteristics; however, as the amount of data to be con-
sidered increases, the task becomes painful or even impossi-
ble [4]. To solve this type of situation, assistance tools can be
developed to help the designer [5]. In this way, design loops
are reduced and people can concentrate on more creative
tasks. The availability of open data becomes increasingly
important, which justifies the development of tools to treat
information, extract trends or generate new knowledge.

Thousands of material data with adequate tools to extract
trends enable the anticipation of the expected properties of
a new material without the need for any type of test and
limits errors [6]. In this way, research routes can be elim-
inated before they consume valuable resources that can be
exploited in other more productive studies [7].

In this work, the ability of neural networks to extract
trends is employed to obtain new information from a material
database. The heterogeneity of these data makes traditional
database management techniques insufficient, and therefore,
the problem must be addressed using newer techniques based
on big data.

Big data consists of large and complex data sets, especially
from new data sources. Due to the bulkiness of these data
sets, they cannot be managed by conventional data processing
software [8]. However, these massive volumes of data can
be used to address problems that, previously, would not have
been possible to solve.

Although the term “‘big data” is relatively new, the action
of collecting and storing large amounts of information for
further analysis has been performed for many years [9]. The
concept gained momentum when the industry analyst Doug
Laney articulated the current definition of big data as the
three Vs [10]:

o Volume: the amount of data matters. With big data,
large volumes of unstructured low-density data are pro-
cessed. The data can be data of unknown value, such
as machining conditions, material properties or manu-
facturing control measures. For some organisations, tens
of terabytes of data are employed; for other companies,
even hundreds of petabytes of data are utilised.

« Velocity: the rate at which the data are received, and
possibly, to which some action is applied. The higher
data-transmission rate is usually conducted directly to
memory rather than written to a disc. Some intelligent
products work in real time (or practically in real time)
and require instantaneous evaluation and action.
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o Variety: the various types of data that are available.
Conventional data types are structured and can be clearly
organised in a relational database. With the rise of big
data, data are presented in new types of unstructured
data. Unstructured and semi-structured data types, such
as text, audio or video, require additional pre-processing
to obtain meaning and enable metadata. In addition, big
data applications usually cope with sparse information.

Big data enables answers that are more complete to be
obtained since more information is available [10]. Having
more complete solutions to a problem enables the problem to
be addressed with greater guarantees of success and enables
resources to be managed a more efficient way [9]. The avail-
ability of more complete answers also means greater relia-
bility of information, which implies a completely different
approach to addressing problems.

Big data have proven to be a very useful tool in research
in materials science and technology. In recent years, many
works on this subject have been developed, numerous appli-
cations have emerged and important initiatives aimed at
serving as a basis for scientists in this field have appeared.
Predictive models have been developed based on big data
and machine learning [11], and assisted design tools sup-
ported by large databases that transform software into an
expert system [12] and entities such as the Material Genome
Initiative have appeared. The mission of this initiative is to
reduce the cost and development time of material discover-
ies, optimisation and deployment by offering access to large
material databases and providing the tools required to ease
investigation.

The libraries of materials available on the Internet contain
large collections of records that, in general, are incomplete,
that is, some properties are not available for a material [13].
The information is actually very sparse, which hinders
the ability to obtain valid conclusions using conventional
tools [14].

Even though some material libraries are freely accessi-
ble [13], in general, downloading large amounts of data is
difficult as companies regain their most important informa-
tion with great zeal.

In this work, the data contained in these libraries have been
used to train a system based on artificial intelligence (AI)
techniques to extract new information that was not initially
available. Note that the quality of the conclusions of this type
of methodology is as good as the quality of the data from
which the conclusions have been drawn [13]. In this case,
the available data have been provided by the material manu-
facturers themselves and have been certified by standard tests.

Artificial intelligence is the simulation of human intel-
ligence processes by machines, especially computer sys-
tems [6]. These processes include learning (acquisition of
information and rules for the use of information), reasoning
(using the rules to reach approximate or definitive conclu-
sions) and self-correction [15].

Often classified in the cognitive science group, Al uses
computational neurobiology (particularly neural networks),
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mathematical logic (sub-discipline of mathematics and
philosophy) and computer science [16]. AI looks for
problem-solving methods with high logic or algorithmic
complexity. By extension, Al designates devices or tools by
imitating humans in certain implementations of its cognitive
functions [15].

The term “artificial intelligence’ was coined in 1956 dur-
ing the Dartmouth Conference, where the discipline
emerged [17]. Currently, Al is a general term that addresses
automation of robotic processes to current robotics. Al has
recently gained prominence due to the large volumes of data
or to the increase in speed, size and variety of information
collected by companies [6]. Al can perform tasks, such as
identifying patterns in data more efficiently than humans,
which enables users to obtain more information about their
data [16].

Since the birth of computer science, a large number of
methods and techniques that can be framed within the field
of Al have been developed, of which some are more useful
than others [18].

Technology enables us to produce materials with an exten-
sive variety of properties; these materials can work very
differently depending on the environment and working con-
ditions [6]. This finding implies that a large amount of data
are available, and therefore, the situation will become unman-
ageable using only usual calculation methods. We need tools
that can immerse themselves in these data and propose the
optimal solution among the options.

A large variety of methods can be framed within the field
of artificial intelligence. Among them, artificial neural net-
works (ANNSs) stand out as they have become paradigmatic
techniques due to their incredible achievements and unstop-
pable progress within the field of computing [19].

Artificial neural networks comprise a computational model
that is slightly inspired by the behaviour observed in the brain.
An artificial neural network consists of a set of units that are
referred to as artificial neurons, which are connected to each
other to transmit signals. The input information transmits
across a neural network, undergoes various operations and
produces output values [19].

Frank Rosenblatt defined the perceptron model, which is a
supervised learning algorithm of binary classification [20].
This model is a formal neuron with a learning rule that
automatically determines synaptic weights to decide whether
an input belongs or does not belong to a class. If the problem
is linearly separable, a theorem ensures that the rule of the
perceptron enables the identification of a separator between
the two classes [19].

A set of perceptrons that is organised in several layers has
the ability to correctly manage nonlinearly separable prob-
lems. These systems rely on error gradient backpropagation
models and enable the construction of neuronal models that
are as complex as necessary [21].

As systems that are capable of learning, neural net-
works implement the principle of induction, which is learn-
ing by experience [6]. By confronting specific situations,
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FIGURE 1. Simplified model of a multi-layer artificial neural network.

neural networks infer an integrated decision system whose
generic character is a function of the number of learning cases
that are encountered and their complexity in relation to the
complexity of the problem to be solved [39], [41]. Therefore,
complex problems require more training.

Many topological models and neural network architectures
exist, among which multi-layer neural networks account for
the most prominent networks [21]. Each network attempts to
solve some of the problems posed by this type of algorithm:
learning process optimisation, reduction of resources for
training, and ability to quickly learn certain functions. These
systems generally have great plasticity and can be adapted to
most types of problems. However, they require large amounts
of resources and input data for their training [22].

Fig. 1 shows a simplified model of a multi-layer neural net-
work that is composed by 8 perceptrons, which are organised
in 4 layers: 2 perceptrons in the input layer (the layer that
receives the data from the exterior), 5 perceptrons in the two
hidden layers and 1 perceptron in the output layer (the layer
that outputs the processed information).

Table 1 contains some of the most relevant neural network
topologies, including a small explanation about its model.

Currently, neural networks are applied in many fields of
science and engineering, from control systems [44], [48]
to business. Neural networks are a suitable alternative to
a large number of methods that are applied in numerous
fields. In most cases, even for problems that have been
solved by other means and due to different theories, neu-
ral networks have identified other more efficient forms of
resolution.

Neural networks have a large number of real uses in
the industry; they have already identified many commercial
applications, as they show better results in the recognition of
data patterns or trends than other techniques based on mathe-
matical analysis. Artificial neural networks have proven to be
excellent tools for analysing large data sets as, after a training
process, they can extract trends that may remain hidden for
other conventional systems of information analysis [21].

Our current technological development enables us to pro-
duce large amounts of data. However, these data must be
processed to obtain reliable and useful information that
enables better decisions [6]. Artificial intelligence can help
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TABLE 1. Classical neural network topologies [23], [39]-[42].

Topology

Description

Perceptron (P)

Multi-layer feed
forward (MLFF)

Recurrent neural
network (RNN)

Long/short term
memory (LSTM)

Gated recurrent unit
(GRU)

Auto encoder (AE)

Variational AE
(VAE)

Denoising AE
(DAE)

Sparse AE (SAE)

Hopfield network
(HN)

Boltzmann machine
(BM)

Restricted BM
(RBM)

Deep belief network
(DBN)

Deep convolutional
network (DCN)
Deconvolutional
network (DN)

A simple mathematical model of a neuron, which
simulates the behaviour of a single biological
neuron.

A model that contains 3 types of layers (input,
hidden and output), which propagates the error
during the training. These networks can learn any
nonlinear function.

A MLFF model, whose neurons are trained, not
only use information from other neurons but also
information from themselves from the previous
iteration.

A model that attempts to avoid the
vanishing/exploding gradient problem of the
RNN by introducing gates and an explicitly
defined memory cell.

A model similar to LSTM that contains update
gates that determines the quantity of information
to retain from the last state and the quantity of
information to receive from the previous layer.
Similar to MLFF. A model that intended to
automatically encode information in a
compressed way.

A model with the same architecture as AE,
including some probabilistic cells that avoid non-
desired information propagation.

An AE model that is intended to avoid the
network to learn details by introducing more
noise as input.

An AE model whose aim is to encode
information using more space.

A fully connected model that always converges
to a local minima and whose nodes
simultaneously act as input, hidden and output
nodes.

Similar to HN although some neurons are
considered input neurons and other neurons
remain hidden.

A model similar to BM where some nodes are
linked to other nodes; they are mostly grouped.

A model that stacks several RBM or VAE. These
networks are able to generate new data.

A model that can easily process images or audio
and tag them.

A model that, after training, can produce pictures
that are related to a given concept.

designers identify the optimal solution for each task, which

can potentially increase the total performance [18].

One of the main tools for the search of the optimum mate-
rial for an industrial application are Ashby diagrams [37].
This type of scattered plot enables two or more properties of
many materials (or classes of materials) to be simultaneously
and intuitively visualised. To generate this type of graphic,
however, the required data are necessary.

As previously indicated, the libraries of existing free access
materials on the internet enable a large amount of data to
be available [13]. However, they generally do not authorise
users to download complete libraries in a simple way and
only allow individual downloading of the data of a single
material. In this context, the development of tools that capable
of iteratively carrying out this painful task is necessary [14].

These types of websites are protected against the action of
bots that can carry out attacks that are aimed at causing the
system downfall. Thus, the data download procedure that is
developed acts in a similar way to the procedure that would
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follow a human being, and therefore, building software tools
based on web browser control that imitates a user’s behaviour
is essential [24].

Simplifying, this technique consists of developing code
that instructs the web browser that it should behave as if the
user had performed daily actions, such as pressing a button,
entering a text or downloading a file.

Software-based web browser control consists of the devel-
opment of code that is aimed at employing browser capabili-
ties: HTML code interpretation, file downloading, permission
management, and cookies administration. A web browser
provides a wrapper that frees the developed code from the
complexity of the operations that are needed to surf the
internet [24].

The objective of this work is to determine how artificial
neural network technology can be used to exploit a large
set of metallic material data [40] to predict its physical and
mechanical properties. This work explores the feasibility of
training a neural network to ensure that it can predict some
physical properties based on the chemical composition of the
new materials presented to it.

The purpose of this paper is to establish a framework that
establishes the basis for developing the required software and
algorithms to determine a broad spectrum of material proper-
ties based on their chemical composition. The framework is
envisioned as a support tool for the study of materials science.

The main goal of this study is to build an artificial neural
network that can receive the material information as input
data and make valid predictions. The network topology is
optimised to perform this task and enables the collection of
output data that is subsequently analysed to calculate the
performance of an entire system.

The objectives include the development of software tools
that facilitate this work to be carried out (including tools with
which the obtained results are analysed) and the procure-
ment of a large set of input data about metallic materials,
including their physical properties and chemical composition,
and the organisation of big data to ensure that the data were
exploitable via the developed algorithms and tools.

The innovation of this work is the use of neural network
techniques to build a complete Ashby diagram based on
the chemical composition of metals. In addition, the use of
artificial neural networks that are trained with a large set
of metallic material data to predict their mechanical and
physical properties is remarkable.

Neural networks have proven to be very useful in multiple
fields to obtain very significant results when combined with
reinforced learning techniques using large data sets. However,
a limited amount of work applies ANNs to the field of metal
science, and most studies that develop procedures aimed at
predicting their physical and mechanical properties are based
on mathematical or statisticians models instead of artificial
intelligence.

The procedure proposed in this work is perfectly scal-
able and applicable to different types of metals; how-
ever, most models can only be applied to a restricted group of
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FIGURE 2. Methodology scheme.

materials [49]. The novelty of this methodology is the appli-
cation of artificial intelligence to the prediction of physical
and mechanical properties of metal alloys.

The added value of this methodology consists of the use
of artificial intelligence techniques to predict some important
properties for the selection of materials in engineering appli-
cations. Numerical methodologies only focus on a limited
and closed number of material characteristics, while systems
based on neural networks can potentially take advantage of
all available information to make better decisions.

Il. METHODOLOGY

The development of the work has focused on obtaining an
artificial neural network that is capable of making adequate
predictions about material properties while maintaining a
limited average error. Subsequently, the output data, data
about the network training process and data about the pre-
diction step are conveniently analysed [16].

A. PRINCIPLES OF THE METHODOLOGY:

GENERAL OVERVIEW

Fig. 2 schematically shows the different steps for developing
the system. The system has two main stages: the stage related
to big data and the collection of input data; and the stage
related to the development and use of the artificial neural
network (ANN), which also comprises the data analysis. The
schematic shows which programming code manages each
step.

Matmatch [25] is a well-known open-access materials
library that contains information about thousands of differ-
ent commercial and standard materials. All registered users
can freely access the information stored in their databases,
whose data are provided by suppliers and manufacturers.
A specification sheet that contains all available data can be
downloaded for each material. However, the full bulk cannot
be downloaded at once, that is, the entire library of materials
cannot be downloaded. A software bot that is capable of
iteratively downloading (separately) all materials available on
the website has been developed.

Once the bot completes its task, therefore, we obtain a col-
lection of thousands of specification sheets about materials
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that generally contain information about chemical composi-
tion, mechanical properties and physical properties. This set
of datasheets covers all kinds of materials: metals, ceramics,
composites, and polymers.

A second software application runs through all available
specification sheets, extracts all contained information (even
information that is not relevant for the development of this
work), and carries out a small processing and organises it into
an easy access matrix. The previously mentioned initial pro-
cessing consists of the homogenisation of units of measure-
ment and the elimination of non-numerical information (with
the exception of the name and the identification, a unique
code for each material), which is not susceptible of being
exploited.

At this point, we obtain an immense matrix of very sparse
data, where each row corresponds to a material and each
column represents a property [8]. As previously indicated,
some data are not available for certain properties of materials
and since the database is very heterogeneous, some properties
do not make sense for certain materials [1]. Therefore, this
matrix must be filtered to obtain valid input information.

A third code is executed to carry out the filtering of
data. Only metallic materials whose chemical composition
is defined in more than 90% are considered. During the
development of this work, a small amount of the specification
sheets did not include the chemical composition of a material
or did not correctly detail it. To avoid bias during the training
phase, incomplete materials are eliminated [26].

The following chemical elements have been investigated:
Al, Fe, Mn, Si, Cu, C, Cr, P, S, Ni, Zn, Mg, Ti, Mo, Pb,
Sn, V, N, Nb, W, Sb, As, Bi and Co [27]. The presence
of other elements in small quantities does not affect the
learning process of the neural network [26]. Note that only
metallic materials whose main components are included in
this list are considered (i.e., no information related to gold or
silver has been considered even if their datasheets have been
downloaded).

Fig. 3 graphically shows the results of filtering all avail-
able downloaded materials (43575). Materials that are not
considered are split into two categories: non-metallic mate-
rials (16473) and materials whose chemical definition is
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deficient (1876). The materials that have been effectively
employed (25226) are divided according to their main chem-
ical element (17 categories). Materials with a deficient chem-
ical definition include those whose main element is not
included in the previously mentioned elements list.

Once the material data are filtered and all information
is guaranteed useful and relevant to develop this study,
an adequate big data structure is already available. Therefore,
the fourth software code is launched to initiate the step based
on artificial intelligence [28].

A multilayer feedforward architecture has been chosen and
an artificial neural network with a fully connected topology,
which consists of an input layer, 4 hidden layers and an
output layer, has been defined [22]. The input layer consists
of 24 nodes, which correspond to each of the considered
chemical elements; the hidden layers are formed by 1000,
160, 40 and 5 perceptrons; and the output layer is formed
by a single node. Fig. 4 shows a simplified representation
of the neural network topology in this work. The input layer,
the hidden layers and the output layer have been differentiated
using colours.

This topology is the result of successive optimisation steps
to balance its learning capacity and the necessary resources
for its training [29]. Note that a complex topology is capable
of learning more complex functions than a simple topology
but requires additional resources during its training: addi-
tional time, calculation capacity and input data [16]. A bal-
ance between the network depth and the network width was
obtained.
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A fully-connected artificial neural network consists of a
set of fully connected layers; a fully-connected layer is a
layer in which all nodes are connected to all nodes of the
next layer [21]. This network is able to learn the function
f : R" — R, where n is the input vector size (in this case,
the amount of considered chemical elements is 24) [42].

Hornik [30] showed that the multilayer feedforward archi-
tecture provides neural networks with the potential of being
universal approximators. Even if a fully connected ANN can
represent any function, it may not be able to learn some func-
tions as backpropagation convergence is not guaranteed [22].

Since the network architecture and topology were pre-
viously defined, the training phase of the network begins.
The available data are randomly divided into two disjoint
subsets: training subset and test subset. The first subset com-
prises 80% of the data, while the second subset contains the
remaining 20% of the data. For a data to be used during the
learning phase, all input information and expected results are
necessary since neural networks are a supervised learning
technique.

The network training is subject to the following conditions:

« Calculation of the learning rate for each parameter using

Adaptive Moment Estimation (ADAM) where 8; = 0.9,
B> = 0.999 (algorithm parameters), n = 0.001 (step
size) and e= 1078 (stability factor) [31].

o Early stopping after 10 iterations without significant

changes to avoid overfitting.

o Training stops when a training error of less than 0.001 is

reached as it is considered negligible [32].

o Maximum of 100000 training epochs to avoid infinite

loops.

« Sigmoid activation function.

« Verbose output to analyse the training process.

Once the neural network has been trained using the cor-
responding subset of data, predictions can be made using
the information from the test subset. In this way, metrics
that enable us to measure the performance of the system can
be extracted. Several statistical parameters are calculated by
comparing the output estimation of the neural network with
the real value; these parameters are employed to describe the
performance of the network.

B. SOFTWARE AND TOOLS
As previously indicated, multiple software codes have been
developed to carry out each of the tasks of this work (refer to
Fig. 2). These codes have been developed entirely in Python
3.7 language, although multiple libraries and non-standard
modules have been used to simplify some stages of the
project. This language has been chosen as Python is a high-
level, multi-platform and multi-paradigm programming lan-
guage with dynamic typing that has great popularity among
developers [33], especially, among those who develop soft-
ware related to artificial intelligence [34].

Some external modules have been employed, such as Sele-
nium (library that enables control of the web browser by
using code), BeatifulSoup (library that facilitates working
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with HTML files), SciPy (library that contains numerous
scientific, mathematical and statistics functions), NumPy
(library that enables easy management of large amounts of
data and large matrices and numbers), MatPlot (library that
eases the production of plots, figures and graphics) [33] and
TensorFlow with Keras (high-level library that contains a
vast amount of functions and procedures related to artificial
intelligence, especially artificial neural networks) [34].

This system comprises more than 9000 lines of code dis-
tributed in 11 files that manage different operations.

C. MATERIAL INPUT DATA ACQUISITION

FOR FURTHER EVALUATION

As previously indicated, information about materials has
been downloaded from an online library via a code that mim-
ics the behaviour of a human user. This task has been achieved
by using Gecko Driver 0.24 for Firefox 67.0 and the Selenium
module for Python [33]. Gecko Driver and Selenium enables
a programmer to ask the web browser to perform actions
such as going to a given web page, clicking on an element
(i.e., a button or hyperlink) or writing some text in a text-box.

The data downloading code works by the following several
steps: identify location of the names of the materials to down-
load, filter to eliminate repeated data, access web record of
each material and download the summary data file. This part
of the work is extremely slow since it is substantially affected
by the speed of the servers where the online library is hosted
and the bandwidth of the local network.

After downloading the summary record of each material,
we obtain more than 43000 individual files that contain a vast
amount of data. These files must be read again to extract their
information and organise it in a way that is easily accessible.
Once the information is organised in a vast sparse matrix,
filtering should be carried out to eliminate data that are not
useful or that will not be employed.

These organisation and filtering processes are also carried
out via code that was specifically developed for this work.

D. TRAINING AND PREDICTION USING

ARTIFICIAL NEURAL NETWORKS

The procedure by which a neural network learns is referred
to as training and is mathematically based on the problem of
gradient descent [32]. The learning problem of an artificial
neural network is the minimisation of the associated error
function. This function usually consists of 2 terms: the first
term evaluates the adjustment of the network output with
respect to the available data (error term) and the second term
(regularisation term) is used to avoid overfitting (overfitting
is avoided by allowing the training process to eventually stop
before overfitting occurs) [35].

The error function entirely depends on the weights associ-
ated with each of the perceptrons. This vector of weights with
a size equal to the number of neurons (1230) is represented
as w and enables us to indicate that f (w) is the error made by
the neural network when assigning the weights w to each of
the perceptrons that compose it [36]. With this formalisation,
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the objective of the training is to find the vector w for which a
global minimum of the function f is obtained, which converts
the learning problem into an optimisation problem [35].

In this way, a neural network is initialised with some
weight vectors (in general, randomly chosen). A new param-
eter vector is calculated to reduce the error function. This
process is repeated until the error has been reduced under
a tolerable threshold or when a specific stop condition is
satisfied [34].

Since the error function is derivable, the gradient of this
function can be defined for each of the optimisation steps
(refer to Eq. 1):

gi = Vfi=Vf (w) ey

where w; is the weight vector for the ith optimisation step;
f; is the value of the error in the ith step of the iteration; and
gi is the gradient value of the error function in the ith step of
the iteration [35].

Adaptive moment estimation (ADAM) is an adaptive learn-
ing rate method that computes individual learning rates for
different parameters. ADAM uses estimations of first and sec-
ond moments of a gradient to adapt the learning rate for
each weight of the neural network [31]. Using this method,
in each iteration, the new weights vector is calculated as (refer
to Eq. 2):

Wiyl = Wi — nAm’—Jrl (@)
Vit1+ €
where 7 is the step size (a value that graduates the relevance
of the gradient factor), € is the stability factor of the algorithm
(constant) and the bias-corrected first moment estimate 72y |
and second moment estimate v;1| are calculated as follows
(refer to Eq. 3 and 4) [31]:

~ mi+]

Mg = ——— 3
1— IB;-FI

A Vi+1

Vg = ——— 4
1— /3£+1

where 81 and B, are the algorithm parameters that are set to
a value near 1 [31]. m;y; and v;1 are calculated as follows
(refer to Eq. 5 and 6):

mir1 = Bim; + (1 — B1) git+1 5)
viel = Bovi+ (1 — o) g7, (©6)

where m; 1 and v;yjare the decaying averages of past gra-
dients and past squared gradients, respectively, and are esti-
mates of the first moment (mean) and the second moment
(uncentred variance), respectively, of the gradients [31].

The optimisation process and the network training method
has been mathematically defined. Once the network has been
conveniently trained, predictions can be obtained based on the
approximation function learned by the neural network [34].
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FIGURE 5. Densities histogram.

The prediction deviation is calculated as the absolute value
of the relative error of the resulting value (refer to Eq. 7):

__ | Yprediction — Vreal

(N

Vreal

Ill. RESULTS AND DISCUSSION

Although the training algorithms are randomly initialized,
the results (both during training and during prediction) are
very stable and converge to the same values with differences
below 1% [36]. Only the results of the network that have
obtained the best predictive metrics are shown.

Once the neural network is conveniently trained with 80%
of the records (training subset), the ANN is requested to
make predictions with the remaining 20% of the data (testing
subset). In the second step, the network is not given any
information about the expected results since this information
is information that it must return.

Training and testing using the same dataset is not recom-
mended as bias and overfitting can occur; thus, the obtained
results can be fabricated since the performance of the network
is not realistic [34].

A. DENSITY TRAINING AND PREDICTION

The neural network is trained with 20180 records of randomly
chosen materials, that is, 80% of available materials. For each
sample, the ANN is given the percentages of each chemical
element (of the 24 elements that are considered) and the
density of each material. In this way, the neural network is
asked to identify a function that serves as an approximator
for the calculation of the density.

Fig. 5 shows a histogram of all densities of the considered
materials. The distribution is very irregular as the number
of samples exceeds the number of elements. Three remark-
able ranges appear: (7, 8], which includes ferrous materials;
(2, 3], which includes aluminium alloys; and (8, 9], which
includes, among others, brass (Cu + Zn). For these elements,
the dataset contains a larger number of samples as they are
broadly used materials.

The density of a metal alloy can be well approximated by
calculating a weighted average, in which the total density is
equal to the sum of the products of the proportions of each
element multiplied by its individual density.
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TABLE 2. Density training details.

Training samples 20180
Iterations 159
Min. error function value 0.002
Initial error function value 20.976

Error function during training for Density
100

10

0,1

Error function [log]

0,01

0,001

Iteration

FIGURE 6. Error function during training for the density (log scale).

Note that the ANN is not given the density of each of
the individual chemical elements, which is a concept that
the neural network must learn supported by the supervised
training.

The density-related training process that required 159 iter-
ations ended as no significant improvements occurred during
10 iterations (early stop condition), and a minimum error
function value of 0.002 was attained. These data are listed
in Table 2. Note that this very low final error function value
indicates that the approximation that the network has learned
matches the provided data [34].

Fig. 6 shows the evolution (on logarithmic scale) of the
error function during the training. Near iteration 35, a very
important change in trend occurs; in this step, the ANN
learned a significant concept that enabled the error function
to be considerably reduced. After iteration 140, the slope of
the error function becomes flatter, which indicates that the
training process is almost finished (no additional significant
improvement).

The neural network is asked to make predictions about
the 5046 records contained in the testing subset. For these
records, the real density values are known but are not com-
municated to the ANN as they are retained to calculate some
performance metrics.

Table 3 shows some statistical metrics that enable evalu-
ation of the average prediction performance of the network.
As shown, the average prediction deviation is 0.448%, and
half of the samples are below 0.237% (median). The differ-
ence among the average, trimmed mean and median indicates
that outliers exist and should be carefully investigated.

Fig. 7 shows the histogram of the errors made in the pre-
diction of the densities of the materials of the testing subset.
The samples are accumulated in the first two error ranges,
that is, for deviations less than 0.5%. The error is distributed
and forms a large peak near 0%, and a long tail of low height
appears.
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TABLE 3. Density prediction error testing details.

Test samples 5046
Average 0.448%
Std. Dev. 0.855%
Median 0.237%
Maximum 15.157%
Minimum 0.000%
Trimmed mean (+5%) 0.352%
Quartile 1 0.171%
Quartile 2 0.237%
Quartile 3 0.341%

Deviation percentage histogram for the densities
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FIGURE 7. Prediction deviation histogram for the density.
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FIGURE 8. Density prediction performance for each chemical element.

Fig. 8 shows the performance of the predictions for each of
the main chemical elements of the alloys in the testing subset.
Note that the ANN offers substantially worse results for
magnesium and tungsten (note that a few samples can be used
during the training, which impairs the learning performance).
The big box and long whisker related to the magnesium alloys
indicates a large predictive variability.

As foreseen by the statistical metrics, Fig. 8 shows some
outliers that have been associated with poorly defined mate-
rials (note that the quality of the input data is not perfect,
although the ANN can address these imperfections). In addi-
tion, the neural network encounters problems with some dura-
lumin alloys (they appear as outliers in the chart).

For each main chemical element, Table 4 shows the amount
of samples that have been employed during the tests (mate-
rials in the testing subset) and the average deviation of the
artificial neuronal network when it is making predictions.
Significant differences are observed among the elements,
although the average error remains bounded. For elements
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TABLE 4. Main element related average error.

Main Average
element error [%] Samples
Al 0.91% 1113
Co 1.22% 3
Cr 0.15% 1
Cu 0.22% 584
Fe 0.23% 3084
Mg 3.55% 48
Mo 0.78% 30
Ni 0.58% 100
Pb 1.23% 9
Sn 1.05% 4
Ti 1.20% 32
W 4.67% 15
Zn 1.48% 23
TOTAL 0.45% 5046
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FIGURE 9. Young's modulus histogram.

with a large number of samples (i.e.: aluminium, iron or
copper), note that acceptable results are obtained as the ANN
successfully learns the density calculation function.

B. YOUNG'S MODULUS TRAINING AND PREDICTION

In this case, the Young’s modulus (E) is not available for
all materials. Therefore, only materials for which this infor-
mation is accessible will be considered as these data are
necessary in the supervised training phase and the perfor-
mance estimation phase. Fig. 9 shows the distribution of
the Young’s modulus among the considered materials. Note
that the ranges that contain aluminium alloys (50-100GPa),
copper alloys (100-150GPa) and iron alloys (200-250GPa)
are much more prominent than the other materials as the
dataset contains more samples.

The ANN was trained with 1571 randomly chosen material
samples obtained from the samples that can be considered
(only 1962 registers contain the Young’s modulus value),
which is 80% of the data (training subset). For each record,
the ANN is given the percentage of each chemical element
(among the 24 elements considered) and its corresponding
Young’s modulus. The neural network is asked to find a
function that serves as an approximator for the calculation
of the Young’s modulus.

The Young’s modulus training process required 6693 iter-
ations and ended as no significant improvements were
observed during 10 iterations (early stop condition) and a
minimum error function value of 548.94 was reached. These
data are listed in Table 5.
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TABLE 5. Young's modulus training details.

Training samples 1571
Iterations 6693
Min. error function value 548.94
Initial error function value 9123.58

Error function - training for Young's modulus
10000
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100

Error function [log]

0 1000 2000 3000 4000 5000 6000 7000
Iteration

FIGURE 10. Error function during training for the Young’s modulus (log
scale).

TABLE 6. Young's modulus prediction error testing details.

Testing samples 390
Average 1.561%
Std. Dev. 2.233%
Median 0.667%
Maximum 12.446%
Minimum 0.003%
Trimmed mean (+5%) 1.394%
Quartile 1 0.219%
Quartile 2 0.667%
Quartile 3 1.843%

The final error function value is substantially larger than
the density value, which indicates that the training process
was not equally performant, and therefore, the predictive
capacity of the ANN will be inferior to the previous capacity.

Fig. 10 shows the evolution (on logarithmic scale) of the
error function during the training of the neural network for the
approximation of the Young’s modulus function. A continu-
ous and regular descent that progressively slows until an early
stop condition is attained. Although they cannot be observed
in the chart, oscillations of some importance occur near the
end of the training process, which indicates that the network
is not able to continue learning from the available data. Three
steps (that can barely be observed due to the chart scale)
near iterations 300, 2600 and 4400 are related to significant
approximation improvements.

Subsequently, the network is asked to make predictions
about the data contained in the testing subset (390 registers).
Although we know the real value of the Young’s modulus for
these samples, this information is not communicated to the
network since it will be used to calculate several statistical
metrics that can be used to measure the network’s perfor-
mance.

Table 6 contains some statistical metrics that enable us to
measure the predictive performance of the neural network.
As shown, the average deviation is 1.561% and the error of
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half of the obtained results is less than 0.667%. Note that
the average (1.561%), median (0.667%) and trimmed mean
(1.394%) are not coincident, which can indicate that some
outliers should be carefully investigated.

Fig. 11 shows a histogram in which each sample is related
to the range of error in which it is observed. Note the high
peak for the range [0, 1] and the long and flat tail. This
distribution indicates that the network can make adequate
predictions and makes mistakes with some samples.

Fig. 12 shows the performance of the predictions for each
of the main chemical elements of the materials in the testing
subset. Note that the ANN offers significantly worse results
for cobalt and tungsten (note that a few samples are available
to use during the training, and therefore, the learning perfor-
mance is impaired). Fig. 12 also shows some outliers. The big
boxes for cobalt, iron and tungsten indicate a large predictive
variance.

For each main chemical element, Table 7 shows the number
of samples that have been used during the tests (materials
in the testing subset) and the average deviation. Significant
differences are observed among the groups, although the
average error remains bounded. However, for the elements
for which a few samples exist, note that the artificial neural
network returns worse results. The prediction performance
for cobalt and molybdenum alloys is very poor due to the lack
of training samples.
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TABLE 7. Main element related average error.

Main Average
element  error [%]  Samples
Al 0.86% 200
Co 9.67% 3
Cu 0.71% 67
Fe 4.99% 24
Mg 1.92% 10
Mo 5.22% 13
Ni 3.46% 27
Si 0.05% 2
Ti 0.58% 31
W 3.44% 10
Zn 1.46% 3
TOTAL 1.56% 390
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FIGURE 13. Young's modulus vs. density Ashby chart.

C. YOUNG’S MODULUS AND DENSITY ASHBY CHART

An Ashby diagram is a type of scatter plot that enables
the relationship between two properties to be established by
grouping the points according to a certain criterion [37]. The
diagram is a methodological approach to the selection of
materials that applies objective principles for the evaluation
of the considered properties [38].

Fig. 13 shows an Ashby diagram that relates the Young’s
moduli of the materials to their respective densities [37]. This
Ashby materials selection chart shows clusters of materials
that share their main alloy element, which tend to have similar
properties.

The diagram has been elaborated using the material data
obtained from the predictions made by the artificial neural
network. Some elements show substantially greater variabil-
ity than other elements, which causes a more extensive field.
This variability has a negative impact on the performance of
the network training since it implies that the function to be
learned is more complex.

D. LIMITS OF THE STUDY

The main limitation of this work is the size of the starting
data set and the ability of the neural network to learn from
this information. As previously indicated, the results of this
system improve when the learning process is carried out
using a larger input set. However, obtaining large amounts
of material data is difficult since the input set it is a very
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important asset that is not published in an open and easily
accessible way. Therefore, a larger initial information corpus
can improve the obtained results.

As previously explained, the artificial neural network
topology model in this study has some disadvantages
(e.g., the results are considerably affected by a reduced initial
data set and the local minimums generate substantial attrac-
tion) that constitute a limitation of the procedure. Other neural
networks architectures can improve the results or reduce the
required resources to carry out the training phase.

This study is based on the assumption that the data obtained
from the materials library are correct and reliable. Otherwise,
the methodology would not change but the obtained results
could be affected.

IV. CONCLUSIONS AND FUTURE WORKS

This paper has investigated the feasibility of using arti-
ficial neural networks and big data for the prediction of
properties of metallic materials whose chemical composi-
tion is known. The possibilities of artificial intelligence
techniques have been explored based on large data sets.
Thus, the major conclusions from this work are presented as
follows:

o The artificial neural network technology, as a supervised
learning technique, can be employed to exploit large
datasets of material information to predict physical and
mechanical properties from the chemical composition of
different alloys. An ANN can learn to approximate the
value of a material property as a function of its chemical
constituents.

« An artificial neural network can be trained to predict the
density and Young’s modulus of a metallic material if its
chemical composition is correctly defined. The error of
the prediction remains bounded and the average devia-
tion in this work is 0.448% and 1.561%, respectively.

o Supervised-learning methodologies require large train-
ing datasets to attain satisfactory predictive perfor-
mance. The predictive capacity of a neural network
improves as the dataset increases as it has more samples
to learn from, and therefore, the network is able to learn
more precise functions (functions that better approxi-
mate the reality of the problem).

o The compiled neural network can adequately approxi-
mate the density of a material but requires additional
training to attain satisfactory results when it attempts
to predict the Young’s modulus of an alloy. Note that
approximating the density function is theoretically eas-
ier with a larger number of samples for training.

o An artificial neural network with multilayer topol-
ogy can be trained to approximate nonlinear functions
related to materials science. Theoretically, a multilayer
neural network can learn to approximate any nonlinear
function if a sufficient number of samples are provided
during the training process and if it has a sufficient
number of perceptrons [30].
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This work contributes new forms of research for the pre-
diction of other physical or mechanical properties of different
types of materials (metals, polymers, ceramics or composites)
and enables us to focus future research on materials that
are more prominent or for which better results are obtained.
In the same way that satisfactory results have been obtained
in the prediction of the Young’s modulus and the density, the
possibility of obtaining useful results for the ultimate stress
or the yield stress can be explored.

Artificial neural networks have proven to be a suitable
ally for the prediction of physical properties; therefore, they
can be employed to describe the elastoplastic behaviour of
industrial materials of great relevance without the need to
perform expensive and complicated tests of stress-strain. The
design of a system that is based on artificial intelligence and
capable of completely predicting the stress-strain curve is
feasible.

The possibilities of a system whose operation proceeds in
the opposite direction to that in this work can also be investi-
gated, that is, we can indicate to the system the properties that
we want to achieve, and a system that is based on artificial
intelligence can chemically define a material that complies
with the indicated requirements.
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