
Received December 29, 2019, accepted January 8, 2020, date of publication January 10, 2020, date of current version January 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965723

Dynamic Placement Optimization for
Bio-Inspired Self-Repairing Hardware
LIU XIUBIN 1, QIAN YANLING 1, FENG XIANGLI 1, ZHUO QINGQI 2, AND LI YUE 1
1Science and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology, Changsha 410073, China
2School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Corresponding author: Li Yue (liyue@nudt.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 51675523.

ABSTRACT Bio-inspired self-repairing hardware is a distributed self-adaptive system, characterized by
powerful fault-tolerant ability and environment adaptivity. However, it suffers from some difficulties such
as large resource consumption and degraded circuit performances. From the viewpoint of cybernetics and
computer science, the cellular differentiation and substitution process of bio-inspired self-repairing hardware
can be converted into dynamic placement problems on a reconfigurable system. Current systems can only
generate some predefined fault-free placements from a finite number of initial placements. The aim of
this paper was to achieve high-quality placements from arbitrary initial placements. Based on P systems,
an analysis has been made on the limitations of current systems and an improved computing system has
been developed to achieve the ergodic property. Its computational power has been verified by a constructive
proof. Moreover, centering on the problem how to improve the placement quality on a distributed platform,
the optimization model, task allocation, optimization strategy, and membrane optimization algorithm have
been designed and developed. The optimization performances were verified and the calculation amount was
exhibited by experiments. Finally, it indicated by comparison that the proposed approach would reduce the
resource consumption and maintain good circuit performances.

INDEX TERMS Bio-inspired self-repairing hardware, dynamic placement optimization, P systems, com-
puting model, membrane optimization algorithms.

I. INTRODUCTION
Bio-inspired self-repairing hardware is a distributed self-
adaptive system, characterized by fault-tolerant ability and
environment adaptivity [1]. Compared with Triple Modular
Redundancy, it is considered as an alternative and more
promising fault tolerant approach for some special-purpose
electronic devices that have to withstand harsh conditions
and meet stringent requirements on reliability [2], [3]. The
basic idea of such systems is to construct an array made
up of many decentrally organized and interacting electronic
cells (eCells). As the basic ‘‘building blocks’’ in analogy
to cells in multicellular organisms, eCells can implement
functional differentiation and change connections according
to the stored configuration information (genome) [4], [5].
Fault recovery is generally achieved by deactivating the fault
eCell and activating another spare one for differentiation
and substitution [6]. However, in contrast to the self-healing

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

processes of organisms, the positions of eCells are fixed in the
array and no eCell can be created, moved or disappeared. As a
result, the cellular differentiation and substitution method
suffers from several difficulties.

1) A large number of spare eCells are initially arranged
in places adjacent to working ones for substitution,
leading to large resource consumption.

2) A predefined point-to-point substitution method can
hardly make any flexible adjustment according to the
changing environment, leading to inefficient consump-
tion of spare eCells and degraded circuit performances.

From the standpoint of cybernetics and computer science,
bio-inspired self-repairing hardware can be considered as a
reconfigurable system, which supports a dynamic arrange-
ment of function blocks on the eCell array in response to
the interference caused by faults. In this framework, the sub-
stitution process is a dynamic placement method where the
placement evolves by a series of transitions at run time [7].
Current systems can only generate some predefined fault-free

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 11007

https://orcid.org/0000-0003-3654-0706
https://orcid.org/0000-0003-0794-5026
https://orcid.org/0000-0001-5176-1772
https://orcid.org/0000-0001-8309-8274
https://orcid.org/0000-0003-0376-5474

L. Xiubin et al.: Dynamic Placement Optimization for Bio-Inspired Self-Repairing Hardware

FIGURE 1. Dynamic placement methods with different initial placements (a,b –Embryonics’s dynamic placement method, c – Yang’s dynamic placement
method, d – Szasz’s dynamic placement method).

placements from a finite number of initial placements.
However, it may lose efficiency when the arrangement of
working and spare eCells is changed in the initial place-
ment or when high-quality placements are needed in the self-
repairing process.

As a result, this paper makes a research on dynamic place-
ment optimization for bio-inspired self-repairing hardware.
The final goal is to achieve high-quality fault-free placements
from arbitrary initial placements. In mathematics, placement
optimization is generally considered as a kind of NP-hard
combination optimization problems [8]. In order to solve
such problems, the computing system should have enough
computational power to generate feasible solutions and an
optimization algorithm is needed to select an optimal solu-
tion. Unfortunately, due to the predefined point-to-point sub-
stitution method, many feasible placement results cannot be
generated on the current hardware platform, so the feasi-
ble solution space is limited. Moreover, large-scale iterative
calculating, which is often used in FPGA offline placement
optimization algorithms [9], is limited by online comput-
ing resources. Therefore, a computing model based on P
systems was proposed to simulate dynamic placement pro-
cesses and to analyze the computational power of hard-
ware platforms [10]. An improved distributed computing
system, called a mesh P system with bidirectional sliding
rules, was developed to extend the feasible solution space.
Its computational power has been verified by a constructive
proof. Moreover, centering on the problem how to improve
the placement quality, the optimization model, task alloca-
tion, optimization strategy, and membrane optimization algo-
rithm have been designed and developed. The optimization

performances were verified and the calculation amount was
exhibited by experiments. The following parts are orga-
nized as follows. Section II focuses on computing model
and systems. Section III explores the optimization model,
optimization strategy, and membrane optimization algorithm.
Section IV exhibits experimental results. SectionV concludes
the paper.

II. COMPUTING MODEL AND SYSTEMS
In this section, a computing model based on P systems is
proposed to simulate dynamic placement and analyze the
limitation of computational power of the current hardware
platforms. Then, an improved distributed computing sys-
tem, called a mesh P system with bidirectional sliding rules,
is developed to achieve the ergodic property.

A. RELATED WORKS
In the early bio-inspired self-repairing hardware such as
Embryonics [6] and POEtic tissue [11], all the eCells were
arranged in a mesh architecture and every eCell had four
nearest neighbors, forming a traditional von Neumann neigh-
borhood. Initially, there existed a sufficient number of spare
eCells on the right side of the array. When one eCell turned
into fault state, all the functions of the column to which
the fault eCell belonged, along with that of its following
columns, would synchronously shift by one column to the
right. This process could be used repeatedly until all the spare
columns were occupied (Fig.1(a)). Another dynamic place-
ment method of Embryonics was conducted by limiting the
adjustment range to a single row rather than all the columns
on the right side of the fault eCell (Fig.1(b)) [12].

11008 VOLUME 8, 2020

L. Xiubin et al.: Dynamic Placement Optimization for Bio-Inspired Self-Repairing Hardware

The improvement of initial placement can reduce routing
complexity. Lala proposed an initial placement where every
working eCell was surrounded by two spare eCells except
those at the periphery. Every working eCell could be replaced
by any available spare neighbor in the event of fault occur-
rence [13]. Besides, in the self-repairing system proposed by
Yang, the working eCells and spare eCells were arranged in a
staggered fashion. Every working eCell had four neighboring
spare eCells and it could be substituted by one of the four
spare neighbors (Fig.1(c)) [14].

In order to increase communication flexibility, a two-
layer architecture was proposed by adding an interconnected
switch matrix layer on the top of the interconnected eCell
layer. An eCell cluster was generally composed of a switch
matrix and a finite number of eCells. In the bio-inspired
system proposed by Szasz, every cluster was made up of
nine cells, including 5 working eCells and 4 spare ones.
When a fault occurs, the fault eCell was deactivated and
the fault information was propagated in the whole cluster.
Then a available spare eCell responded and replaced the fault
one (Fig.1(d)) [15]. In the self-adaptive hardware architec-
ture (SANE), placement information could be transferred
among different clusters and the scope of substitution was
extended [16].

Heterogeneous fabrics are resource-efficient to some spe-
cial situations. In Unitronics, the architecture was composed
of two different types of eCells: core ones in the mid-
dle of the array, surrounded by peripheral ones around its
perimeter [17]. Core eCells were used for implementing
specific functions and peripheral ones managed the flow of
input/output information. In the hierarchical self-repairing
architecture proposed by Kim, modular redundancy methods
were introduced by adding special redundant eCells to the
group of gene-encoded ones [18]. Every working eCell had
a corresponding redundancy which can replace its function
instantly. If the redundancy was used up, a gene-encoded
eCell was immediately configured to the redundancy.

B. MODELING AND ANALYSIS
P systems provide powerful tools to study distributed parallel
computing systems. On this basis, a neural P system with
swap rules is developed as a universal computing model for
simulating dynamic placement of different bio-inspired self-
repairing hardware, and a computational power theorem is
proposed and proved to analyze the limitation of dynamic
placement optimization abilities in current platforms.

1) COMPUTING MODEL
A P system, or membrane computing, is a parallel and dis-
tributed computational model [10]. It is obtained by formal-
izing the structure and functioning of living cells, as well as
the organization method in tissues or higher order structures.
A basic ingredient of a P system is membrane structure,
which contains several membranes with a hierarchical struc-
ture as in a cell (represented by an Euler–Venn diagram or a
directional labeled unordered tree) or a net structure as in

tissues or neural networks. A membrane can be regarded
as a separator of two regions. It provides a place for mul-
tisets of objects to be processed, and supports a selective
communication between the inside and outside regions. The
multisets of objects present in different regions constitute
the configuration of the system. When a P system runs,
a set of transformations between different configurations take
place by the nondeterministic and maximally parallel appli-
cation of evolution rules. A sequence of transitions form a
computation [19].

In a "purely communicative" P system, symport and
antiport rules are generally used when two unstructured
symbol objects (a and b) pass through membranes in the
same or opposite directions, described in a mathemati-
cal form (ab, in), (ab, out) (symport), and (a, in; b, out)
(antiport) [20]. Nevertheless, it will lose effectiveness when
simulating the trans-membrane transport based on public
passages, where the protein passages of adjacent membranes
can be automatically closed to avoid the spread of toxic sub-
stances and reopen when these substances disappear. In this
process, substances are exchanged, if and only if the public
passage is open, formalized by a new rule (i↔ j) |p (swap
rule), representing that all the objects are exchanged, if and
only if there is a synapse between membrane i and j and both
membranes permit this swap operation. It can be noted that
there is no difference in computation whether one membrane
has one or more objects, thus all the objects in one non-empty
region are regarded as one symbol. There is either one or none
symbol in one membrane.

In some cases, there are restrictions on the swap process.
Given a synapse between membrane i and j, if it supports a
bidirectional transport but only one symbol can pass, the swap
operation is achieved when one membrane is empty and
another is not, denoted by (i
 j) |p (bidirectional sliding
rule); if it only supports a unidirectional transport from mem-
brane i to j, the swap operation is achieved when membrane j
is empty and i is not, denoted by (i→ j) |p or (j← i) |p (uni-
directional sliding rule) with an arrow indicating the sliding
direction.

Then, we can develop a neural P system with swap rules,
of a construct form

5 = (O, σ1, · · · , σm, syn, out) (1)

where:

1) O is a finite non-empty alphabet of symbol objects;
2) σ1, · · · , σm are membranes, of the form

σi = (ci,Ri) , 1 6 i 6 m (2)

where:

a) ci ∈ O is the symbol of membrane σi;
b) Ri is a finite set of swap rules of the general form

(i↔ j) |p, associated with σi and σj;

3) syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} is the set of links
(or synapses in P systems) among membranes;

VOLUME 8, 2020 11009

L. Xiubin et al.: Dynamic Placement Optimization for Bio-Inspired Self-Repairing Hardware

TABLE 1. Transformations from bio-inspired self-repairing hardware to P
systems.

4) out = c1c2 · · · cm is the character string in the terminal
configuration, used as calculation output.

In the system5, computation starts with an initial config-
uration. At every time unit, if a swap rule (i↔ j) |p is used,
membrane σi and σj will exchange their symbols. The use
of rules is sequential in membranes, but it is parallel from the
perspective of the system.When computation halts, the termi-
nal configuration is considered as the output result. It can be
noted that 5 obeys the object conservation law. No object is
created, modified or disappeared in the computation process.

If an extra restriction is made that every membrane con-
tains no more than one symbol in the initial configuration,
5 can be used as a universal computing model to simulate
dynamic placement and analyze the limitation of computa-
tional power of current hardware platforms (Table 1).

The following examplewill exhibit this transformation. Let
us now consider the dynamic placement process of Embryon-
ics (Fig.1 (a)). It can be simulated by an equivalent computing
model

51 = (O, σ1, · · · , σ16, syn, out) (3)

where:

O = {f1, f2, · · · , f8} ,

σi =
{
fi, (i→ i+ 4) |p

}
, i ∈ {1, 2, 3, 4} ,

σi =
{
fi, (i− 4→ i) |p, (i→ i+ 4) |p

}
, i ∈ {5, 6, 7, 8} ,

σi =
{
(i− 4→ i) |p, (i→ i+ 4) |p

}
, i ∈ {9, 10, 11, 12} ,

σi =
{
(i− 4→ i) |p

}
, i ∈ {13, 14, 15, 16} ,

syn = {(1, 5) , (5, 9) , (9, 13) , (2, 6) , (6, 10) , (10, 14) ,

(3, 7) , (7, 11) , (11, 15) , (4, 8) , (8, 12) , (12, 16)} ,

out = c1c2 · · · c16.

The structure is seen in Fig.2 (a).When a fault signal occurs
in the membrane σ2, the left three columns are activated
and a computation starts. In one step, the rules (5→ 9) |p,
(6→ 10) |p, (7→ 11) |p, (8→ 12) |p are used in a parallel
way and four objects are passed from the second column
to the third (Fig.2 (b)). In the next step, another four rules
(1→ 5) |p, (2→ 6) |p, (3→ 7) |p, (4→ 8) |p are active and
objects of the first column are passed to the second (Fig.2 (c)).
Since there is no available rule in the left three columns at the
current configuration, the computation halts.

FIGURE 2. The dynamic placement process of Embryonics can be
simulated by 51.

It is worth noting that membranes in 51 are connected
by unidirectional synapses and form four isolated groups.
Objects can only be transported along a unidirectional path
Meanwhile, no exchange occurs between different groups.
Due to weak computational power, the system 51 is not
suitable for more complex computing task.

2) COMPUTATIONAL POWER
The computational power of the system 5 can be measured
by the ergodic property. Given a system 5, if starting from
any initial configuration, 5 can go through all the possible
combinations of configuration character string,5 is ergodic.
The ergodic system has the maximal computational power.
The following part will investigate the power of the universal
model with swap rules and exhibit necessary conditions for
the ergodic property.

11010 VOLUME 8, 2020

L. Xiubin et al.: Dynamic Placement Optimization for Bio-Inspired Self-Repairing Hardware

If all the synapses in a P system support bidirectional
transport, the membrane structure can be described by an
undirected graph G = (V ,L), comprising a set V of ver-
texes together with a set L of edges [21]. The degree of
a vertex, represented by deg (v), is the number of edges
that connect to it. If a graph starts from any vertex and
can walk along the edge to any other vertex, it is said
that the graph is connected. If there exists a closed path,
which starts at one vertex, goes along non-repetitive edges
and vertexes, and returns to the starting vertex, it can be
called a circle [22]. A circle is a special connected graph.
As far as connectivity is concerned, there are two lem-
mas, which will be used in the latter computational power
theorem.
Lemma 1: Given a connected graph G = (V ,L), if a vertex

v ∈ V , of the degree deg (v) = 1, together with its own edge
e ∈ L, is removed from G, the remaining part G − v − e is
still connected.
Lemma 2: Given a connected graph G = (V ,L) and its

subgraph H ⊆ G, H is a circle, if one edge e ∈ L (H) on H
is removed, the remaining part G− e is still connected.

Then the computational power of P systems with swap
rules can be exhibited in the following result.
Theorem 1: Given a P system with swap rules 5, if it has

a connected membrane structure,5 is ergodic.
One object can be transferred to any membrane in a con-

nected structure. Nevertheless, the movement can change the
positions of other objects due to a series of swap operations.
It is necessary to protect the objects, which have been in the
right place, from adjustments. Here we give a constructive
proof.

Proof: Given a P system with swap rules 5, if it has a
connected membrane structure, for any initial configuration,
there are two steps to generate target configuration character
string. In one step, if there exists a membrane σi with only one
single link and its target symbol is T , T can be transferred to
σi by swap rules. Then σi, together with its link, is removed
from the current membrane structure. According to Lemma 1,
the remaining membrane structure is still connected. Repeat
this step, until all the membranes associated with only one
link are removed. Then go to the next step. In the next step,
given a membrane structure G with all membranes having
more than one links, there exists one circle structure, denoted
by H ⊆ G. Remove one edge of H . According to Lemma 2,
the remaining structure is still connected. Repeat this step,
until there exists a membrane with only one link. Then go to
the first step. The iteration continues until all the membranes
are removed from the structure. At this configuration, the cur-
rent configuration character string is equal to the target string
(Fig.3). Hence, 5 is ergodic.

C. DEVELOPMENT OF COMPUTING SYSTEMS
In order to overcome the limitations of current comput-
ing systems, we can introduce a new ergodic system for
dynamic placement optimization, called mesh P systems with

FIGURE 3. An example of the constructive proof. Let us consider a P
system 52, of the initial character string f5f4f1f2f6f3 and the target string
f1f2f3f4f5f6. (a) The membrane structure and initial configuration;
(b) Since the membrane σ3 and σ4 have only one link, f3 and f4 are
transferred to the target membranes and these two membranes, together
with their links, are removed from the current membrane structure;
(c) Membrane σ1σ2σ5σ6 form a circle, so a link

(
2,5

)
is removed;

(d) Since the membrane σ2 and σ5 have only one link, f2 and f5 are
transferred to the target membranes. At the current configuration,
the character string is f1f2f3f4f5f6.

bidirectional sliding rules, of a construct form:

0 = (O, σ1, · · · , σm, syn, out) . (4)

It has the same definition with the system 5, except that
each membrane is arranged on a rectangular grid and con-
nected with its nearest neighbors in its horizontal and vertical
directions (the mesh membrane structure), and all the links
support bidirectional sliding rules.

In the system5, one membrane has to simultaneously play
two roles: a requester to send swap requests and an arbiter to
select one request, leading to conflicts between swap opera-
tions. In the system 0, however, conflicts can be resolved by
the interaction of empty and non-empty membranes. For each
sliding task bound to a non-empty membrane σn, there are
three basic statuses: waiting, ready, and executing. If there is
no adjacent empty membrane, σn stays in waiting status with
all the computations paused. When one neighbor σe is empty,
σn turns into ready status and is endowed with time slices to
send a request to σe. If σe accepts the swap request, σn turns
into executing status and slides its object to σe. If rejected,
σn returns to the waiting status and waits for another empty
neighbor. In order to ensure a fair task scheduling, a ran-
dom selection is made in the arbitration process of empty
membranes. Besides, the uncertain moving paths of empty
membranes also provides "executing" opportunities for as
many sliding operations as possible.

Though endowed with a connected structure, 0 can not
always have an equivalent computational power to system5.
A famous example is ‘‘14-15 Puzzle’’, which originated from
the 15 Puzzle [23]. 15 Puzzle is a kind of sliding puz-
zles, which challenge players to solve the puzzle in a two-
dimensional world. Initially, there are 15 pieces placed in a
4× 4 square frame with an empty space on the bottom right.
Only sliding moves that use the empty space are allowed in

VOLUME 8, 2020 11011

L. Xiubin et al.: Dynamic Placement Optimization for Bio-Inspired Self-Repairing Hardware

FIGURE 4. Sliding rules can simulate any swap rule in a 2× 2 mesh
structure. For example, in order to simulate the swap rule

(
1↔ 2

)
|p in

the initial configuration, there are three steps. Step 1:
(
2→ 4

)
|p; Step 2:(

1→ 2
)
|p,

(
3→ 4

)
|p; Step 3:

(
4→ 1

)
|p.

the game. Then it is impossible to get a new configuration
with only piece 14 and 15 exchanged.

Experiments have shown that "14-15 Puzzle" can be
solved, if there are two empty spaces. Then we will verify
these experiments in the computational power theorem of the
system 0.
Theorem 2. Given a mesh P system with bidirectional

sliding rules 0, 0 has a m × n mesh membrane structure,
m > 2, n > 2, if there exists at least two empty membranes,
0 is ergodic.

It has been verified that swap rules can generate arbitrary
character string in a connected structure. If sliding rules can
simulate swap rules, theorem 2 is proved.

Proof: Let’s begin with a P system 01 with a 2 × 2
mesh membrane structure and two empty membranes. As is
shown in Fig.4, there are four swap rules at most: (1↔ 2) |p,
(2↔ 3) |p, (3↔ 4) |p, (4↔ 1) |p. By simple experiments,
each swap rule can be simulated by sliding rules. So the
theorem is established, when m = 2 and n = 2.
Then we will verify the conclusion in a P system 02 with a

m× n mesh membrane structure and two empty membranes,
m > 2, n > 2. Given a horizontal swap rule, denoted by
(i→ j) |p, 1 6 i, j 6 mn, associated with membrane σi and
its horizontal neighbor σj, the two empty regions can move
along a snaking path by sliding rules until they reach to one
side of membrane σi and σj (Fig.5(a)). At this time, the two
empty membranes, together with membrane σi and σj, can
construct a 2 × 2 membrane cluster similar to 01 (Fig.5(b)).
In this cluster, two symbols can be exchanged with sliding
rules. Then, two empty regions return to the initial positions
along the same snakelike path. In the current configuration,
only membrane σi and σj exchange their symbols and the
others keep unchanged, thus the horizontal swap rule is sim-
ulated by sliding rules. In a similar way, vertical swap rules
can be simulated by transposing system 02. So the theorem
is established, when m > 2, n > 2.

FIGURE 5. Given a system 02 with more membranes, a horizontal swap
rule

(
4↔ 5

)
|p can be simulated by sliding rules. (a) The initial

configuration and a snaking moving path. (b) Empty regions move along
the snaking path until membrane σ4 and σ5, together with membrane σ8
and σ9, construct a 2× 2 cluster. In this cluster,

(
4↔ 5

)
|p can be

simulated by sliding rules.

III. ALGORITHM DESIGN
Limited by online computing resources and distributed archi-
tecture, wire length driven placement models and simu-
lated annealing algorithms, which are often used in the
offline placement, can hardly be applied on bio-inspired self-
repairing hardware. Hence, the optimization model and strat-
egy are developed to improve the quality of placements. The
membrane optimization algorithm is proposed to achieve an
optimal placement from a fault one.

A. OPTIMIZATION MODEL AND STRATEGY
1) SOME DEFINITIONS
In mathematics, placement is an injective mapping from the
object set to the membrane set, denoted by

β : O→ {σ1, · · · , σm} . (5)

Correspondingly, the global placement is denoted by β (O);
the local placement of an object set F ⊂ O is denoted by
β (F); the mapping membrane of an object fi ∈ O is denoted
by β (fi).
Given any mesh or quasi mesh membrane structure µ

where a neighbor of one membrane can only be placed on the
vertical or horizontal direction, if only translational motion
is supported by the coordinate system, µ can be represented
by a matrix. The number of row and column vectors is equal
to the length and width of the minimum enclosing rectangle
of µ. If there is a membrane arranged on one rectangular
grid, the corresponding position of the matrix is denoted by 1,
otherwise, the position is 0 (Fig.6). Two membrane structure
are equal if and only if their matrix representations are the
same.

Given two placements with the same membrane structure,
(βA and βB), for an object fi in βA, if fi also exists in βB,
the object displacement of fi between βA and βB, denoted
by d (βA (fi) , βB (fi)), is calculated by the Manhattan dis-
tance between two points (βA (fi) , βB (fi)) in the same matrix

11012 VOLUME 8, 2020

L. Xiubin et al.: Dynamic Placement Optimization for Bio-Inspired Self-Repairing Hardware

FIGURE 6. Matrix representation of the quasi mesh membrane structure.

representation; if fi does not exist in βB, d (βA (fi) , βB (fi))
is equal to the semi-perimeter of the minimum enclosing
rectangle.

The distance between two placements (βA and βB) can be
calculated by the sum of object displacements

d (βA, βB) =
k∑
1

d (βA (fi) , βB (fi)) . (6)

2) OPTIMIZATION MODEL
Given a P system 0, the dynamic placement optimization
process starts from an arbitrary initial placement βinit , goes
through many configuration transitions, and ends with an
optimal placement βopt that is close to the best placement
βtar in a fault-free system. Since objects can not be arranged
in fault membranes, βopt is generally not equal to βtar , but
they are close enough for βopt to inherit optimization perfor-
mances of βtar .

The system optimization model can be denoted by

min d
(
βopt (O) , βtar (O)

)
(7)

subject to

βopt (O) ∈ U (βtar (O)) (8)

where U (βtar (O)) is the neighborhood of βtar (O).
Furthermore, system 0 has natural parallelism and the

overall optimization task should be divided into many sub-
tasks to be executed in different membranes [24], [25]. The
task allocation method in this paper can be described in the
following way. Given an object set O = {f1, f2, · · · , fk}, O
can be divided into k parts O = ∪ki=1Oi, each of which,
denoted by Oi, contains at least two elements where one ele-
ment is fi. Then, the optimization task can be correspondingly
divided into k subtasks, each of which establishes a mapping
from one subset of O to a few membranes.

Similarly, the optimization model of one subtaskOi can be
denoted by

min d
(
βopt (Oi) , βtar (Oi)

)
(9)

subject to

βopt (Oi) ∈ U (βtar (Oi)) (10)

where U (βtar (Oi)) is the neighborhood of βtar (Oi).

3) OPTIMIZATION STRATEGY
Placement optimization is a kind of NP-hard combination
optimization problem. It takes superpolynomial time of the
input size to achieve the exact solution. However, for online
applications, it is important to get a solution in a given time,
even though the solution may not be the best [26]. Hill
climbing is an optimization technique that belongs to the
local search family. It can speed up the searching process.
Starting with arbitrary feasible solution, hill climbing can
generate iteratively incremental improvements by moving
from current solution to a better one. It keeps running when
no further improvements are possible or a given deadline is
reached [27].

Given a membrane together with its object fi, it should
decide whether fi in another membrane is better than that in
its own one, according to the following equation

δ = d (βcurr (Oi) , βtar (Oi))− d (βnext (Oi) , βtar (Oi)) (11)

where βcurr (Oi) and βnext (Oi) are the current and next
placements of the subtask Oi, respectively. If δ > 0, two
membranes exchange their objects, otherwise, the system
maintains the current placement.

B. MEMBRANE OPTIMIZATION ALGORITHM
From macro perspectives, system 0 works as a synchronous
system and there are two stages in our membrane optimiza-
tion optimization algorithm. The first stage starts when one
non-empty membrane turns into the fault state. In this stage,
all the empty membranes converge towards the fault mem-
brane until the fault one transmits its object to another fault-
free one. In the second stage, objects change their positions
between different membranes and configurations are evolved
by iterative improvements. The second stage ends when
exceeding the maximum number of iterations. In order to
reduce the amount of calculation and speed up the searching
process, hill climbing strategy is used in the algorithm.

From micro perspectives, the computation is made up of a
number of sliding operations. There are three kinds of mem-
branes: non-empty membranes, fault empty membranes, and
fault-free empty membranes. In one sliding process, the non-
emptymembrane sends a request to one of its fault-free empty
neighbors. If its neighbor responds that request, the non-
empty membrane will transmit its object to its neighbor.
If rejected, it will wait for the next cycle. In this process,
fault empty membranes do not participate in any activities.
Then we will discuss the decision process of fault-free empty
membranes and non-empty membranes and the membrane
optimization algorithm is shown in Algorithm1.

Given a fault-free empty membrane σj, if it receives several
swap requests, σj will randomly choose one swap candidate
among all the requests and carry out the swap operation with
this candidate.

Given a non-empty membrane σi associated with a symbol
fx , it needs some extra information to make a decision. In the
first stage, σi chooses a fault-free empty neighbor on the
opposite direction of the fault membrane σf . For example,

VOLUME 8, 2020 11013

L. Xiubin et al.: Dynamic Placement Optimization for Bio-Inspired Self-Repairing Hardware

Algorithm 1Membrane optimization algorithm
Initialization rounds is the number of iterations,
an integer, initially 0.
For each membrane σi, run these codes synchronously,
when a membrane turns into fault non-empty state:
while rounds < thresholdr do

Step 1 the message function can be defined as:
if σi is non-empty then

acquire local configuration information;
choose a fault-free empty neighbor;
send Request messages;

end
else

wait until receiving Request messages;
randomly choose a Request;
establish a lock with that neighbor;

end
Step 2 the swap function can be defined as:
if locked then

swap objects with its locked neighbor;
unlock with its neighbor;

end
Step 3 the stage transformation function is defined
as:
if swapped and fault then

broadcast message;
end
if broadcast then

go to the second stage;
end
rounds = rounds+ 1;

end

if σf is on the upper right side of σi, σi will choose a fault-
free empty neighbor on its lower or left side; if σf is itself
σi, σi will choose a fault-free empty neighbor on any side.
In the second stage, σi should decide whether its symbol fx in
another membrane is better than that in its own one and select
the best place with the minimum δ in the equation 11.

IV. EXPERIMENTAL RESULTS
In this section, optimization performances and the calculation
amount of membrane optimization algorithms are verified
and analyzed. Dynamic placement performances of the pro-
posed approach are exhibited and identified by a compari-
son with those of Embryonics, Yang’s system, and Szasz’s
system.

A. FUNCTIONAL VERIFICATION
The benchmark "alu4" from MCNC20 is used as the target
circuits to be implemented on the proposed computing sys-
tem. This benchmark, initially with approximate 934 netlist
primitives, is packaged into 106 CLB blocks, 22 I/O blocks,
and 685 nets by technology mapping and packing. CLB

FIGURE 7. The comparison of initial and terminal placement in the P
system 0. 0 has 10× 12 membranes (denoted by squares with a grey
color for fault-free and black for fault) surrounded by two columns of I/O
(denoted by circles). Offline placement optimization algorithms are used
for the initial placement of CLB and I/O blocks (denoted by a number,
respectively) and the membrane optimization algorithm is used for
dynamic placement optimization. (a) Initial configuration. (b) Terminal
configuration.

blocks are logic elements, which can be connected with other
resources via interconnects, while I/O blocks are generally
located around the perimeter with fixed pads to connect exter-
nal circuitry. We will use a P system 0 with a 10× 12 mesh
structure to simulate the dynamic placement process of CLB
blocks, each of which can be regarded as a symbol object.
The initial placement βinit , also used as the target placement
βtar , is generated by wire length driven simulated annealing
algorithms (Fig.7 (a)).

The system 0 starts working when a fault signal is
inserted into one randomly selected non-empty membrane.
A swap decision is made by a comparison between the target
and current local placement in a 5 × 5 rectangular area.

11014 VOLUME 8, 2020

L. Xiubin et al.: Dynamic Placement Optimization for Bio-Inspired Self-Repairing Hardware

FIGURE 8. The entire computation process of 0 with a comparison of
placement distance, wire length, and sliding operation number in every
configuration. The pentagram refers to the configuration when a fault
signal is inserted into the system.

When the computation halts, another membrane is succes-
sively set to fault state and 0 restarts the computing. This
process goes on until all the empty membranes are used up
(Fig.7 (b)).

There are 14 empty membranes in the initial placement
and 14 faults are inserted into the system. The entire com-
putation process is shown in Fig.8. At each configuration,
the placement distance (d (βcurr , βtar)), the total wire length
based on the semi-perimeter model, and the number of sliding
operations are calculated and counted.

When a fault signal is inserted, the placement difference
increases first, then decreases, presenting like a "reverse
V" and corresponding to two stages in the membrane opti-
mization algorithm (Fig.8(a)). The local maximum, repre-
senting the end configuration of the first stage, changes
without regularity. It indicates that fault positions are chosen
randomly. The local minimum, representing the end configu-
ration of the optimization stage, shows a gradually increasing
trend. It identifies that the optimization performances are
related with the number of faults (or the number of empty
membranes). The system usually goes through a big drop
in the optimization stage, however, in the last three fault
insertion experiments, the curve decreases with a very small
decline, representing that the optimization performances at

these configurations are weak. It indicates that the optimiza-
tion performances will make a rapid decline when there are
only a few empty membranes.

Let us make a comparison between the placement distance
and wire length (Fig.8(b)), which are used as the cost value
in the proposed approach and offline placement algorithms.
These two curves are highly similar (the correlation coeffi-
cient is 0.9907), indicating that the placement distance can
be used as a measure for circuit performances.

There are 118 configurations and 556 sliding operations
in the entire computation process (Fig.8(c)). In one fault
insertion experiment, there are nearly 40 sliding operations in
average. Compared with offline placement, the optimization
can be achieved rapidly with a reduction of the amount of
calculation. In addition, the system 0 has parallel power,
which is related with the number of empty membranes. The
parallelism can reduce the computing time and accelerate the
computing speed.

B. PERFORMANCE COMPARISON AND ANALYSIS
In order to exhibit the dynamic placement performance of the
proposed approach, denoted by 0, a comparison is made with
Embryonics, Yang’s hardware, and Szasz’s hardware. Based
on neural P systems with swap rules, the equivalent comput-
ing systems of different hardware (5Embry,5Yang, and5Szasz,
respectively) are designed to guarantee that each system can
implement benchmark "alu4" and make a recovery from no
less than 14 faults.

In the system5Embry, a 36×5 membrane structure is used
to reduce the consumption of membranes in dynamic place-
ment. All the membranes in the same horizontal direction
are connected by unidirectional synapses, forming a chain
structure, while isolated in the vertical direction. Symbol
objects are initially placed at the left part of the system to
maximize fault tolerant ability, and I/O blocks are located on
the upper side for convenience of rerouting (Fig.9 (a)).

In the system5Yang, the number of membranes is twice the
number of objects, so a 12×18meshmembrane structurewith
unidirectional synapses is used. Symbol objects are initially
arranged in different membranes with a staggered fashion
and I/O blocks are located on both sides of these membranes
(Fig.9 (b)).

System 5Szasz is made up of 24 isolated clusters arranged
on a 6 × 4 rectangular grid with I/O blocks located on
both sides of the system. In one cluster containing 3 × 3
membranes, 4 membranes on four sides are interconnected
by bidirectional synapses, and other 5 used for initial object
placement connect to these 4 by unidirectional synapses
(Fig.9 (c)).

The initial configurations of four systems are compared
in Table 2 with the following items:

1) nt – total membrane number;
2) ninit – number of membranes used for storing objects

in the initial placement;
3) nsub – number of membranes used for substitution;
4) nfr – maximal fault recovery number;

VOLUME 8, 2020 11015

L. Xiubin et al.: Dynamic Placement Optimization for Bio-Inspired Self-Repairing Hardware

FIGURE 9. Membrane structure and initial placements for (a) 5Embry , (b) 5Yang, and (c) 5Szasz . Membranes are denoted by squares with a grey
color for initial placement and white for substitution, and I/O blocks are denoted by circles.

TABLE 2. Comparison of initial configurations between four computing
systems.

5) wire – total wire length calculated by the semi-
perimeter model.

System 5Embry, 5Yang, and 5Szasz are all based on uni-
directional sliding rules. Since moving direction is unidirec-
tional, there is only one single path for object transport and
the movement of one object is generally restricted. In some
cases, these systems may lose effectiveness, even though
there are many remaining empty membranes. Meanwhile, all
the membranes are classified by unidirectional sliding rules
into two groups: one is on the starting point of sliding rules
and used for storing objects in the initial placement; another is
on the terminal point and for substituting the fault. Thus, there
are a number of empty membranes in the initial placement,
leading to large resource consumption.

On the contrary, since two membranes are equal in bidi-
rectional sliding rules, the system 0 can support a compact
initial placement with fewer membranes. One object can
move to any other membrane in a connected structure and
many feasible paths are provided for object transport. So fault

FIGURE 10. Comparison of the wire length between four computing
systems (5Embry , 5Yang, 5Szasz , and 0).

substitution can be achieved by non-adjacent membranes.
The system will, ideally, keep going until all the empty mem-
branes are used up. As a result, the system 0 can reduce the
resource consumption and improve design flexibility.

In dynamic placement, 14 randomly selected faults are
inserted into different systems. The total wire length is cal-
culated when each fault is recovered. As is shown in Fig.10,
the wire length curve of 5Embry has a low starting point,
indicating that 5Embry has a compact initial placement.
However, the curve shows a rapid increasing trend, leading to
poor circuit performances in several self-repairing processes.
The wire length curves of5Yang and5Szasz are approximately
horizontal, representing stable performances in a long term.

11016 VOLUME 8, 2020

L. Xiubin et al.: Dynamic Placement Optimization for Bio-Inspired Self-Repairing Hardware

Nevertheless, the starting points are high, so these systems
have loose initial placements and their resource consump-
tion is large. Compared with these three curves, the wire
length curve of 0 has the lowest starting point and increases
slightly in the following process. It indicates that0 can reduce
resource consumption andmaintain good performances in the
long term.

V. CONCLUSION
The purpose of this paper was to study dynamic placement
optimization for bio-inspired self-repairing hardware. The
investigations concentrated on computing systems and dis-
tributed optimization algorithms. A computing model based
on P systems was built to simulate dynamic placement of
different platforms. The computational power was analyzed
to provide necessary conditions for placement optimization.
An improved computing system, called a mesh P system
with bidirectional sliding rules, was developed for dynamic
placement optimization. Its computational power has been
verified by a constructive proof. Moreover, an optimiza-
tion model based on placement distance was developed and
discussed. An membrane optimization algorithm based on
hill climbing was proposed for a reduction of the calcula-
tion amount. Experimental results showed that the proposed
approach can reduce resource consumption and maintain
good performances.

One concern needing further research is dynamic routing
optimization. Also we will continue to improve optimization
algorithms and design hardware structure tomeet engineering
demands.

REFERENCES
[1] Q. Zhuo, Y. Qian, Y. Li, and N. Wang, ‘‘Development of configurations

for lookup table–based embryonics using graphic mapping: A case study,’’
Adv. Mech. Eng., vol. 7, no. 7, Jun. 2015, Art. no. 168781401559253.

[2] Q. Zheng, J. Cui, W. Lu, H. Guo, J. Liu, X. Yu, Y. Wei, L. Wang, J. Liu,
C. He, and Q. Guo, ‘‘The increased single-event upset sensitivity of 65-nm
DICE SRAM induced by total ionizing dose,’’ IEEE Trans. Nucl. Sci.,
vol. 65, no. 8, pp. 1920–1927, Aug. 2018.

[3] S. Abba and J.-A. Lee, ‘‘Bio-inspired self-aware fault-tolerant
routing protocol for network-on-chip architectures using particle
swarm optimization,’’ Microprocessors Microsyst., vol. 51, pp. 18–38,
Jun. 2017.

[4] I. Yang, S. H. Jung, and K.-H. Cho, ‘‘Self-repairing digital system based
on state attractor convergence inspired by the recovery process of a living
cell,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2,
pp. 648–659, Feb. 2017.

[5] T. Wang, J. Cai, and Y. Meng, ‘‘A novel embryonics electronic cell
array structure based on functional decomposition and circular removal
self-repair mechanism,’’ Adv. Mech. Eng., vol. 9, no. 9, Sep. 2017,
Art. no. 168781401772008.

[6] D. Mange, E. Sanchez, A. Stauffer, G. Tempesti, P. Marchal, and C. Piguet,
‘‘Embryonics: A new methodology for designing field-programmable
gate arrays with self-repair and self-replicating properties,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 6, no. 3, pp. 387–399,
Sep. 1998.

[7] Z. Qingqi, Q. Yanling, L. Yue, W. Nantian, and L. Tingpeng, ‘‘Embryonic
electronics: State of the art and future perspective,’’ in Proc. IEEE 11th Int.
Conf. Electron. Meas. Instrum., Aug. 2013, pp. 140–146.

[8] H. Liang, S. Sinha, and W. Zhang, ‘‘Parallelizing hardware tasks on
multicontext FPGA with efficient placement and scheduling algorithms,’’
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 37, no. 2,
pp. 350–363, Feb. 2018.

[9] A. Kamaleldin, A. Mohamed, A. Nagy, Y. Gamal, A. Shalash, Y. Ismail,
and H. Mostafa, ‘‘Design guidelines for the high-speed dynamic partial
reconfiguration based software defined radio implementations on Xilinx
Zynq FPGA,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017,
pp. 1–4.

[10] G. Paun and G. Rozenberg, ‘‘A guide to membrane computing,’’ Theor.
Comput. Sci., vol. 287, no. 1, pp. 73–100, Sep. 2002.

[11] Y. Thoma, G. Tempesti, E. Sanchez, and J.-M.-M. Arostegui, ‘‘POEtic:
An electronic tissue for bio-inspired cellular applications,’’ Biosystems,
vol. 76, nos. 1–3, pp. 191–200, Aug. 2004.

[12] A. Stauffer and J. Rossier, ‘‘Self-testable and self-repairable bio-inspired
configurable circuits,’’ in Proc. NASA/ESA Conf. Adapt. Hardw. Syst.,
Jul. 2009, pp. 155–162.

[13] P. Lala and B. Kumar, ‘‘Human immune system inspired architecture for
self-healing digital systems,’’ in Proc. Int. Symp. Quality Electron. Design,
Jun. 2003, pp. 292–297.

[14] I. Yang, S. H. Jung, and K.-H. Cho, ‘‘Self-repairing digital system
with unified recovery process inspired by endocrine cellular communica-
tion,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 6,
pp. 1027–1040, Jun. 2013.

[15] C. Szasz and A. Cioloca, ‘‘Two-layer coarse-fine-grid network model for
bio-inspired computing systems development,’’ in Proc. 17th Int. Conf.
Syst. Theory, Control Comput. (ICSTCC), Oct. 2013, pp. 515–520.

[16] J. Soto, J. Manuel Moreno, and J. Cabestany, ‘‘A self-adaptive hardware
architecture with fault tolerance capabilities,’’ Neurocomputing, vol. 121,
pp. 25–31, Dec. 2013.

[17] M. Samie, G. Dragffy, A. Popescu, T. Pipe, and J. Kiely, ‘‘Prokaryotic bio-
inspired system,’’ in Proc. NASA/ESA Conf. Adapt. Hardw. Syst., Jul. 2009,
pp. 171–178.

[18] S. Kim, H. Chu, I. Yang, S. Hong, S. H. Jung, and K.-H. Cho, ‘‘A hierar-
chical self-repairing architecture for fast fault recovery of digital systems
inspired from paralogous gene regulatory circuits,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 20, no. 12, pp. 2315–2328, Dec. 2012.

[19] K. G. Subramanian, R. Saravanan, M. Geethalakshmr, P. H. Chandra, and
M. Margenstern, ‘‘P systems with array objects and array rewriting rules,’’
Prog. Natural Sci. Mater. Int., vol. 17, no. 4, pp. 479–485, Apr. 2007.

[20] B. Song, C. Zhang, and L. Pan, ‘‘Tissue-like P systems with evolutional
symport/antiport rules,’’ Inf. Sci., vol. 378, pp. 177–193, Feb. 2017.

[21] R. Diestel, ‘‘Graph theory,’’Math. Gazette, vol. 173, no. 502, pp. 67–128,
2011.

[22] F. Gavril, ‘‘Algorithms for a maximum clique and a maximum independent
set of a circle graph,’’ Networks, vol. 3, no. 3, pp. 261–273, 1973.

[23] A. Archer, ‘‘The 15 puzzle: How it drove the world crazy,’’ Math. Intelli-
gencer, vol. 29, no. 2, pp. 83–85, Mar. 2007.

[24] N. Chatterjee, S. Paul, and S. Chattopadhyay, ‘‘Task mapping and schedul-
ing for network-on-chip based multi-core platform with transient faults,’’
J. Syst. Archit., vol. 83, pp. 34–56, Feb. 2018.

[25] W. Housseyni, O. Mosbahi, M. Khalgui, Z. Li, L. Yin, and M. Chetto,
‘‘Multiagent architecture for distributed adaptive scheduling of reconfig-
urable real-time tasks with energy harvesting constraints,’’ IEEE Access,
vol. 6, pp. 2068–2084, 2018.

[26] M. J. Alexander, J. P. Cohoon, J. L. Ganley, and G. Robins, ‘‘Placement and
routing for performance-oriented FPGA layout,’’ VLSI Des., vol. 7, no. 1,
pp. 97–110, Jan. 1998.

[27] A. R. Yıldız, ‘‘An effective hybrid immune-hill climbing optimization
approach for solving design and manufacturing optimization problems in
industry,’’ J. Mater. Process. Technol., vol. 209, no. 6, pp. 2773–2780,
Mar. 2009.

LIU XIUBIN was born in Hegang, China, in 1990.
He received the B.S. and M.S. degrees from
the National University of Defense Technology
(NUDT), Changsha, China, in 2013 and 2015,
respectively, where he is currently pursuing the
Ph.D. degree with the Laboratory of Science and
Technology on Integrated Logistics Support. His
research interests include health management and
self-repairing hardware.

VOLUME 8, 2020 11017

L. Xiubin et al.: Dynamic Placement Optimization for Bio-Inspired Self-Repairing Hardware

QIAN YANLING received the B.S., M.S., and
Ph.D. degrees from the National University of
Defense Technology (NUDT), Changsha, China,
in 1995, 1998, and 2002, respectively. He is cur-
rently a Full Professor with the Laboratory of
Science and Technology on Integrated Logistics
Support, NUDT. His research interests include
integrated logistics support, data-driven prognos-
tics and health management, and system reliability
for equipment.

FENG XIANGLI was born in Erdos, China,
in 1995. He received the B.S. degree from the
College of Mechanical and Electrical Engineer-
ing, Central South University, Changsha, China,
in 2017. He is currently pursuing the M.S. degree
with the Laboratory of Science and Technology
on Integrated Logistics Support, National Univer-
sity of Defense Technology. His research interest
includes self-repairing hardware.

ZHUO QINGQI was born in Xiamen, China,
in 1985. He received the B.S., M.Sc., and Ph.D.
degrees from the National University of Defense
Technology (NUDT), Changsha, China, in 2008,
2010, and 2015, respectively. His research interest
includes failure analysis and health management
for equipment.

LI YUE received the M.S. and Ph.D. degrees from
the National University of Defense Technology
(NUDT), in 1993 and 2007, respectively. He is cur-
rently a Full Professor with NUDT. His research
interests include condition monitoring and fault
diagnosis, bio-inspired self-repairing technology,
and reliability testing and evaluating.

11018 VOLUME 8, 2020

