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ABSTRACT Resource-intensive applications on smart vehicles is posing difficulties to the use of traditional
cloud computing for computation offloading in vehicular networks. In particular, the long transmission
distance between the vehicles and the cloud center can cause high latency and poor reliability which may
degrade application performance and quality of service. As an integration of mobile edge computing and
vehicular networks, vehicular edge computing is a promising paradigm that aims to improve vehicular
services by performing computation offloading in close proximity to vehicles. In this paper, the task
offloading algorithm that efficiently optimizes task delay and computing resource consumption inmulti-user,
multi-server vehicular edge computing scenarios is studied. The offloading algorithm not only determines
where the tasks are performed, but also indicates the execution order of the tasks on the server. In order
to reduce the time complexity, this paper proposes a hybrid intelligent optimization algorithm based on
partheno genetic algorithm and heuristic rules. Extensive simulations are conducted, and the results show that
compared with the baseline algorithms, the proposed algorithm effectively improves the offloading utility
of the VEC system and is suitable for task offloading in various situations.

INDEX TERMS Computation offloading, Internet of Things, mobile edge computing, task scheduling,
vehicular networks.

I. INTRODUCTION
With the development of the Internet of Things (IoT) and
wireless technologies, cutting edge applications such as traf-
fic cognition, automatic driving and augmented reality are
emerging — aimed at improving the efficiency and safety of
transportation systems. One of the key challenges posed by
these new class of futuristic applications is their requirement
to analyze large volumes of data to make appropriate and
timely decisions [1]. This entails tremendous demand for
computing power, a major challenge to the limited comput-
ing resources on vehicles. In recent years, cloud computing
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has been used, wherein the resource-consuming tasks are
offloaded to a powerful cloud center which performs all the
necessary computation and returns the results to vehicles [2].
At present, cloud computing is still the mainstream offload-
ing method to alleviate the heavy computational burden on
vehicles. However, the long transmission distance between
the vehicles and the cloud center can cause high latency and
poor reliability which may degrade application performance
and quality of service. Moreover, extensive offloading may
result in backbone network congestion [3].

The drawbacks of cloud computing in the context of com-
putation offloading have led to the introduction of mobile
edge computing (MEC). Unlike cloud computing where the
cloud servers are placed far away from mobile users, MEC
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migrates the computing resources to the edge of radio access
networks. Themobile users’ computation tasks are performed
by local MEC servers, thereby avoiding delay fluctuations
and capacity limitations of the transmissions on backhaul net-
works. Furthermore, MEC can provide personalized services
based on surrounding contextual information, and its network
resource allocation can be optimized [4].

Vehicular edge computing (VEC) is a promising comput-
ing paradigm that combines MEC and vehicular networks.
In VEC networks, lightweight MEC servers are deployed
along with infrastructure like road side units (RSUs) [5].
Thus, the quality of vehicular service can be greatly enhanced
by offloading computation-intensive applications from the
resource-constrained vehicles to the MEC servers. The effi-
ciency of an edge computing network depends on the compu-
tation task offloading algorithm it employs. Although several
excellent works have been proposed on task offloading in
MEC networks, research on VEC networks is still sparse.

In this paper, we consider a VEC scenario in which mul-
tiple adjacent MEC servers provide computation offloading
services for passing vehicles, and each server needs to serve
multiple vehicles. Then we study the task offloading algo-
rithm in this scenario. Usually, the tasks of different users are
independent of each other. Based on this, we give a new per-
spective that is different from previous studies, that is, the task
offloading algorithm here not only determines whether a task
is offloaded and which MEC server performs the task, but
also determines the order in which the tasks are executed by
the MEC server. In addition, the algorithm comprehensively
considers the costs of both the supplier and demander, that
is, the task delay of the vehicles and the computing resource
consumption of the MEC servers, in order to achieve the
optimal system offloading utility.

The main contributions of this paper are summarized as
follows:
(i) We construct the task offloading model for multi-user,

multi-server VEC scenarios and define the offloading
utility of the vehicles, which consists of task delay and
computing resource consumption;

(ii) We formulate the joint offloading decision and task
scheduling problem as a mixed integer non-linear pro-
gramming problem with the goal of maximizing the
system offloading utility;

(iii) We propose a hybrid intelligent optimization algorithm
that combines partheno genetic algorithm (PGA) and
heuristic rules to obtain an approximate optimal solution
to the problem with low time complexity;

(iv) Extensive simulations are conducted and the results
prove the accuracy of the proposed algorithm. Compared
with the baseline algorithms, the algorithm effectively
improves the offloading utility of the VEC system and
is suitable for task offloading in various situations.

The remainder of this paper is organized as follows: In
Section II, we provide an overview of the related work.
In Section III, we present the VEC system architecture and
the formulation of the task offloading problem. In Section IV,

we introduce a hybrid intelligent optimization algorithm
based on PGA and heuristic rules. In SectionV, we present the
results and analysis of the performance evaluation and finally
in Section VI, we conclude the paper.

II. RELATED WORK
By deploying computing and storage resources at the edge
of radio access networks, MEC can handle delay-sensitive
and computation-intensive applications. As one of the most
important problems inMEC, task offloading optimization has
been investigated from different perspectives. Dinh et al. [6]
studied the computational offloading from a single mobile
device to multiple edge devices. They proposed a framework
that minimizes the tasks’ execution latency and the mobile
device’s energy consumption, by jointly optimizing the task
allocation decision and the mobile device’s central process
unit (CPU) frequency. Wang et al. [7] studied the joint opti-
mization of computation offloading decision, resource alloca-
tion and content caching in heterogeneous wireless cellular
networks with MEC, and applied an alternating direction
method of multipliers-based distributed solution to tackle this
problem. Tran and Pompili [8] studied the joint optimization
of task offloading decision, users’ uplink transmission power,
and MEC servers’ computing resource allocation in a multi-
cell MEC network. They addressed the resource allocation
problem using quasi-convex and convex optimization tech-
niques, and proposed a heuristic algorithm to solve the task
offloading problem. Xu et al. [9] studied an energy harvesting
MEC system that makes offloading and edge server provi-
sioning decisions based on unique information such as avail-
able battery power and anticipated renewable power arrival.
They proposed a post-decision state based reinforcement
learning algorithm to learn on-the-fly the optimal offloading
and auto-scaling policy. Yu et al. [10] considered a scenario
where multiple mobile users offload duplicated tasks to the
edge server and share the computation results. They proposed
a fine-grained collaborative offloading strategy with caching
enhancement scheme to minimize the execution delay of
mobile users. Chen et al. [11] investigated computation peer
offloading in MEC-enabled small-cell networks. They pro-
posed a online peer offloading framework to maximize the
long-term system-wide performance under limited energy
resources committed by individual small-cell base stations.
However, these works are mainly aimed at scenarios where
the users are stationary or moving slowly within a relatively
small area, without considering the impact of mobility on the
users’ MEC server selection.

As a special case of data offloading in vehicular networks,
there have been some works on task offloading in VEC.
Zhou et al. [12] focused on reducing the completion time
of virtual reality (VR) application in vehicular networks.
They divided the VR task into two sub-tasks so that the
vehicle can be engaged in task computation with the MEC
server. Then they proposed an algorithm to jointly opti-
mize the offloading proportion, communication resource and
computation resource allocation. Cui et al. [13] proposed
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FIGURE 1. Vehicular edge computing system architecture.

a multi-platform intelligent offloading and resource alloca-
tion algorithm. They use the K -nearest neighbor algorithm
to determine the suitable task offloading platform and use
the reinforcement learning algorithm to solve the resource
allocation problem. Qi et al. [14] proposed a knowledge-
driven service offloading framework by exploring a deep
reinforcement learning model. The framework considers the
future data dependency of the following tasks when making
a decision for a current task, so that the optimal offloading
policy can be obtained directly from the environment without
complicated computation. Dai et al. [15] proposed integrat-
ing load balancing with offloading in VEC networks, and
developed a low-complexity algorithm to jointly optimize
server selection, offloading ratio, and computation resource.
Liu et al. [16] studied the task offloading problem from a
matching perspective. They treated the vehicles and the RSUs
as the two sides of a matching problem, transforming the
offloading problem into one-to-one matching and matching
with quota, respectively. Then they proposed a matching-
based task offloading algorithm to minimize the network
delay. Sun et al. [17] studied the task offloading among
vehicles, i.e., the tasks of some vehicles are offloaded to
other vehicles. They proposed an adaptive learning-based
task offloading algorithm based on multi-armed bandit the-
ory, which enables vehicles to learn the delay performance of
their neighboring vehicles in a distributed manner. However,
the above mentioned works focus on minimizing the cost of
task delay from the perspective of the vehicle, and neglect the
cost of the computing resource provider.

Over this background, this paper studies the task offloading
algorithm for a VEC scenario in which multiple adjacent
MEC servers provide computation offloading services for
moving vehicles. Different from previous works that allocate
computing resources in a coarse-grained manner, this paper
takes the execution order of tasks on the MEC server into
consideration, and jointly optimizes the offloading decision
and task scheduling. In addition, the optimization objective

of this paper takes into account the different needs of both
the supplier and demander, i.e., the task delay of the vehicles
and the computing resource consumption of theMEC servers.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION
In this section, we first introduce the VEC system architec-
ture. Then we present the task offloading model and formu-
late the task offloading problem.

A. SYSTEM ARCHITECTURE
As illustrated in Fig. 1, we consider a VEC system
where MEC servers are deployed on adjacent RSUs. With
massive multiple-input multiple-output (MIMO) technol-
ogy [18] [19], the RSUs can exchange data with multiple
vehicles at the same time. The MEC servers have moderate
computing capabilities and can only serve one computation
task at a time. The MEC servers can communicate with the
vehicles through the wireless channels of the RSUs to provide
computation offloading services. For ease of presentation,
each MEC server and its connected RSU is defined as a
service node.

These distributed infrastructures can provide low-latency
and ubiquitously available computation offloading services
for the vehicles. However, these infrastructure are heteroge-
neous. The MEC servers have different computing capabil-
ities, and the RSUs have different wireless coverage areas
due to the assortment of radio power and communication
environment. In order to efficiently utilize network resources
and improve system performance, a software defined net-
work (SDN) architecture is employed to support cooperation
between the infrastructures. The data plane includes the radio
access networks and the underlying infrastructure. A virtual
machine is deployed on each MEC server, and together they
form the control plane at the edge of the access network.
The proximity of the control plane can support real-time
monitoring of the network environment and quick response
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TABLE 1. Notation definitions.

to the vehicle’s offloading request. Several key functional
modules are embedded in the control plane.
Information collection: this module collects essential

information such as the offloading requests of on-vehicle
applications and the available resources of service nodes.
It also senses the location, mobility and accessible RSUs of
each vehicle in real time.
Decision making: based on the latest perceived informa-

tion, this module determines the vehicles’ task offloading
strategies and the service nodes’ task scheduling strategies.
The method of obtaining the strategies will be described in
detail in Section IV.
Strategy distribution: this module is responsible for con-

verting the strategies into executable commands and sending
them to the corresponding vehicles and service nodes.

The interactions of the various components of the VEC
system are depicted in Fig. 1.

B. TASK OFFLOADING MODEL
We now describe the task offloading model and define the
offloading utility. For ease of reference, a summary of the key
notations are presented in Table 1.
n vehicles on the road make computation offloading

requests to the VEC infrastructure. The computation task of
vehicle i is denoted by vi, i ∈ N , N = {1, 2, · · · , n}, which
is atomic and cannot be divided into subtasks. Each task vi
is characterized by a tuple {di,wi, pdi , ei}, in which di is the
size of the input data necessary for computation, wi is the
workload, i.e., the amount of computing resources required to
accomplish the task, pdi is a vehicle parameter that specifies
vehicle i’s sensitivity to the increase of task delay [20], and
ei is the expected delay of the task. A task that is completed
within the expected time ei incurs a delay cost of 0.
Each RSU is equipped with an MEC server and is defined

as a service node Sj, j ∈ M ,M = {1, 2, · · · ,m}. The resource
status of Sj is characterized by a tuple {Bj,Fj, pcj }, in which Bj
is the uplink rate that the RSU assigns to each access vehicle,

Fj is the computing capability of the MEC server, and pcj is
the operating cost for Sj providing a unit computing resource.

Each vehicle can perform the task locally using its own
device. Let fi denote the local computing capability of vehi-
cle i. Then the time for executing task vi at vehicle i, denoted
by ti0 is given by

ti0 =
wi
fi
. (1)

By offloading a computation task toMEC servers, a vehicle
can achieve shorter task execution time. Since the vehicle
informs the control plane of its mobility, the control plane
can know whether a particular service node is available to
the vehicle. Let aij denote the availability of service node
Sj to vehicle i. We have aij = 1 if vehicle i can access
Sj, i.e., it is within the coverage of Sj. Otherwise, aij = 0.
Hence, service node Sj can be selected to perform task vi on
condition that aij = 1. At this point, the completion time
includes:

(1) taij : the time for vehicle i to access service node Sj.
For Sj that has not established a communication connection
with vehicle i, this time is usually affected by the relative
position and speed between the two, with signal strength as
an intermediate variable;

(2) tuij : the time to upload the input data of task vi to service
node Sj through the uplink channel, given by

tuij =
di
Bj
; (2)

(3) twij : the time that task vi waits for execution on service
node Sj; and
(4) teij: the time for service node Sj to perform task vi, given

by

teij =
wi
Fj
. (3)

Note that we ignore the time required for the MEC servers
to return the output results to the vehicles. This is because the
size of the output result is much smaller than the input data in
most cases, and the data rate of the downlink is much higher
than that of the uplink [21] [22]. These factors essentially
yield negligible time for transmitting the results.

Now, the completion time of offloading task vi to service
node Sj is simply the sum of the four time components, or

tij = taij + t
u
ij + t

w
ij + t

e
ij. (4)

The corresponding offloading utility is defined as:

Uij = pdi (ti0 − ei)− (pdi (tij − ei)
+
+ pcjwi), (5)

where, (a)+ = max(a, 0). The first term refers to the delay
cost for vehicle i to execute its computation task vi, the value
of which only depends on vehicle i. Thus, we denote it byCL

i .
The second term represents the sum of the delay cost and the
operating cost for vehicle i to offload its computation task vi
to service node Sj, which we denote by CO

ij .
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FIGURE 2. Schematic diagram of offloading scheme.

C. PROBLEM FORMULATION
To gain better insight into the task assignment and scheduling
problem, we use a schematic diagram (see Fig. 2) to represent
the offloading scheme. In the figure, the vertical axis repre-
sents time while the horizontal axis represents service node.
We consider all vehicles as a single service node S0. Then the
local execution time ti0 of task vi can be denoted as tij, j = 0.
The service node set M is expanded to M ′ = M + {0} =
{0, 1, · · · ,m}. Obviously, tai0 = tui0 = twi0 = 0, pc0 = 0.
Each rectangle represents a computation task, with the

number in a rectangle representing the task number. The
height of a rectangle represents the time it takes to perform
a task, depending on the workload of the task and the com-
puting capability of the service node. It can be seen that the
abscissa of a rectangle represents the service node performing
the task, and the ordinates of the upper and lower sides are the
start and completion times of the task execution, respectively.
Therefore, given the position of each rectangle on the two-
dimensional plane, the service node and start time corre-
sponding to each task are determined, and its utility can be
deduced. Assuming task vi is executed by S1, its correspond-
ing arrival time, start time, completion time and expected
delay are shown in the diagram. It should be noted that the
tasks on S0 are performed by different vehicles, and there
is no dependence between these tasks, so the corresponding
rectangles can be placed side by side. Other service nodes
can only perform at most one task at a time, so the rectangles
on the same service node must be placed sequentially. Thus,
the task offloading problem in this paper is equivalent to
solving the following special two-dimensional bin-packing
problem: How to arrange the rectangles of the tasks on the
time-node plane while ensuring that the rectangles do not
overlap each other, so that the total offloading utility of all
tasks is maximized.

We now formulate the task offloading problem. The
following are the decision variables for the problem:
xij: if task vi is assigned to service node Sj and aij = 1, then

xij = 1, otherwise xij = 0; In particular, ai0 = 1 is always
true;
yi: the start time of task vi; and
gij: if the start time of task vj is greater than the completion

time of task vi, then gij = 1, otherwise gij = 0.

Then the total offloading utility becomes
n∑
i=1

m∑
j=0

xijUij

=

n∑
i=1

CL
i

m∑
j=0

xij −
n∑
i=1

m∑
j=0

xijCO
ij

=

n∑
i=1

CL
i −

n∑
i=1

m∑
j=0

xij(pdi (yi + t
e
ij − ei)

+
+ pcjwi). (6)

It can be seen that maximizing the total offloading utility
is equivalent to minimizing the total offloading cost. Thus,
the model � for the task offloading problem is:

(�) :

min f =
n∑
i=1

m∑
j=0

xij(pdi (yi + t
e
ij − ei)

+
+ pcjwi)

s.t. C1 :
m∑
j=0

xij = 1,∀i ∈ N

C2 : yi >
m∑
j=0

xij(taij + t
u
ij), ∀i ∈ N

C3 : yi +
m∑
k=1

xik teik 6 yj + L(1− gij), ∀i, j∈N , i 6= j

C4 : xik + xjk − gij − gji 6 1, ∀i, j∈N , i 6= j, k ∈ M

C5 : xij ∈
{
0, aij

}
, ∀i ∈ N , j ∈ M ′

C6 : gij ∈ {0, 1} , ∀i, j ∈ N , i 6= j

The objective function f represents the total offloading
cost. Constraint C1 indicates that each task must be executed
on exactly one service node. Constraint C2 ensures that the
task can only be executed after the service node has obtained
its input data, whereas constraint C3 stipulates that the start
time of task vj is later than the completion time of task vi
when gij = 1, where L is a large positive number. Constraint
C4 ensures that the rectangles on the same service node
(except S0) do not overlap with each other, that is, when
both xik and xjk are 1, one of gij and gji must be 1. Finally,
constraints C5 and C6 are the value constraints of the decision
variables.

IV. OPTIMIZATION SOLUTION
By analyzing problem model �, we can see that two main
steps are required to get a complete offloading scheme:
1) Determine the set of computation tasks performed by
each service node; 2) Determine the execution order of
the computation tasks on each service node. In our envi-
sioned scenario, the number of possible offloading schemes
is
∑n

i=0
(n
i

)
i!(i + 1)m−1. Therefore, the time complexity of

problem � is O(n!(n + 1)m−1). Obviously, as the scale of
the problem increases, the time to seek the global optimal
solution increases sharply. Such long computation delays can
affect the timeliness of the solution rendering them unusable.
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In this paper, we propose a joint offloading decision
and task scheduling algorithm (JODTS), a hybrid intel-
ligent optimization algorithm combining partheno genetic
algorithm (PGA) and heuristic rules. Unlike the traditional
genetic algorithm, PGA does not use crossover operators, but
instead performs genetic operations such as gene mutation
only on one chromosome. Thus the genetic operation process
is simplified, resulting in improvements in computational
efficiency. In addition, PGA does not require the diversity
of the initial population which effectively avoids premature
convergence [23]. Compared with the standard PGA, JODTS
has the following three main features: (i) In neighborhood
search, the heuristic rules are used to construct neighborhood
structures; (ii) Only a portion of the chromosome needs to
be analyzed in decoding, reducing the decoding complexity;
and (iii) An annealing selection method is introduced to
enhance the local search ability of the algorithm.

A. CHROMOSOME CODING
A chromosome represents a task assignment scheme that
determines the task set for each service node. Based on the
characteristics of the problem, JODTS uses natural number
coding method. The coding steps of a chromosome are as
follows:
Step 1: Randomly assign each task to a service node that it

can access. For example, if aij = 1, task vi can be
assigned to service node Sj (that is, set xij = 1);

Step 2: Make a sequence of service nodes for all tasks as an
initial chromosome.

B. NEIGHBORHOOD SEARCH
For a given chromosome, a new neighborhood can be con-
structed by using genetic operators such as gene mutation.
Gene mutation purports to change the gene value of one posi-
tion in the chromosome to another value, that is, transferring
the task from one service node (transfer-out node) to another
(transfer-in node). However, constructing the neighborhood
using random transformation will result in a large number
of unreasonable task transfers, thus reducing the search effi-
ciency. Therefore, we use heuristic rules to construct neigh-
borhood. By setting the probability of each node being the
transfer node, the sampling of more promising neighborhood
is enhanced.

Let ξj and ηj denote the sum of the delay costs and the
operating costs of the tasks assigned to service node Sj,
respectively (for short, delay cost and operating cost of Sj).
Then we have

ξj =

n∑
i=1

xijpdi (tij − ei)
+
; (7)

ηj = pcj

n∑
i=1

xijwi. (8)

Let σij denote the operating cost of executing task vi on
service node Sj. For a task assignment scheme, the higher
the cost of a service node, the more feasible it is to optimize

the scheme by transferring tasks on that node to other service
nodes. It is easier to optimize the scheme by transferring tasks
from the node with large cost to the node with small cost, than
to the node with similar cost. Based on this intuitive under-
standing, the following heuristic neighborhood construction
method is designed:
Step 1: Calculate ξj and ηj, ∀j ∈ M ′;
Step 2: Calculate the probability poutj of service node Sj being

the transfer-out node,

poutj =
ξj + ηj∑m

k=0(ξk + ηk )
, ∀j ∈ M ′; (9)

Step 3: Use roulette selection to select a service node and
mark it as transfer-out node a. Randomly select a task
vi from node a, and calculate σij, ∀j ∈ M ′;

Step 4: Calculate the cost difference δij,

δij=

{
(ξa+σia−ξj−σij)+, aij=1
0, aij=0,

∀j∈M ′.

(10)

If δij of all service nodes is 0, return to Step 3;
Step 5: Calculate the probability pinj of service node Sj being

the transfer-in node,

pinj =
δij∑m
k=0 δik

, ∀j ∈ M ′. (11)

Use roulette selection to select a service node and
mark it as transfer-in node b;

Step 6: Change the service node for task vi from a to b, thus
obtaining a new neighborhood of the chromosome.

C. CHROMOSOME DECODING
The chromosome determines the task set for each service
node, so their corresponding operating costs can be deduced.
At this point, each service node can be seen as a single
machine scheduling problem with the goal of minimizing
the delay cost of the node. Let Vk denote the task set of
service node Sk . The sub-problem model corresponding to Sk
(denoted as �k ) has an objective function of:

min fk =
∑
i∈Vk

pdi (yi + t
e
ik − ei)

+.

Its constraints can be obtained by simplifying the con-
straints of model �: ¬ Remove constraints related to service
node selection, i.e., constraints C1 and C5;Remove useless
variables and subscripts and replace N with Vk ; Constraints
C2 ∼ C4 are modified to:

yi > taik + t
u
ik , ∀i ∈ Vk

yi + teik 6 yj + L(1− gij), ∀i, j ∈ Vk , i 6= j

gij + gji = 1, ∀i, j ∈ Vk , i 6= j

® Constraint C6 is unchanged.
Through analysis, it can be seen that the time complexity of

sub-problem�k isO(nk !), where nk is the number of elements
in Vk . However, except for the initial chromosome, it is not
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necessary to solve all the sub-problems. Two properties are
stated and proved in the appendix, based on which only
a portion of the chromosome needs to be analyzed. Thus,
the decoding process is as follows:
(1) In each neighborhood search, only the task sets of two

service nodes (i.e., transfer-out node a and transfer-in
node b) have changed. According to Property 1, only
the task scheduling on these two nodes needs to be
considered, while the other nodes can directly inherit the
decoding scheme of the previous chromosome;

(2) If node a or node b is S0, the decoding scheme of the
node can be quickly obtained by reducing or adding the
delay cost of transfer task vi;

(3) For node b that is not S0, its time-node plane is con-
structed based on the decoding scheme of the previous
chromosome. It is judged whether there is a feasible
position on the plane to place the rectangle correspond-
ing to the transfer task and the delay time is 0. If there
is, place the rectangle in that position. According to
Property 2, themodified time-node plane is the decoding
scheme of node b.

(4) For node a that is not S0 and node b with no feasible
position in (3), solve the sub-problem using a branch-
and-bound algorithm such as [24].

D. ANNEALING SELECTION
The annealing selection refers to setting the probability of a
child individual replacing its parent individual. Let A denote
the parent individual, B denote the child individual, and T
denote the temperature, then the replacement probability is:

pr =

1, f (B) 6 f (A)

exp(
f (A)− f (B)

T
), f (B) > f (A).

(12)

An initial temperature T0 is set at the beginning, and the
temperature is changed in each iteration using

T ← αT ,

where α is the attenuation coefficient of temperature, and
0 < α < 1. It can be seen that as the iteration num-
ber increases, the temperature gradually decreases, so the
replacement probability in the second case also decreases.
In the later stages, the replacement probability of a worse
child individual is almost zero. The annealing selection not
only accepts better individuals but also worse ones. This helps
JODTS to jump out of local optimal solution traps and to
obtain the global optimal solution.

E. ALGORITHM
Algorithm 1 shows a listing of the JODTS optimization
process which integrates the various aspects described in
this section. The algorithm terminates when no individual
replacement occurs in successive l0 iterations or the tem-
perature drops to Tl . The solving time of the branch-and-
bound algorithm for chromosome decoding is sensitive to
the position of the optimal solution in the state space tree.

Algorithm 1 Joint Offloading Decision and Task
Scheduling (JODTS) Algorithm

Input: task {vi, i ∈ N }, service node
{
Sj, j ∈ M ′

}
1 Perform chromosome coding to generate initial
individual A;

2 for each service node Sj do
3 Count task set Vj and solve sub-problem �j;
4 end
5 Get decoding scheme 9A and objective value f (A);
6 T ← T0, k ← 0;
7 while l < l0&T > Tl do
8 Determine the transfer-out node, transfer-in node

and transfer task;
9 Adjust the task assignment to obtain child individual

B;
10 Based on 9A, partially decode B to obtain 9B and

f (B);
11 Calculate replacement probability pr ;
12 Generate random number rand ;
13 if rand 6 pr then
14 A← B, 9A← 9B, f (A)← f (B), l ← 0;
15 else
16 l ← l + 1;
17 end
18 T ← αT ;
19 end

Output: offloading scheme 9A

Therefore, in the worst case, the time complexity of JODTS
is O(n!).

V. SIMULATION EVALUATION
In this section, we implement the proposed JODTS on NS3,
evaluate its performance in various situations and compare it
with the baseline algorithms. The experiments are conducted
on a personal computer with 3.1GHzCPU and 4GBmemory.

A. SIMULATION SCENARIO
We simulate a road topology consisting of a two-lane road
of length 1000 m. Five service nodes are distributed on both
sides of the road, and the neighboring service nodes are set
200 m apart from each other. A random number of vehicles
are evenly distributed on the road, and they travel towards the
end at a speed of 100 km/h. The IEEE 802.11p standard is
employed for the uplink data transmission, with a bandwidth
of 10 MHz per channel. The vehicles send task data at the
lowest data rate of 3 Mbps, as this provides the best com-
munication reliability [25]. Themaximum transmission range
of each vehicle is set to 200 m. The detailed parameters and
values used in the simulation environment are summarized
in Table 2.

For the performance comparison, we consider four other
algorithms as follows:
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TABLE 2. Simulation parameter setting.

SCIP: this algorithm uses the mathematical solver SCIP
[26], based on branch-and-bound, to solve for the global
optimal solution of the task offloading problem model �.
Nearby offloading (NO): each vehicle offloads its task to

the service node it is currently connected to, and each service
node performs the arriving tasks using the traditional first
come first service (FCFS) strategy.
Node selection optimization (NSO): an online scheduling

algorithm that selects the service node that can maximize the
offloading utility of the vehicle in the worst case (i.e., when
theMEC server preferentially performs other assigned tasks).
Nearby offloading optimization (NOO): each vehicle

offloads its task to the service node it is currently connected
to. Unlike NO that uses the FCFS task execution strategy,
the service nodes inNOO independently optimize the offload-
ing decision and task scheduling, as in [27].

B. PERFORMANCE COMPARISON
1) ACCURACY AND CONVERGENCE
We randomly generate simulation cases for different numbers
of vehicles and use SCIP and JODTS to solve them. Table 3
shows the offloading utility, relative error, and computation
time of the two algorithms. The relative error is the percentage
of the offloading utility of JODTS lower than that of SCIP.
Theoretically, the global optimal solution of the task

offloading problem can be directly obtained by using SCIP
to solve the model�. As can be seen from Table 3, for small-
scale problems (n 6 20), SCIP still takes a few seconds.
The solution time increases dramatically as the problem scale
increases. For example, the solution time for 35 vehicles
is 2004.39 s. What’s worse, when the number of vehicles
reaches 40, SCIP cannot find a feasible solution due to
memory overflow caused by excessivememory consumption.
Therefore, SCIP is not suitable for making task offload-
ing decisions in actual VEC systems. In contrast, JODTS
finds the approximate optimal solution to the task offload-
ing problem. The relative error between its solution and the
optimal solution is less than 2%, showing a high solving
accuracy. More importantly, although the solution time of
JODTS also increases with the number of vehicles, it is only
about 1 second at most. Its advantages of high accuracy and
low complexity can meet the needs of practical applications.

In order to analyze the convergence of JODTS, Fig. 3
shows how the offloading utility of the algorithm changes

FIGURE 3. Convergence curves of JODTS.

with the number of iterations when the number of vehicles
is 10, 20, 30 and 40, respectively. It can be seen that the
offloading utility increases with the number of iterations. Due
to the influence of annealing selection, fluctuations appear on
each curve. After dozens of iterations, the offloading utility
eventually stabilizes at a certain value. The more vehicles,
the more iterations are required. For example, it takes about
40 iterations for 20 vehicles while 70 iterations for 40 vehi-
cles. The results indicate that JODTS has good convergence
properties in various situations.

2) EFFECT OF NUMBER OF VEHICLES
Now we evaluate the impact of the number of vehicles
on system performance. We vary the number of vehicles
from 10 to 40. The delay cost, operating cost, and offloading
utility of JODTS and three other algorithms (NO, NSO and
NOO) are shown in Fig. 4.

Fig. 4a shows that when the number of vehicles is small
(less than 15), the delay cost of each algorithm is almost
zero. This is because most tasks can be completed within
their expected delay by using the service nodes. However,
as the number of vehicles increases, the delay cost increases
dramatically. This is due to the fact that as more vehicles
offload tasks to the service nodes, the average task com-
pletion time becomes longer. Dominated by both the num-
ber of vehicles and the completion time of tasks, the delay
cost increases exponentially. In terms of the operating cost,
we can see in Fig. 4b that the operating cost of each algo-
rithm increases almost linearly. When the number of vehicles
exceeds 30, the growth rate of algorithms other than NO
gradually decreases. This is because NO offloads all tasks to
the service nodes, while other algorithms let some vehicles
perform their own tasks locally. In Fig. 4c, the offloading
utility of all algorithms increases with the number of vehicles.
The service nodes can help most vehicles significantly reduce
their task completion time. Therefore, despite the monetary
cost of using the computing resources of service nodes,
the vehicles will benefit more from task offloading. However,
the rate of utility increase diminishes for all the algorithms as
the number of vehicles increases. The increase in delay cost
reduces the offloading utility that each vehicle can get.

Since NO and NSO do not optimize the execution order
of tasks, tasks with higher unit delay costs may be executed
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TABLE 3. SCIP vs JODTS.

FIGURE 4. The task offloading under different numbers of vehicles.

FIGURE 5. The task offloading under different task input sizes.

after those with lower costs, resulting in higher total delay
costs. It can be seen that NO always performs the worst,
with the highest delay cost and operating cost, and the lowest
offloading utility. By properly offloading some tasks and
arranging their execution order, NOO achieves a lower delay
cost than NSO, but is not as good as the latter in terms of
operating cost. When the number of vehicles is large (greater
than 25), the offloading utility of NOO is higher than that of
NSO, because in NSO, the significant increase in delay cost
cancels the savings in operating cost. Jointly considering the
offloading and node decision of computation tasks and the
task execution order of MEC servers, JODTS achieves the
lowest delay cost and operating cost, so its offloading utility
is the highest.

3) EFFECT OF TASK PROFILE
Here, we evaluate the system performance under different
task profiles in terms of input size di and workload wi. The
number of vehicles is 25. Fig. 5 and Fig. 6 show the delay cost,
operating cost, and offloading utility of the four algorithms
with different values of di and wi, respectively.

Fig. 5a shows that the delay costs of JODTS and the other
algorithms increase with the task input size due to the fact that
a larger input size entails a longer upload time, resulting in a
longer task completion time. However, the growth rate of the
delay costs is relatively stable. This is because the upload of
one task and the execution of another task can be performed at
the same time, so the increase in upload time only affects the
first few tasks on the service nodes. In Fig. 5b, since each task
is offloaded to its currently connected service node and the
workload remains the same, the operating cost of NO has not
changed. The operating cost of NOO decreases as the input
size increases, because the increase in task completion time
causes the service nodes to reject offloading requests for more
vehicles. The operating costs of NSO and JODTS are kept at
a low level with little change. In Fig. 5c, the offloading utility
of each algorithm decreases as the task input size increases,
as the consequence of rising delay cost.

Fig. 6a shows that the delay cost of each algorithm
increases with the task workload. The higher the workload
of a task, the longer it takes to perform the task on the vehicle
or on a service node. Moreover, each task has to wait for
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FIGURE 6. The task offloading under different task workloads.

FIGURE 7. The task offloading under different vehicle speeds.

its predecessor to complete before starting execution, so an
increase in the execution time of a task affects not only the
completion time of the task itself, but also the completion
time of its subsequent tasks. As a result, the delay cost
increases exponentially. In Fig. 6b, the operating cost of
each algorithm increases linearly due to the fact that higher
workloads lead to more computing resource consumption
on the service nodes. Although both the delay cost and the
operating cost are increasing, the offloading utility in Fig. 6c
rises dramatically. This is because a higher workload entails
a longer local execution time, allowing the vehicle to benefit
more from offloading its task to the service nodes.

From the results shown in Fig. 5c and Fig. 6c, we can draw
the following conclusion: computation tasks with small input
sizes and high workloads are more preferable to be offloaded
than those with large input sizes and low workloads. The
task offloading varies more with the workload than with the
input size.

4) EFFECT OF VEHICULAR MOBILITY
Next, we examine the impact of vehicle speed on system
performance. The number of vehicles is 25. Fig. 7 shows
the delay cost, operating cost, and offloading utility of the
four algorithms with different speeds. It can be seen that
when the vehicles move faster, the delay costs and operating
costs of JODTS and NSO decrease, and the offloading utility
increases. A vehicle can only reliably access a service node
when the radio signal strength is strong enough. At low

TABLE 4. The ratio of offloading utility to local execution cost in different
situations.

speeds, it takes a long time for a vehicle to approach a distant
service node, so its task is only offloaded to the service
node it is currently connected to. As the speed increases,
the vehicle’s access time to distant service nodes gradually
decreases. Therefore, these two algorithms can make better
offloading decisions because they have more service node
options for offloading tasks. Since JODTS fully considers the
task offloading decision and server execution time allocation,
its performance is significantly better than NSO which only
considers the selection of service nodes. On the other hand,
NO and NOO are not sensitive to the increment of speed
because they always offload each task to the service node it
is currently connected to.

5) EFFECT COMPARISON
In order to show the effects of JODTS and other algorithms
more clearly, Table 4 lists the evaluation results of each algo-
rithm in some simulation experiments, where the evaluation
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index is the ratio of the offloading utility of the algorithm to
the local execution cost of the tasks. It can be seen that task
offloading reduces the computational burden on the vehicles.
Consistent with the previous simulation results, JODTS per-
forms best in all situations. It can reduce the execution cost
by more than 80%, which is about 15% higher than baseline
algorithms.

VI. CONCLUSION
In this paper, we consider multi-user, multi-server VEC sce-
narios and study the task offloading algorithm that jointly
optimizes the offloading decision of computation tasks and
the execution order of MEC servers. We construct the task
offloading model and define the offloading utility of the
vehicles. Then we formulate the task offloading problem as a
mixed integer non-linear programming problemwith the goal
of maximizing the system offloading utility. As the problem
is hard to solve, we propose a hybrid intelligent optimization
algorithm that combines PGA and heuristic rules to obtain an
approximate optimal solution with low time complexity. The
simulation results prove the accuracy of the proposed algo-
rithm. Compared with the baseline algorithms, the algorithm
effectively improves the offloading utility of the VEC system
and is suitable for task offloading in various situations.

In this paper, we focus on the impact of task offloading
decision and execution scheduling on computation offload-
ing services, while neglecting other factors such as outdated
information and wireless channel fading. In our future work,
we will extend the proposed algorithm to handle computation
offloading in environments where the characteristic parame-
ters of the tasks and VEC network are uncertain. In addition,
we also plan to investigate the use of relay nodes for trans-
mitting task data and results in a reliable and timely manner.

APPENDIX
Property 1: For a given task offloading problem, 9∗A is an

optimal scheme for code A. If the task sets of service nodes
SM1 , SM2 , · · · , SMk (1 6 k 6 m + 1) in another code B are
the same as those in code A, then there is at least one optimal
scheme 9∗∗B for code B, in which the scheduling of service
nodes SM1 , SM2 , · · · , SMk is the same as in scheme 9

∗
A.

Proof: Let 9∗B be an optimal scheme for code B.
The delay cost of service node SMk in scheme 9∗A and 9∗B
is marked as ξ∗AMk

and ξ∗BMk
, respectively. In 9∗A and 9∗B,

the delay cost of each service node is minimized. Thus, when
the task sets of service node SMk in code A and code B
are the same, ξ∗AMk

= ξ∗BMk
. Therefore, by replacing the

scheduling of service nodes SM1 , SM2 , · · · , SMk in 9∗B with
the scheduling in9∗A, another optimal scheme9∗∗B for code B
can be obtained. �
Property 2: For a given task offloading problem, 9∗A is an

optimal scheme for code A. The task sets of service node Sk in
code A and code B are VAk and VBk , respectively. If ¬ VAk ⊂
VBk ;  there is a feasible scheme 9 ′B for code B, in which
the start time of the tasks belonging to VAk is the same as
in scheme 9∗A, and the delay time of the tasks belonging to

VBk\VAk is 0; then there is at least one optimal scheme 9∗∗B
for code B, in which the scheduling of service node Sk is the
same as in scheme 9 ′B.

Proof: Let 9∗B be an optimal scheme for code B. The
delay cost of service node Sk in scheme9∗A and9

∗
B is marked

as ξ∗Ak and ξ
∗
Bk , respectively, and in scheme9 ′B it is marked as

ξ ′Bk . Then we prove the following conclusions: ¬ ξ∗Bk > ξ
′
Bk ;

 ξ∗Bk 6 ξ
′
Bk .

¬ The task sets of service node Sk in scheme 9 ′B is VBk .
VAk ⊂ VBk , so there are two kinds of tasks in VBk : the tasks
belonging to VAk , and the tasks belonging to VBk\VAk . For the
former, the start time of these tasks is the same as in scheme
9∗A, so the total delay cost is also the same. For the latter,
the delay time of these tasks is 0, so the total delay cost is 0.
Add them together and we can see that the total delay cost of
the tasks belonging to VBk in scheme 9 ′B is equal to that of
the tasks belonging to VAk in scheme 9∗A, that is, ξ

′
Bk = ξ

∗
Ak .

From VAk ⊂ VBk , it is known that ξ∗Bk > ξ
∗
Ak , so ξ

∗
Bk > ξ

′
Bk .

9∗B is an optimal scheme for code B, and9 ′B is a feasible
scheme. Obviously, ξ∗Bk 6 ξ

′
Bk .

From the conclusions ¬ and , it can be shown that ξ∗Bk =
ξ ′Bk . Therefore, by replacing the scheduling of service node
Sk in 9∗B with the scheduling in 9 ′B, another optimal scheme
9∗∗B for code B can be obtained. �
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