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ABSTRACT With the increasing concern over environment protection, Economic Emission Dispatch (EED)
problem has received much attention. It is essentially a Multi-objective Optimization Problem, which
minimizes both fuel cost and emission pollution simultaneously, as well as meets some system limits. This
study transforms EED problem to a single-objective problem with weighted sum method, and then use
Newton method to solve the equality constraint iteratively and introduce a common penalty function to deal
with the inequality constraint. Moreover, this study tries to propose a new meta-heuristic algorithm inspired
by kernel tricks to solve EED problem with no hyper parameters to be tuned. The new algorithm can map a
non-linear objective function into a linear one with higher-dimension. Thus the optimization process could
be transformed into a linear process, which is more likely to get the optimum solution. When applied in the
3 real-world EED cases with valve point, the new algorithm achieved a better performance compared with
other algorithms in the literature.

INDEX TERMS Economic emission dispatch, Kernel search optimization, meta-heuristic algorithm, swarm

intelligence.

I. INTRODUCTION

Economic emission dispatch problem (EED) has become
an interesting and important task in power system as the
environment protection gets more and more attention. EED
problem is essentially a Multi-objective Optimization Prob-
lem (MOP) [1], which minimizes both fuel cost and emission
pollution simultaneously, as well as meets some system limits
such as power balance and generation limits.

In the recent decades, a large number of researches have
been proposed to solve EED problem. However, conventional
methods such as linear programming [2], quadratic program-
ming [3] or interior point technique [4] are not satisfactory
for solving EED as they are sensitive to the initial solution
and often trapped in the local optimum. Therefore, many
meta-heuristic optimization algorithms have been proposed
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in the literature to solve the dispatch problem. In general,
there are mainly two approaches to solve the EED problem,
one is converting the MOP into a single objective optimiza-
tion problem(SOP). For instance, Abdelaziz introduced a
modified price penalty factor to convert two objectives of
fuel cost and emission into a single one and used flower
pollination algorithm (FPA) [5] to solve it. Simulation results
of both small and large scale power system indicate the
robustness of FPA. Mahdi et al. used a unit-wise price penalty
factor to convert all the objectives into a single objective
and showed the inclusion of quantum computing idea to bat
algorithm for CEED problem was a useful and reliable tool
for solving such many-objective optimization problem [6].
Dosoglu et al. presented symbiotic organisms search (SOS)
algorithm to solve CEED problem with price penalty fac-
tor [7]. In the meantime, many researchers have applied the
weighted sum method to solve multi-objectives optimization.
Hota et al. presented a fuzzy base modified bacterial foraging
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algorithm (MBFA) [8] for dealing with the EED problems.
Shubham et al. used a Fuzzy Clustering based Particle Swarm
Optimization algorithm (FCPSO) [9] to tackle the nonlinear
multi-objective EED problems. Jadoun et al. combined two
objectives into a single one by suggesting adjusted fuzzy
membership functions and solved it with Modulated Particle
Swarm Optimization (MPSO) [10].

As for the second approach, many Pareto-based multi-
objective meta-heuristic algorithms are developed for
minimizing both the fuel cost and emission pollution
simultaneously. Abido has first developed and successfully
applied Niched Pareto Genetic Algorithm (NPGA) [11],
Non-dominated Sorting Genetic Algorithm (NSGA) [12],
Multi-objective Particle Swarm Optimization (MOPSO) [13],
Strength Pareto Evolutionary Algorithm (SPEA) [12], Multi-
objective Evolutionary Algorithms (MOEA) [12] to solve
EED problems and the experiment results confirm the poten-
tial and effectiveness of these algorithms. Zhao et al. used
a variant of NSGA-II algorithm and an external penalty
function to deal with a dynamic economic dispatch model of
micro-grid [14]. Silva proposed a new scheme for the com-
bination method to improve scatter search (ISS) for the EED
problem [15], which is a capable candidate for dealing with
EED problem. Roy and Bhui proposed quasi-oppositional
teaching learning based optimization (QOTLBO) [16] to cope
with EED problem with valve point loading. The simula-
tion experiments of four test systems show the compara-
tively better cost and emission results compared with other
algorithms. Qu et al. used summation based multi-objective
differential evolution (SMODE) [17] algorithm to solve EED
problem with stochastic wind power which yields superior
solutions. Zhu et al. used an improved multi-objective evo-
lutionary algorithm based on decomposition to solve CEED
problem [18]. Chen and Zeng et al. proposed a con-
strained multi-objective population extremal optimization
(CMOPEO) algorithm to solve EED problem with renewable
power generations and the the experimental results showed
the better performance compared with the algorithms in the
literature [19], [20].

From the meta-heuristic algorithms applied in the EED
problems above, it is difficult to choose the best comprise
solution on the Pareto Front. And even little improved solu-
tions are crucial and rewarding to the environmental pro-
tection and economic operation. Moreover, no matter SOP
algorithms or MOP algorithms, they usually need to tune
the hyper parameters carefully to find the best solution.
Thus the present study tries to propose a new meta-heuristic
optimization algorithm based on kernel tricks to deal with
EED problem with no hyper parameters to be tuned, and use
weighted sum method to transform MOP into SOP. The new
meta-heuristic algorithm, named Kernel Search Optimization
(KSO), can map a non-linear function into a linear one with
higher-dimension. Thus the optimization process of nonlin-
ear function could be transformed into a linear optimization
process. When applied in the 3 real-world EED cases with
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valve point, the new algorithm achieved a better performance
compared with other algorithms in the literature.

The remaining parts of this paper is arranged in this order;
section 2 gives the basic theoretical model of EED problem.
Section 3 presents the principle and details of new opti-
mization algorithm of KSO. Section 4 elaborates the results
of 3 real-world EED cases of KSO compared with other algo-
rithms in the literature. Then section 5 has notable remarks
and the conclusion.

Il. ECONOMIC EMISSION DISPATCH PROBLEM

The EED problem needed to minimize both the total fuel
costs and harmful pollutant emission with various power
constraints by adjusting the output of each power plant. The
objective function of the fuel costs was stated as follows [21]:

C =Y [ai+ biP; + c;P? + |e;sin(fi(P™™ — P))[] (1)

N
=1

1

where C is the fuel cost; a;, b;, and c; are the cost coefficients
of the ith generator; ¢; and f; are the valve point effect coef-
ficients; P; is the real power output; and N is the number of
generating units in the system. If e; and f; are both 0, it is
called EED problem without valve point; else it is called EED
problem with valve point.

The objective function of the pollution emission was stated
as follows [22]:

N
E =" la; + BiPi + viP} + ni exp(8iP))] ©)
i=1
where E is the pollution emission, and «;, i, ¥, ni, and §; are
the emission coefficients.

This is a multi-objective optimization problem that has two
conflicting objectives of C and E. There are many methods
to choose the best comprise solution by transforming MOP
into a single-objective problem. One is weighted sum method
(WSM) that introduces a weight factor to combine the two
objectives together. The final objective function had the fol-
lowing form [23]:

F=wC+y(l—-wE 3)

where w is a weight factor, y is scaling factor.

The EED constraints were as follows:

(i) Power balance constraints: The total power of all the
generators must meet the demand and the loss of power
system [24].

N N N N

Zpi =Pp +PL7PL=Z ZPiBiij+ZBOiPi+BOO

i=1 i=1 j=1 i=1
“4)

where Bj; is the loss coefficient, N is the number of generators,
Py is the transmission losses and Pp is the system load.

16585



IEEE Access

R. Dong, S. Wang: New Optimization Algorithm Inspired by Kernel Tricks for the EED Problem With Valve Point

(ii) Power capacity constraints: The output of each gener-
ator ranged from its minimum and maximum outputs.

P < Py < PP ®)

where P{"** and P;“i“ are the upper and lower bounds for the
ith power output.

To solve EED problem with swarm intelligence algo-
rithm, the inequality constraint of Eq.5 is generally satisfied,
because the upper and lower limits can be set in the initializa-
tion stage of swarm intelligence. But the equality constraint
of Eq.4 is difficult to be satisfied. So Newton method is
introduced here to solve the equality constraint iteratively.

Supposing P; is the output of the ith generator, i =
,2,....N—1.

P; = P + rand[0, 1] x (P — PPin) (6)

Pi(i = 1,2,...N — 1) can satisfy the inequality constraint
of Eq.5. The output of the Nth generator Py can be solved
iteratively by equation 4 and the iterative solving steps are as
follows:
Step 1: Calculate the original output of the Nth genera-
tor Py by Eq.4
N-1
P =pPp— )" P (7)

i=1

where P;’/d is the original output of the Nth generator.
Step 2: Calculate the power loss according to the output of
the N generators by Eq.5.

N N N
PO =" "PiBjPj+ ) BoPi+Bw (8
i=1 j=1 i=1

where Py = P]”Vld.
Step 3: Calculate the new output of the Nth generator Py

N-1
Pl =pp— Y P —PM )
i=1

Step 4: Calculate the error ¢ = |P1’(fw — Pj'vld .If e > preset
error, then goto step 2 for the next round; else Py = Py

The output of the Nth generator Py solved by the steps
above, can satisfy the equality constraint of Eq.4, but it is not
certain that Py must fall in the feasible range of [Pﬁin, Py™].
So to deal with the inequality constraint for Py, a common
penalty function is introduced as follows:

F=F + A[max(P%"—Py, 0)+max(Py—P%™,0)]  (10)

where A is a penalty factor.

In the model of EED problem above, the total transmission
line loss Py, is a function of the output level of the system
generators, and it is commonly approximated by Kron’s loss
formula [27]. Due to the simplicity, the model above has been
widely used in a large number of references, and it is one
of the most common forms for the real power balance con-
straint in the EED problem. The loss coefficient B of Kron’s
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loss formula is determined by the network configuration and
parameters. And the loss Py, is just the approximation of the
real network loss, which has a model error from the real
loss. Generally, the solution of the approximate model can
meet the requirements of engineering applications. This study
proposed a new optimization algorithm for solving EED
model based on B-coefficient. So the results obtained by KSO
had the same model error just as the traditional incremental
transmission losses algorithms. For the fair comparison with
other algorithms in the literature, this widely used model of
EED problem was chosen in this study.

Ill. THE PRINCIPLE OF KSO ALGORITHM

In spite of so many dazzling meta-heuristic algorithms to
solve optimization problem, one algorithm may obtain opti-
mal solutions only on some special problems and the hyper
parameters of which needs to be tuned carefully. Even if with
the same hyper parameters but on the different problems,
the results may be far away from the optimal solution. It has
been criticized that the hyper parameters of meta-heuristic
algorithms need to be tuned carefully to fit the special objec-
tive functions. So in this section, we try to propose a robust
optimization algorithm inspired by kernel tricks with no
hyper parameters needed to be tuned. The inspiration is as
follows.

As all the meta-heuristic algorithms search the optimal
solution of the objective function through a nonlinear iterative
process, which is essentially a linear incremental (finding
maximum) or decremental (finding minimum) process in
a higher dimensional space. And kernel trick can map the
nonlinear objective functions to the linear ones with higher
dimensions. Therefore, the optimization process for nonlin-
ear functions can be transformed into that for linear ones by
kernel trick, which can thus adapt different objective func-
tions and no hyper parameters need to be tuned. The details
of KSO are as follows.

For any nonlinear function y = f(x), x = (x1, x2, ...Xn),
it could be transformed into a linear function when mapped
into a higher-dimensional space by the mapping function
u = ¢(x),where u is an m-dimensional vector and m>>n.
The schematic diagram is shown in Fig.1.The higher the
dimension is, the more likely it is transformed to a linear

A\l
n dimensional space m dimensional space

/o V

) !\",,,\, D(xpeyt)

FIGURE 1. Low dimensional space mapped into high dimensional space.
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one [25]. That is
y=f(x)=a)Tou+b

where w = (w1, wa, ... wy) and u = (uy, us, . . . uy,) are both
m-dimensional vectors.

Meanwhile, the original vector in the n-dimensional space
mapped to the m-dimensional vector w is set to be a, that
isw = ¢a),a = (a1, az, ...a,). p(a) is the slope of the
hyper-plane in the m-dimensional space, which indicates the

direction of optimal value of the hyper-plane. So,
y=f)=0" eu+b=g(a) e p(x)+b=K(a,x)+b (1)

where K (a, x) is kernel function.

Therefore, the optimal value of the original objective func-
tion in the low-dimensional space can be obtained by solving
the optimal value of linear function in the high-dimensional
space. Unfortunately, it is difficult to solve the optimal value
of the high-dimensional linear function directly, but it is
easier to solve the optimal value of fitted kernel function cor-
responding to the objective function. So the optimal value of
the objective function can be obtained by solving the optimal
value of the fitted kernel function. Any function which sat-
isfies Mercer’s theorem can be used as kernel function [26],
such as linear kernel function, polynomial kernel function and
radial basis (RBF) function, etc. The RBF function can map
the objective functions to the infinite dimensional space [22]
in which the possibility of being linear functions arises. So the
RBF function is used here

o2
Koy = exp 20

Then

y=fx)=

It should be noted that the objective function and the
fitted kernel function are not equal at all the points, only
at some fitted points. The fitted function is used to fit the
objective function approximately. Although the optimum of
fitted kernel function may not be the strict minimum of the
objective function, it can get close to the optimal value grad-
ually by several iterations. As long as the optimal value of the
fitted kernel function of Eq.12 is obtained, the approximate
optimum value of the objective function in an iteration of
optimization is obtained. Here the minimum of Eq.12 in
different cases are given as follows directly (proof omitted),
assuming that x € [Xmin, Xmax], the minimum is Xpeg .

K(a,x)+ b = exp(

o2
=al®y ) )
o

Xmin 0 <0and a> %(xmin + Xmax)
Xmax 0 <0anda < %(xmin + Xmax)
Xpest = 3 Xmin 0 > 0 and a < xpin (13)
a o > 0 and xmin < @ < Xmax
Xmax O > 0and a > xmax

As is seen from Eq.13, the minimum value xps is at the
boundary, or is equal to vector a, which is the preimage
in the low-dimensional space mapped to the hyper-plane
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slope in the high-dimensional space. After obtaining o and a,
the minimum X, of fitted kernel function could be obtained
according to Eq.13, which is the approximate minimum of
the objective function in an iteration. Therefore, the minimum
Xpesr Which may be equal to the vector a plays a key role in the
optimization process actually. It gives the search direction in
the iterative optimization process. In view of this, the vector
a is named as the kernel vector especially here.

Next, o and a are solved in detail as follows, from Eq. 12
we can obtain

oln(y —b)=|x —al?

=1 — a1+ — @) ... (o —an)’ (14)

This is the equation for o and ay, ay, . . .a,, atotal of n+ 1
unknowns, so n + 1 non-linear equations are needed to be
established for solving the roots, which needs large amount
of computation. Here proposes an easier method. Assuming
that another vector templ = (x|, x5, ...x}), the ith item of
original vector x and form a new vector (x1, x2, . . x: ...x;,).
The function evaluation of the new vector is y;, and n new vec-

RS TS VRN
tors form a matrix x’ = | x1, x2, .. x: ...Xx, |, the function
X1y X2y oo Xiy o v Xy

evaluation of the matrix x”is y' = (¥}, 5, ...}, ...y, then

(1 —a)? + 0 —a)’ ...
+ G —a) 4 G —an)® (15)

oIn(y; — b) =

Eq. 14- Eq. 15, we have

aml y_@r%)—@—mf
= (xi + x} — 2a)(x; — x}) (16)
That is,
a:lm+x—am% )/ (i = x))] (17)

Assuming that one more vector temp2 = (x”/ l,x hyoox),
the jth item xj, j is one random value in the range
of [l,n], is taken out to replace the corresponding jth
item of original vector x and form a new vector x” =

(x1, x2,...x' // . Xxn). The function evaluation of new vector
isx” = (x1,x2, .. .x/j, ...Xy), then
aj = 3L+ — o In(5— )/(x, — )]

i

)/ (g —x'D1

1
= —[xj—f—x —aln(

Therefore

xj’. —x’; a18)
]n( )/ b)/(xj —X ) 11‘1( 7 b)/(xj - x//
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Because b is irrelevant to obtaining the minimum in a linear
optimization, the values of y—b, y —b, y”" — b are normalized
in the range of [1,e] by the values of y, y', y”. That is
_ (Y = Ymin)e — 1)

Ymax — Ymin

y—>b +1
where ymi, is the minimum of y, ¥, ¥, ymax is the maximum
of y,y,y”, e is natural exponent.

Thus after o is obtained, a can be obtained when i ranges
from 1 to n in turn according to Eq. 17. And the approximate
optimum xp,g of the objective function in this iteration can
be obtained according to Eq. 13.

A. THE STEPS OF KSO ALGORITHM

The optimum xp,, obtained by Eq. 13 is just the approximate
to the optimum of the original objective function. So some
iterations are needed to improve the accuracy of the global
optimal value xgp.s, Where the update equation plays a key
role. In the iterative process of getting close to the real optimal
value of the objective function, the approximate optimum
Xgbes: and the global optimum Xy, both indicate the search
direction of the optimization. Furthermore, in order to accel-
erate the convergence, the equation above is multiplied by an
exponential reduction factor and the final update equation is:

Xbest

If f(Xpest) < f(xgbest)
Xnew = _t (19)
Xgbest + rand * eXP(m) * (Xpest — Xgbest)

Else

where T),,c is the maximum number of iterations, 7 is the
current number of iterations.

Let s make a summary of the KSO algorithm. With the
points initialized randomly, o and a are calculated according
to Eq. 18 and Eq. 17. Then x4, is obtained according Eq. 13.
Finally, the points are updated according to Eq. 19 and go
to the next iteration until the maximum iteration is met. The
detail process of KSO algorithm is shown in Fig. 2, and the
pseudo code is shown as Algorithm 1.

IV. EXPERIMENTAL RESULTS
In the present study, three classic cases of EED problem with
valve point are introduced to validate the performance of
KSO, with scale from small to large. Case A: the standard
IEEE-30 bus system (Pp = 2.834pu), is a widely used
test case,and the results of all the compared algorithms
have no big difference and even little improvement was
difficult for the algorithms [27]; Case B: 10-unit system
(Pp = 2000MW), is a medium scale power system; Case C:
40-unit system (Pp = 10500MW), is more complex and dif-
ficult, which can verify the performance of KSO better. The
detailed data of the three cases are extracted from the previous
studies [27].

In the proposed KSO, the population size N = 10, max-
imum iteration M = 100, the final results are the best
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solutions of 30 runs. The application of KSO to EED problem
is implemented on the computer with 2.4-GHz Intel Xeon
central processing unit E5-2665 and 32G of random-access
memory using Matlab2014b.

[ Initailize N points of x randomly ]

Meet the max
iteration?

[ Initailize temporary points templ & temp2 ]

v

Take out each item of temp! in turn,
replace the corresponding item of x to
form a new matrx x’

L ]

Take out the item of temp2 randomly,
replace the corresponding item of x to
form a new vector x"”’

L]

Calculate the objective function values of x,x'x",
normalize the values in the range of [1 e],
update the optimum /'

1]

[Calculate o & a according to Eq(13) & Eq(lZ)]

v

[ Calculate x,,  according to Eq(9)]

Yes No

[Update TR f(, )] [Update x according to Eq(14)]

y

/ Output X ghest and ]’ i /

End

FIGURE 2. The flowchart of kernel search optimization algorithm.
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TABLE 1. The best solutions for the fuel cost, total emission and transmission loss for w values of case A.

w Py Py Ps3 Py Ps Ps V (pu) Pr,(pu) C($/h) E(ton/h)
0.0 04111 04624 0.5436 03909 0.5479 05156  2.09E-03  0.0353 646.6009  0.1942
0.1 03603 04387 0.5498 0.4795 0.5472 04916 1.62E-03  0.0315 635.1410  0.1948
02 03189 04155 05571 05562 0.5482 0.4684 1.26E-03  0.0289 626.7375  0.1962
0.3 02849 0.3922 0.5599 0.6251 0.5468 0.4534 9.75E-04 0.0273 620.6124  0.1983
04 02526 03732 05676 0.6882 0.5481 0.4311 7.00E-04 0.0260 615.7948  0.2008
0.5 0.2231 0.3588 0.5594 0.7506  0.5502 0.4180 3.99E-04 0.0256 612.2380  0.2037
0.6 0.1855 0.3418 0.5687 0.7981  0.5559 0.4091 7.20E-05 0.0250 609.6861  0.2068
0.7 0.1858 03314 0.5634 0.8388 0.5519 0.3879 9.18E-05 0.0251 608.4666  0.2089
0.8 0.1650 0.3251 0.5587 0.8895 0.5544 03665 1.46E-04 0.0254 607.1467  0.2123
09 0.1364 03096 0.5766 0.9395 0.5342 0.3627 3.71E-04 0.0254 606.2090  0.2163
1.0 0.1127 0.2917 0.5811 09953 0.5261 0.3524 5.18E-04 0.0258 605.8960  0.2211
Algorithm 1 Kernel Search Optimization Py
1Initialize points x .
2While t < Tmax do o
3 Initialize new points femp1 and temp?2 o k50
4 Forifrom 1to D step 1 H \
= * NSGA-
5 X/(i) < templ(l) g 021 ° X MOEA/D
6 End for \ " = NPGA
. . 3 0.205 X SPEA
7 Take a random integer j g \ o woPso
8 x"(i) < temp2(j) _ R © - v
9y — {F L)L, Ve < min(y), N s
. ; 0.195 e— X NGPSO
Yworst (;_ ma))(c()?v)xgbest < arcmin(y) D —
—Ymin)(€—
10 y < Ymax ~Ymin +1 019
’__X/} 600 605 610 615 620 625 630 635 640 645 650
11 sioma <« J Total fuel cost($/h)
& ) /g In( ) /g

12 For i from 1 to D step 1

13 @ < L+ —aln(yy,_;_l;)/(xi — )]
14 Calculate x4 accordinlg to Eq.13

15 End for

16 ya < f(Xpesr)

17 Ify, < Ypes: then

18 Xnew <— Xbest>Ybest <~ Ya

19 Else

20 Xnew <= Xgbest + (Xbest — xgbest) * rand x e~/ Tmax
21 Endif

22End while

23Print yp,y

Table 1 shows the solution values of KSO for case A
with the weight factor w ranging from 0 to 1, the step size
of 0.1 and y = 1000. The values of units P; to Pg are the
active power of the six generators of the system. The value

of V is the violation of the equality constraints calculated by
N

V = |>_ P; — Pp — Py | because the inequality constraints
i=1
are satisfied easily by the swarm intelligence algorithms. The
violation V is an important parameter as the power plants
should meet the load demands as much as possible for the
stability of the power system. P; denotes the transmission
loss of the power system. And the fuel cost C and emis-
sion pollution E together form the Pareto-front as shown
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FIGURE 3. The Pareto-front of KSO and the best comprise solutions of
other algorithms for case A.

in Fig. 3, which also illustrates the best comprise solutions
obtained by some algorithms in the literature. The farther the
best comprise solutions are above the Pareto-front of KSO,
the better performance KSO has compared with theses algo-
rithms. As is seen from Fig. 3, the best comprise solutions of
NSGA- [17], NPGA [11], MOPSO [13] are located far
away above the Pareto-front and the ones of SPEA [12],
FSBF [28] and NSBF [28] are also above the Pareto-front
which implies the better performance of KSO than them.
Meanwhile, the best comprise solutions of SMODE [17],
MOEA/D [12], MBFA [17] and NGPSO [27]are just on
the Pareto-front which mean the competitive performance of
KSO with them.

The best fuel cost (w = 1.0) and the best pollution emis-
sion (w = 0.0) of case A are given in Table 2, compared with
other results from the literature. At first glance, the results
of all the algorithms have no big difference and even little
improvement is difficult for the algorithms. In terms of
the best cost, KSO obtains a better result of 605.8960($/h)
than most of the algorithms except ISS, especially than
SMODE [17], MOEA/D [12], MBFA [8] and NGPSO [27]
which perform competitive with KSO on the Pareto-front. ISS
obtains fewer cost but with a much larger value of V, which
means the greater violation of equality constraints. For the
best emission, KSO obtains the best result of 0.194178(ton/h)
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TABLE 2. Comparison of the best fuel cost and best emission rate of case A with different algorithms.

Best fuel cost (w=1.0) Best pollution emission (w=0.0)

Algorithm
C($/h) E(ton/h)  Pr(pu) V(pu) C($/h) E(ton/h)  Pr(pu) V(pu)
MBFA [8] 606.1700 0.2174 0.0255 1.89E-05 643.84 0.194201  0.0345 2.51E-05
MSA [33] 605.9984  0.2207 0.0256 3.96E-05 646.20 0.194179  0.0353 2.71E-05
PSOGSA [27] 605.9984  0.2207 0.0256 6.10E-05 646.21 0.194179  0.0353 2.92E-05
MODE/PSO [28] 606.0073  0.2209 0.0256 1.45E-04  646.02  0.194200 0.0353 4.65E-05
MOPSO [13] 607.8400 0.2192 0.0255 7.38E-03 64290 0.194230 0.0346 3.82E-03
PSO(wsm) [30] 607.8400  0.2198 0.0257 745E-03 64523  0.194230 0.0352 4.13E-03
MOPSO-II [30] 607.7900 0.2193 0.0257 7.56E-03 644.74  0.194185  0.0350 4.11E-03
GA(wsm) [12] 607.7814  0.2199 0.0256 7.58E-03 64522 0.194180 0.0352 4.12E-03
NSGA [12] 607.9800 0.2191 0.0265 8.07E-03  638.98 0.194678  0.0327 2.96E-03
NPGA [11] 608.0593  0.2207 0.0251 8.59E-03 644.23  0.194270  0.0355 4.06E-03
SPEA [11] 607.8600 0.2176 0.0258 743E-03 644.77 0.194279  0.0347 4.66E-03
DE [34] 608.0658  0.2193 0.0255 8.72E-03  645.09 0.194181  0.0352 4.80E-03
FCPSO [9] 607.7860  0.2201 0.0261 7.39E-03 64290 0.194218 0.0345 3.64E-03
GSA [29] 605.9984  0.2207 0.0256 1.37E-04 64621 0.194179  0.0353 6.98E-05
OGSA [29] 605.9982  0.2207 0.0256 5.69E-05 64621 0.194179  0.0353 2.92E-05
CSS [35] 605.9865  0.2204 0.0254 7.22E-05 645.66 0.194179  0.0329 2.40E-03
NGPSO [27] 605.9984  0.2207 0.0256 1.37E-04 64621  0.194179  0.0353 6.98E-05
SMODE [17] 619.0700  0.2034 0.0216 249E-03 643.01 0.194201 0.0344 4.50E-03
ISS [15] 603.5888  0.2159 0.0245 1.28E-02  633.39 0.194469 0.0318 2.20E-02
BBMOPSO [36] 605.9817  0.2202 0.0256 1.24E-04 64648 0.194179  0.0354 2.92E-05
MOEA/D [12] 619.5300 0.2017 0.0227 2.39E-03 64498 0.194187 0.0348 5.02E-03
KSO 605.8960 0.2211 0.0258 5.18E-04 64622 0.194178  0.0353 6.98E-05
TABLE 3. The statistical results of fuel cost and emission pollution in case A.
Algorithm C’mzn Cmaz Cmean Cwnediun Cstd E'mzn Emaz Emean E’rnedian Estd
GQPSO [37] 606.3804 611.86971  609.4986  609.6692 1.18 0.194222  0.194606  0.194451  0.194467 8.70E-05
SAIWPSO [38] 605.9984  606.0008 605.9986  605.9984  4.14E-04 0.194179 0.194179 0.194179  0.19417856  1.30E-07
NGPSO [27] 605.9984  605.9984 605.9984  605.9984  0.00 0.194179  0.194179  0.194179  0.194179 0.00
KSO 605.8960  605.8960 605.8960 605.8960  0.00 0.194178  0.194178 0.194178  0.194178 0.00
TABLE 4. The best solutions for the fuel cost, total emission for w values of case B.
w 0.0 0.1 0.2 0.3. 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000
Py 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000
Ps 81.1342 81.1044 81.0657 81.8324 83.0291 84.7412 86.7684 88.4879 90.7984 97.2175 106.8407
Py 81.3637 81.1148 80.8184 81.2858 82.1261 83.4185 84.9238 85.9576 87.2729 92.9695 100.9243
Ps 160.0000  160.0000  160.0000  160.0000  160.0000  143.7777  126.1310  109.9352  95.9611 88.2551 81.3210
Ps 240.0000  240.0000  240.0000 219.5572  189.0919  164.2877  142.7323  121.8268  103.7307 93.5454 82.9457
Py 2944851  292.2569  289.7305 291.3367 294.5841  299.5076  300.0000  300.0000  300.0000  300.0000  300.0000
Pg 297.2701  296.9424  296.5467  300.8221  307.2982  315.4369 321.2865 327.1948  334.0932  340.0000  340.0000
Py 396.7657  398.0086  399.4298  406.0190 4153430  427.8255 < 442.3902  456.2934  470.0000  470.0000  470.0000
Pio 395.5763  397.2162  399.1084  406.2862 416.3564  429.7994  445.6240 461.2551  470.0000  470.0000  470.0000
V(MW) 4.69E-05 7.70E-05 1.15E-04 6.13E-05 8.93E-05 1.10E-04 6.95E-05 1.13E-04 8.66E-04 3.20E-03  5.68E-03
Pr,(MW)  81.5951 81.6432 81.6994 82.1393 82.8289 83.7946 84.8563 85.9509 86.8572 86.9907 87.0374
C($/h) 116412 116399 116384 115600 114608 113505 112645 112022 111646 111535 111497
E(ton/h) 3932.24 3932.32 3932.58 3961.37 4014.44 4105.62 4210.65 4325.95 4436.05 4497.24 4573.24

among all the algorithms. So in the comparison for both the
best fuel cost and the best pollution emission, only KSO
obtains the best result. So it can be concluded that KSO
performs better than all the algorithms on case A.

Table 3 gives the statistical results of fuel cost and emis-
sion pollution in case A over 30 runs. To be more precise,
the statistical metrics include the maximum, minimum, mean,
median and standard deviation. From Table 3, it can be seen
that KSO performed better and more robust than the com-
pared algorithms in the literature.
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Table 4 shows the solution values of KSO for case B
with the weight factor w ranging from 0 to 1, the step
size of 0.1 and y = 10. And the fuel cost C and
emission pollution E together form the Pareto-front as
shown in Fig. 4, which also illustrates the best comprise
solutions obtained by some algorithms in the literature. As is
seen from Fig. 4, the best comprise solutions of NSGA- [17],
FPA [5] are located above the Pareto-front clearly and the
ones of MODE [22], PDE [22], SPEA2 [22], GSA [29] and
€v-MOGA [30] are also above the Pareto-front and locate
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TABLE 5. Comparison of the optimal solution values for the fuel cost (w=1) of case B with different methods.

Algorithm  BSA QOTLBO  TLBO DE OGHS NGPSO KSO
Py 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000
P 80.0000 79.9991 80.0000 79.8063 80.0000 80.0000 80.0000
Ps 106.9295 107.9231 105.9616 106.8253 106.9916 106.9399 106.8407
Py 100.6028 98.6479 99.9321 102.8307 100.5354 100.5763 100.9243
Ps 81.4990 82.0180 80.6424 82.2418 81.4450 81.5017 81.3210
Ps 83.0074 83.4878 85.7878 80.4352 83.0670 83.0209 82.9457
Pr 300.0000 300.0000 300.0000 300.0000 299.9998 300.0000 300.0000
Ps 340.0000 340.0000 340.0000 340.0000 339.9999 340.0000 340.0000
Py 470.0000 469.9706 469.6979 470.0000 470.0000 470.0000 470.0000
Pio 470.0000 469.9988 469.9943 469.8975 469.9999 470.0000 470.0000
V(MW) 6.04E-05 2.57E-05 3.86E-05 3.05E-06 3.08E-04 2.29E-05 5.68E-03
Pr,(MW)  87.0388 87.0453 87.0161 87.0368 87.0389 87.0388 87.0374
C(8/h) 111497.63  111498.43  111500.42  111500.79 111497.61 111497.63 111497.27
E(ton/h) 4572.26 4568.69 4563.34 4581.00 4572.27 4572.20 4573.24
TABLE 6. Comparison of the optimal solution values for the total emission (w=0) of case B with different methods.
Algorithm  BSA QOTLBO TLBO DE OGHS NGPSO KSO
Py 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000
Ps 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000
Ps 81.1749 81.1342 81.1261 80.5924 81.1062 81.1342 81.1342
Py 81.3585 81.3637 81.3640 81.0233 81.4128 81.3637 81.3637
Ps 160.0000 160.0000 160.0000 160.0000 160.0000 160.0000 160.0000
Ps 240.0000 240.0000 240.0000 240.0000 239.9999 240.0000 240.0000
Py 294.4430 294.4843 294.4790 292.7434 294.5065 294.4851 294.4851
Ps 297.2970 297.2710 297.2439 299.1214 297.2617 297.2701 297.2701
Py 396.8075 396.7645 396.8041 394.5147 396.7353 396.7657 396.7657
Pio 395.5131 395.5775 395.5788 398.6383 395.5715 395.5763 395.5763
V(MW) 8.70E-05 4.07E-05 1.12E-04 9.04E-05 2.02E-04 4.69E-05 4.69E-05
Pr(MW)  81.5941 81.5952 81.5958 81.6334 81.5941 81.5951 81.5951
C($/h) 116412.38  116412.44  116412.35 116404.29  116412.65 11641244 116412.44
E(ton/h) 3932.24 3932.24 3932.24 3932.42 3932.24 3932.24 3932.24
4600 450000
— 4500 I -o=KSO 400000
S \ + BSA :
£ 4400 = MODE 350000 A
= \ o PDE \ ——K50
< SMPSO
E 4300 X NSGA- £ 300000 + LMPsO
s \ + SPEA2 g \
.§ 4200 + GSA E 250000 : GMS:DE
E \ 2 = &-MOGA E \ ® PDE
% 4100 + QOTLBO ﬁ 200000 X-ﬂ\_”_. X QOTLBO
E X TLBO E o TLBO
4000 m FPA & 150000 o FPA
\.._. OGHS £v-MOGA
3900 T T T T T 1 = NGPSO 100000 % NGPSO
111000 112000 113000 114000 115000 116000 117000 o sPEA2
Total fuel cost($/h) 50000 + NSGA-
FIGURE 4. The Pareto-front of KSO and the best comprise solutions of 0

other algorithms for case B.

near the solution of KSO when w = 0.5, which implies that
the solution of KSO dominates the best comprise solutions
of these algorithms. Meanwhile, the best comprise solutions
of BSA [31], QOTLBO [16], TLBO [16], OGHS [32],
NGPSO [27] are just on the Pareto-front which mean the
competitive performance of KSO with them.

The best fuel cost (w = 1.0) and the best pollution emis-
sion (w = 0.0) of case B are given in Table 5 and Tableo6,
compared with other results from the literature. In terms of
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Total fuel cost($/h)

128000 130000 132000

FIGURE 5. The Pareto-front of KSO and the best comprise solutions of
other algorithms for case C.

the best cost, KSO obtains the best result of 111497.27($/h)
compared with all the algorithms especially better than BSA,
QOTLBO, TLBO, OGHS, NGPSO which are just on the
Pareto-front. KSO saves 0.36($/h) fuel cost compared with
OGHS which has the second best result. For the best emis-
sion, KSO obtains the best result among all the algorithms
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TABLE 7. The statistical results of fuel cost and emission pollution in case B.

Algorithm szn Cmaz Cmean Cnbedian Cstd Emin Emax Emean Ernedian Esid
GQPSO [37] 112429.74  113327.07 11310246 11321644 2.56E+02 4011.92 4042.19 403293  4035.10 7.55
SAIWPSO [38] 111497.63 111497.63 111497.63 111497.63 1.81E-04  3932.24 393225 3932.25 3932.24 2.33E-03
NGPSO [27] 111497.63  111497.63  111497.63  111497.63 1.00E-07  3932.24 3932.24 3932.24  3932.24 2.10E-07
KSO 111497.27 111497.27 111497.27 111497.27 1.63E-08  3932.24  3932.24 3932.24 3932.24 2.02E-07
TABLE 8. The best solutions for the fuel cost,total emission for w values of case C.
w 0.0 0.1 0.2 0.3. 04 0.5 0.6 0.7 0.8 0.9 1.0
Py 114.00 114.00 114.00 114.00 114.00 114.00 112.80 114.00 110.93 111.34 111.38
P> 114.00 114.00 114.00 114.00 114.00 114.00 112.68 114.00 110.88 111.54 110.84
Ps 120.00 120.00 120.00 120.00 120.00 120.00 119.67 120.00 9741 98.35 97.50
Py 169.37 173.09 177.30 179.73 179.73 179.73 179.66 179.73 179.73 179.73 179.84
Ps 97.00 97.00 97.00 97.00 97.00 97.00 96.68 97.00 87.96 89.15 87.91
Ps 124.26 126.03 128.71 132.66 137.42 140.00 139.72 140.00 140.00 139.86 140.00
Py 299.71 300.00  300.00 300.00 300.00 300.00 298.30 260.06 260.30 260.39 25991
Pg 297.91 298.45 299.28 300.00  300.00 300.00 284.60 284.60 284.62  284.60  284.83
Py 29726  297.71 298.40  299.95 300.00  300.00 284.60 284.70  284.60 284.64  284.60
Pio 130.00 130.00 130.00 130.00 130.00 130.00 130.00 130.00 130.00 130.55 130.00
P11 298.41 301.87  306.44  312.23 318.40 31840 311.46 31840  243.60  243.59 168.80
Pia 298.03 301.39  305.838 311.64  318.11 31840 31559 31840  243.60 168.81 168.80
P13 43356 43357  433.68  436.47 39428  394.28 39428 39429 30452  215.04 214.76
Py 421.73 418.78 411.61 396.68 394.28 394.28 394.28 394.28 394.28 304.65 304.52
Pis 42278  420.18  413.73 398.50 39428  394.28 39428 39444 39428  304.57 394.28
Pig 42278  420.18  413.73 398.50 39428  394.28 39428  394.35 39428  394.28 394.28
P17 439.41 443.15  450.02 46241 47733 489.28  488.33  489.28  489.28  489.37  489.28
Pis 439.41 438.77  437.74  436.35 43375 42559 49757 42156 421.52 51128  511.28
Pig 439.40  443.15  450.04 46244 47737  489.28  487.59  489.28  489.28  489.28  489.28
Py 439.41 438.77 437.74 436.35 433.75 425.59 421.52 421.69 511.28 511.28 511.28
Py 43945  438.69  437.69  436.73 43577  433.61 433.54 43374  521.74 52328  523.28
Pao 439.45  438.69  437.69  436.73 435777  433.61 433.54 43354 52046  523.28  523.28
Pos 439.77  439.08  438.18  437.33  436.52 43449  433.62  433.56  521.69  523.28  523.28
Pay 439.77  439.08  438.18  437.33  436.52 43449 43357 433,65 521.17  523.28  523.30
Pas 440.11 439.22  438.03  436.79 43543  433.52 43352  433.60 43352  523.28  523.28
Pag 440.11 439.22  438.03  436.79 43543 43352 43352 43359 43352 52328 52328
Pay 28.99 24.56 20.35 16.85 14.14 11.93 10.00 10.00 10.00 10.29 10.00
Pog 28.99 24.56 20.35 16.85 14.14 11.93 10.00 10.00 10.00 10.29 10.00
Pag 28.99 24.56 20.35 16.85 14.14 11.93 10.00 10.00 10.00 10.00 10.00
P3o 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00 88.22 90.01 88.47
P31 172.33 173.50 175.29 178.49 184.48 190.00 187.91 190.00 161.20 171.95 190.00
P32 172.33 173.50 175.29 178.49 184.48 190.00 186.12 190.00 190.00 182.37 190.00
P33 172.33 173.50 175.29 178.49 184.48 190.00 188.51 190.00 190.00 189.99 190.00
P34 200.00  200.00  200.00  200.00  200.00  200.00 199.72  200.00  200.00 194.92 166.49
P35 200.00  200.00  200.00  200.00 200.00 200.00 200.00  200.00 168.77 166.10 165.42
Psg 200.00  200.00  200.00  200.00  200.00 200.00 200.00  200.00 166.97 194.98 165.27
P37 100.84 101.99 103.75 106.68 110.00 110.00 110.00 110.00  89.91 106.62 110.00
Psg 100.84 101.99 103.75 106.68 110.00 110.00 110.00 110.00  89.71 108.94 110.00
Psg 100.84 101.99 103.75 106.68 110.00 110.00 110.00 110.00 89.48 90.27 110.00
Pyo 439.41 438.77  437.74  436.35 43375 42559  421.52  511.28  511.28  511.28  511.28
C($/h) 129955 129498 128866 127807 126488 125690 125491 125112 122973 121755 121376
E(ton/h) 176682 176936 178093 181710 188861 195215 199591 206592 285613 346170 356336
TABLE 9. The solution when w=0.6 in the Pareto-front of KSO compared with other algorithms of case C.
Algorithms GSA MODE PDE NSGA- SPEA2 QOTLBO TLBO ev-MOGA KSO
C 125782 125792 125731 125825 125808 125161 125602 125750 125491
E 210933 211190 211765 210949 211098 206490 206648 211744 199591
although most algorithms are the same as KSO. The statis- of 0.1 and y = 0.1. And the fuel cost C and emission

tical results of fuel cost and emission pollution are tabulated
in Table 7, which shows that KSO is more robust than the
compared algorithms in the literature. In summary, all of this
show the better performance of KSO on case B.

Table 8 shows the solution values of KSO for case C
with the weight factor w ranging from 0 to 1, the step size
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pollution E together form the Pareto-front as shown in Fig.5,
which also illustrates the best comprise solutions obtained
by some algorithms in the literature. As is seen from Fig.5,
the best comprise solutions of GSA [25], MODE [8], PDE
[22], TLBO [16], FPA [5], ev-MOGA [30], SPEA2 [22] and
NSGA- [17] are located above the Pareto-front clearly and
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TABLE 10. Comparison of the best fuel cost and best emission rate of case C with different algorithms.

Best fuel cost (w=1.0)

Best pollution emission (w=0.0)

Algorithm
C($/h) E(ton/h) C($/h) E(ton/h)

TIABC [39] 129995 176682 121415 356422

TIABC-LS [39] 129995 176682 121413 359901

ABCDP [39] 129995 176682 121413 359901

ABCDP-LS [39] 129995 176682 121413 359901

HPSOGSA [40] 129997 176684 121413 360228

MBFA [8] 129995 176682 121416 356424

PSOGSA [40] 129987 176678 121461 358155

MODE [22] 129956 176683 121837 374791

MBFA [8] 1299950 176682 121416 356424

DE-HS [41] 129994 176682 121415 356433

MAG-PSO [42] 129995 176682 121413 359902

KSO 129955 176682 121376 356336

TABLE 11. The statistical results of fuel cost and emission pollution in case C.

Algori[hm Cmin Cmaz Cmean Cmedian Cstd Emz’n Emaz Emean Emedian Estd
GQPSO [37] 146121.50 15221435 151703.04 151960.24  9.81E+02  270192.37  312560.56  298292.51  297963.51  7.40E+03
SAIWPSO [38] 121676.23  122597.19  121966.30  121906.00  2.27E+02  177276.36  179282.34  177772.49  177674.83  3.73E+02
NGPSO [27] 121513.48  122697.77  122065.12  122119.11  2.67E+02  176682.52 176684.83  176683.40  176683.21  5.58E-01
KSO 121375.87  121927.12  121538.12  121475.87 1.81E+02 17668226  176682.26  176682.26  176682.26  5.82E-11

near the solution of KSO when w = 0.6, shown in Table 9
for details,which implies that the solution of KSO dominates
the best comprise solutions of these algorithms. Meanwhile,
the best comprise solutions of SMPSO [10], LMPSO [10],
QOTLBO [16] and NGPSO [27] are just on the Pareto-front
which mean the competitive performance of KSO with them.

The best fuel cost (w = 1.0) and the best pollution emis-
sion (w = 0.0) of case C are given in Table 10, compared
with other results from the literature. In terms of the best cost,
KSO obtains a minimum result of 121376($/h) especially
better than SMPSO, LMPSO, QOTLBO and NGPSO which
were just on the Pareto-front. KSO saves 37($/h) fuel cost
compared with IABC-LS [37], ABCDP [37], ABCDP-LS [37]
HPSOGSA [38] and MA&-PSO [40] which has the second
best result. And for the best emission, KSO also obtains a
minimum result of 176682(ton/h) among all the algorithms.
The statistical results of fuel cost and emission pollution are
tabulated in Table 11, which shows that KSO is more robust
than the compared algorithms. So it can be concluded that
KSO performs much better than all the algorithms in the
literature on case C.

V. CONCLUSION

This study proposed a new meta-heuristic algorithm of
KSO to deal with EED problem, which maps a non-linear
objective function into a linear one with higher-dimension.
When applied in the 3 real-world cases of EED problems,
the Pareto-front of KSO is much better than the best comprise
solution of most algorithms. Moreover, no matter on best
fuel cost or best total emission, KSO performs better than
all the compared algorithms in the literature. It is worth
noting that KSO performs much better on case C than case
A and B, which has more generators. So in general, KSO
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achieved a better performance on EED problem, and no hyper
parameters need to be tuned.

Although the model of EED problem in this study is
static, KSO can also deal with the dynamic scenarios(e.g.
the external load changes). The study needs to establish the
model of EED problem with the external load changing and
deal with some new constraints. It can be expected that KSO
may perform competitively on the dynamic EED problem
which have more decision variables, because it perform better
on case C with more generators. Future studies may also
aim to introduce some distributed algorithms to decompose
the global OPF problem into regional sub-problem for ultra-
large scale multi-area power systems, or an interval fuzzy
optimization-based technique to choose more optimal trade
off solutions, or a non-dominated constraints sorting strategy
to improve KSO for an MOP edition.
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