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ABSTRACT With the increasing concern over environment protection, Economic Emission Dispatch (EED)
problem has received much attention. It is essentially a Multi-objective Optimization Problem, which
minimizes both fuel cost and emission pollution simultaneously, as well as meets some system limits. This
study transforms EED problem to a single-objective problem with weighted sum method, and then use
Newton method to solve the equality constraint iteratively and introduce a common penalty function to deal
with the inequality constraint. Moreover, this study tries to propose a new meta-heuristic algorithm inspired
by kernel tricks to solve EED problem with no hyper parameters to be tuned. The new algorithm can map a
non-linear objective function into a linear one with higher-dimension. Thus the optimization process could
be transformed into a linear process, which is more likely to get the optimum solution. When applied in the
3 real-world EED cases with valve point, the new algorithm achieved a better performance compared with
other algorithms in the literature.

INDEX TERMS Economic emission dispatch, Kernel search optimization, meta-heuristic algorithm, swarm
intelligence.

I. INTRODUCTION
Economic emission dispatch problem (EED) has become
an interesting and important task in power system as the
environment protection gets more and more attention. EED
problem is essentially a Multi-objective Optimization Prob-
lem (MOP) [1], which minimizes both fuel cost and emission
pollution simultaneously, as well as meets some system limits
such as power balance and generation limits.

In the recent decades, a large number of researches have
been proposed to solve EED problem. However, conventional
methods such as linear programming [2], quadratic program-
ming [3] or interior point technique [4] are not satisfactory
for solving EED as they are sensitive to the initial solution
and often trapped in the local optimum. Therefore, many
meta-heuristic optimization algorithms have been proposed
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in the literature to solve the dispatch problem. In general,
there are mainly two approaches to solve the EED problem,
one is converting the MOP into a single objective optimiza-
tion problem(SOP). For instance, Abdelaziz introduced a
modified price penalty factor to convert two objectives of
fuel cost and emission into a single one and used flower
pollination algorithm (FPA) [5] to solve it. Simulation results
of both small and large scale power system indicate the
robustness of FPA.Mahdi et al. used a unit-wise price penalty
factor to convert all the objectives into a single objective
and showed the inclusion of quantum computing idea to bat
algorithm for CEED problem was a useful and reliable tool
for solving such many-objective optimization problem [6].
Dosoglu et al. presented symbiotic organisms search (SOS)
algorithm to solve CEED problem with price penalty fac-
tor [7]. In the meantime, many researchers have applied the
weighted summethod to solve multi-objectives optimization.
Hota et al. presented a fuzzy base modified bacterial foraging
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algorithm (MBFA) [8] for dealing with the EED problems.
Shubham et al. used a Fuzzy Clustering based Particle Swarm
Optimization algorithm (FCPSO) [9] to tackle the nonlinear
multi-objective EED problems. Jadoun et al. combined two
objectives into a single one by suggesting adjusted fuzzy
membership functions and solved it with Modulated Particle
Swarm Optimization (MPSO) [10].

As for the second approach, many Pareto-based multi-
objective meta-heuristic algorithms are developed for
minimizing both the fuel cost and emission pollution
simultaneously. Abido has first developed and successfully
applied Niched Pareto Genetic Algorithm (NPGA) [11],
Non-dominated Sorting Genetic Algorithm (NSGA) [12],
Multi-objective Particle SwarmOptimization (MOPSO) [13],
Strength Pareto Evolutionary Algorithm (SPEA) [12], Multi-
objective Evolutionary Algorithms (MOEA) [12] to solve
EED problems and the experiment results confirm the poten-
tial and effectiveness of these algorithms. Zhao et al. used
a variant of NSGA-II algorithm and an external penalty
function to deal with a dynamic economic dispatch model of
micro-grid [14]. Silva proposed a new scheme for the com-
bination method to improve scatter search (ISS) for the EED
problem [15], which is a capable candidate for dealing with
EED problem. Roy and Bhui proposed quasi-oppositional
teaching learning based optimization (QOTLBO) [16] to cope
with EED problem with valve point loading. The simula-
tion experiments of four test systems show the compara-
tively better cost and emission results compared with other
algorithms. Qu et al. used summation based multi-objective
differential evolution (SMODE) [17] algorithm to solve EED
problem with stochastic wind power which yields superior
solutions. Zhu et al. used an improved multi-objective evo-
lutionary algorithm based on decomposition to solve CEED
problem [18]. Chen and Zeng et al. proposed a con-
strained multi-objective population extremal optimization
(CMOPEO) algorithm to solve EED problem with renewable
power generations and the the experimental results showed
the better performance compared with the algorithms in the
literature [19], [20].

From the meta-heuristic algorithms applied in the EED
problems above, it is difficult to choose the best comprise
solution on the Pareto Front. And even little improved solu-
tions are crucial and rewarding to the environmental pro-
tection and economic operation. Moreover, no matter SOP
algorithms or MOP algorithms, they usually need to tune
the hyper parameters carefully to find the best solution.
Thus the present study tries to propose a new meta-heuristic
optimization algorithm based on kernel tricks to deal with
EED problem with no hyper parameters to be tuned, and use
weighted sum method to transform MOP into SOP. The new
meta-heuristic algorithm, named Kernel Search Optimization
(KSO), can map a non-linear function into a linear one with
higher-dimension. Thus the optimization process of nonlin-
ear function could be transformed into a linear optimization
process. When applied in the 3 real-world EED cases with

valve point, the new algorithm achieved a better performance
compared with other algorithms in the literature.

The remaining parts of this paper is arranged in this order;
section 2 gives the basic theoretical model of EED problem.
Section 3 presents the principle and details of new opti-
mization algorithm of KSO. Section 4 elaborates the results
of 3 real-world EED cases of KSO compared with other algo-
rithms in the literature. Then section 5 has notable remarks
and the conclusion.

II. ECONOMIC EMISSION DISPATCH PROBLEM
The EED problem needed to minimize both the total fuel
costs and harmful pollutant emission with various power
constraints by adjusting the output of each power plant. The
objective function of the fuel costs was stated as follows [21]:

C =
N∑
i=1

[ai + biPi + ciP2i +
∣∣∣ei sin(fi(Pmin

i − Pi))
∣∣∣] (1)

where C is the fuel cost; ai, bi, and ci are the cost coefficients
of the ith generator; ei and fi are the valve point effect coef-
ficients; Pi is the real power output; and N is the number of
generating units in the system. If ei and fi are both 0, it is
called EED problemwithout valve point; else it is called EED
problem with valve point.

The objective function of the pollution emission was stated
as follows [22]:

E =
N∑
i=1

[αi + βiPi + γiP2i + ηi exp(δiPi)] (2)

where E is the pollution emission, and αi, βi, γi, ηi, and δi are
the emission coefficients.

This is a multi-objective optimization problem that has two
conflicting objectives of C and E. There are many methods
to choose the best comprise solution by transforming MOP
into a single-objective problem. One is weighted summethod
(WSM) that introduces a weight factor to combine the two
objectives together. The final objective function had the fol-
lowing form [23]:

F = wC + γ (1− w)E (3)

where w is a weight factor, γ is scaling factor.
The EED constraints were as follows:
(i) Power balance constraints: The total power of all the

generators must meet the demand and the loss of power
system [24].

N∑
i=1

Pi = PD + PL ,PL=
N∑
i=1

N∑
j=1

PiBijPj+
N∑
i=1

B0iPi+B00

(4)

whereBij is the loss coefficient,N is the number of generators,
PL is the transmission losses and PD is the system load.
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(ii) Power capacity constraints: The output of each gener-
ator ranged from its minimum and maximum outputs.

Pmin
i ≤ Pi ≤ Pmax

i (5)

where Pmax
i and Pmin

i are the upper and lower bounds for the
ith power output.

To solve EED problem with swarm intelligence algo-
rithm, the inequality constraint of Eq.5 is generally satisfied,
because the upper and lower limits can be set in the initializa-
tion stage of swarm intelligence. But the equality constraint
of Eq.4 is difficult to be satisfied. So Newton method is
introduced here to solve the equality constraint iteratively.

Supposing Pi is the output of the ith generator, i =
1, 2, . . . ,N − 1.

Pi = Pmin
i + rand[0, 1]× (Pmax

i − Pmin
i ) (6)

Pi(i = 1, 2, ...N − 1) can satisfy the inequality constraint
of Eq.5. The output of the Nth generator PN can be solved
iteratively by equation 4 and the iterative solving steps are as
follows:
Step 1: Calculate the original output of the Nth genera-

tor PN by Eq.4

Pold
N
= PD −

N−1∑
i=1

Pi (7)

where Pold
N

is the original output of the Nth generator.
Step 2: Calculate the power loss according to the output of

the N generators by Eq.5.

Pold
L
=

N∑
i=1

N∑
j=1

PiBijPj +
N∑
i=1

B0iPi + B00 (8)

where PN = PoldN .
Step 3: Calculate the new output of the Nth generator PN

Pnew
N
= PD −

N−1∑
i=1

Pi − PoldL
(9)

Step 4:Calculate the error ε =
∣∣PnewN − P

old
N

∣∣. If ε > preset
error, then goto step 2 for the next round; else PN = PnewN .

The output of the Nth generator PN solved by the steps
above, can satisfy the equality constraint of Eq.4, but it is not
certain that PN must fall in the feasible range of [Pmin

N ,Pmax
N ].

So to deal with the inequality constraint for PN , a common
penalty function is introduced as follows:

F̃=F + λ[max(Pmin
N −PN , 0)+max(PN−P

max
N , 0)] (10)

where λ is a penalty factor.
In the model of EED problem above, the total transmission

line loss PL is a function of the output level of the system
generators, and it is commonly approximated by Kron’s loss
formula [27]. Due to the simplicity, the model above has been
widely used in a large number of references, and it is one
of the most common forms for the real power balance con-
straint in the EED problem. The loss coefficient B of Kron’s

loss formula is determined by the network configuration and
parameters. And the loss PL is just the approximation of the
real network loss, which has a model error from the real
loss. Generally, the solution of the approximate model can
meet the requirements of engineering applications. This study
proposed a new optimization algorithm for solving EED
model based on B-coefficient. So the results obtained by KSO
had the same model error just as the traditional incremental
transmission losses algorithms. For the fair comparison with
other algorithms in the literature, this widely used model of
EED problem was chosen in this study.

III. THE PRINCIPLE OF KSO ALGORITHM
In spite of so many dazzling meta-heuristic algorithms to
solve optimization problem, one algorithm may obtain opti-
mal solutions only on some special problems and the hyper
parameters of which needs to be tuned carefully. Even if with
the same hyper parameters but on the different problems,
the results may be far away from the optimal solution. It has
been criticized that the hyper parameters of meta-heuristic
algorithms need to be tuned carefully to fit the special objec-
tive functions. So in this section, we try to propose a robust
optimization algorithm inspired by kernel tricks with no
hyper parameters needed to be tuned. The inspiration is as
follows.

As all the meta-heuristic algorithms search the optimal
solution of the objective function through a nonlinear iterative
process, which is essentially a linear incremental (finding
maximum) or decremental (finding minimum) process in
a higher dimensional space. And kernel trick can map the
nonlinear objective functions to the linear ones with higher
dimensions. Therefore, the optimization process for nonlin-
ear functions can be transformed into that for linear ones by
kernel trick, which can thus adapt different objective func-
tions and no hyper parameters need to be tuned. The details
of KSO are as follows.

For any nonlinear function y = f (x), x = (x1, x2, . . . xn),
it could be transformed into a linear function when mapped
into a higher-dimensional space by the mapping function
u = ϕ(x),where u is an m-dimensional vector and m�n.
The schematic diagram is shown in Fig.1.The higher the
dimension is, the more likely it is transformed to a linear

FIGURE 1. Low dimensional space mapped into high dimensional space.
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one [25]. That is

y = f (x) = ωT • u+ b

where ω = (ω1, ω2, . . . ωm) and u = (u1, u2, . . . um) are both
m-dimensional vectors.

Meanwhile, the original vector in the n-dimensional space
mapped to the m-dimensional vector ω is set to be a, that
is ω = ϕ(a), a = (a1, a2, . . . an). ϕ(a) is the slope of the
hyper-plane in the m-dimensional space, which indicates the
direction of optimal value of the hyper-plane. So,

y= f (x)=ωT • u+b=ϕ(a) • ϕ(x)+b=K (a, x)+b (11)

where K (a, x) is kernel function.
Therefore, the optimal value of the original objective func-

tion in the low-dimensional space can be obtained by solving
the optimal value of linear function in the high-dimensional
space. Unfortunately, it is difficult to solve the optimal value
of the high-dimensional linear function directly, but it is
easier to solve the optimal value of fitted kernel function cor-
responding to the objective function. So the optimal value of
the objective function can be obtained by solving the optimal
value of the fitted kernel function. Any function which sat-
isfies Mercer’s theorem can be used as kernel function [26],
such as linear kernel function, polynomial kernel function and
radial basis (RBF) function, etc. The RBF function can map
the objective functions to the infinite dimensional space [22]
in which the possibility of being linear functions arises. So the
RBF function is used here

K (x, y) = exp(
‖x − y‖2

σ
)

Then

y = f (x) = K (a, x)+ b = exp(
‖x − a‖2

σ
)+ b (12)

It should be noted that the objective function and the
fitted kernel function are not equal at all the points, only
at some fitted points. The fitted function is used to fit the
objective function approximately. Although the optimum of
fitted kernel function may not be the strict minimum of the
objective function, it can get close to the optimal value grad-
ually by several iterations. As long as the optimal value of the
fitted kernel function of Eq.12 is obtained, the approximate
optimum value of the objective function in an iteration of
optimization is obtained. Here the minimum of Eq.12 in
different cases are given as follows directly (proof omitted),
assuming that x ∈ [xmin, xmax], the minimum is xbest .

xbest =



xmin σ < 0 and a ≥ 1
2 (xmin + xmax)

xmax σ < 0 and a < 1
2 (xmin + xmax)

xmin σ > 0 and a < xmin

a σ > 0 and xmin ≤ a ≤ xmax

xmax σ > 0 and a > xmax

(13)

As is seen from Eq.13, the minimum value xbest is at the
boundary, or is equal to vector a, which is the preimage
in the low-dimensional space mapped to the hyper-plane

slope in the high-dimensional space. After obtaining σ and a,
the minimum xbest of fitted kernel function could be obtained
according to Eq.13, which is the approximate minimum of
the objective function in an iteration. Therefore, theminimum
xbest which may be equal to the vector a plays a key role in the
optimization process actually. It gives the search direction in
the iterative optimization process. In view of this, the vector
a is named as the kernel vector especially here.
Next, σ and a are solved in detail as follows, from Eq. 12

we can obtain

σ ln(y− b)=‖x − a‖2

= (x1 − a1)2+(x2 − a2)2+. . . (xn − an)2 (14)

This is the equation for σ and a1, a2, . . . an, a total of n+1
unknowns, so n + 1 non-linear equations are needed to be
established for solving the roots, which needs large amount
of computation. Here proposes an easier method. Assuming
that another vector temp1 = (x ′1, x

′

2, . . . x
′
n), the ith item of

original vector x and form a new vector (x1, x2, . . . x ′i, ...x
′
n).

The function evaluation of the new vector is y′i, and n new vec-

tors form a matrix x ′ =


x ′1, x2, . . . xi, . . . xn
. . .

x1, x2, . . . x ′i, . . . xn
. . .

x1, x2, . . . xi, . . . x ′n

, the function

evaluation of the matrix x’ is y′ = (y′1, y
′

2, . . . y
′
i, ...y

′
n), then

σ ln(y′i − b) = (x1 − a1)2 + (x2 − a2)2 . . .

+ (x ′i − ai)
2 . . .+ (xn − an)2 (15)

Eq. 14- Eq. 15, we have

σ ln(
y− b
y′i − b

) = (xi − ai)2 − (x ′i − ai)
2

= (xi + x ′i − 2ai)(xi − x ′i) (16)

That is,

ai =
1
2
[xi + x ′i − σ ln(

y− b
y′i − b

)/(xi − x ′i)] (17)

Assuming that one more vector temp2 = (x ′′1, x
′′

2, . . . x
′′
n),

the jth item x ′′j , j is one random value in the range
of [1,n], is taken out to replace the corresponding jth
item of original vector x and form a new vector x ′′ =
(x1, x2, . . . x ′′j, . . . xn). The function evaluation of new vector
is x ′′ = (x1, x2, . . . x ′′j, . . . xn), then

aj =
1
2
[xj + x ′j − σ ln(

y− b
y′j − b

)/(xj − x ′j)]

=
1
2
[xj + x ′′j − σ ln(

y− b
y′′ − b

)/(xj − x ′′j)]

Therefore

σ =
x ′j − x

′′
j

ln( y−by′j−b
)/(xj − x ′j)− ln( y−by′′−b )/(xj − x

′′
j)

(18)
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Because b is irrelevant to obtaining theminimum in a linear
optimization, the values of y−b, y′−b, y′′−b are normalized
in the range of [1,e] by the values of y, y′, y′′. That is

y− b =
(y− ymin)(e− 1)
ymax − ymin

+ 1

where ymin is the minimum of y, y′, y′′, ymax is the maximum
of y, y′, y′′, e is natural exponent.

Thus after σ is obtained, a can be obtained when i ranges
from 1 to n in turn according to Eq. 17. And the approximate
optimum xbest of the objective function in this iteration can
be obtained according to Eq. 13.

A. THE STEPS OF KSO ALGORITHM
The optimum xbest obtained by Eq. 13 is just the approximate
to the optimum of the original objective function. So some
iterations are needed to improve the accuracy of the global
optimal value xgbest , where the update equation plays a key
role. In the iterative process of getting close to the real optimal
value of the objective function, the approximate optimum
xgbest and the global optimum xbest , both indicate the search
direction of the optimization. Furthermore, in order to accel-
erate the convergence, the equation above is multiplied by an
exponential reduction factor and the final update equation is:

xnew =


xbest
If f (xbest ) < f (xgbest )

xgbest + rand ∗ exp( −tTmax
) ∗ (xbest − xgbest )

Else

(19)

where Tmax is the maximum number of iterations, t is the
current number of iterations.

Let ′s make a summary of the KSO algorithm. With the
points initialized randomly, σ and a are calculated according
to Eq. 18 and Eq. 17. Then xbest , is obtained according Eq. 13.
Finally, the points are updated according to Eq. 19 and go
to the next iteration until the maximum iteration is met. The
detail process of KSO algorithm is shown in Fig. 2, and the
pseudo code is shown as Algorithm 1.

IV. EXPERIMENTAL RESULTS
In the present study, three classic cases of EED problem with
valve point are introduced to validate the performance of
KSO, with scale from small to large. Case A: the standard
IEEE-30 bus system (PD = 2.834pu), is a widely used
test case,and the results of all the compared algorithms
have no big difference and even little improvement was
difficult for the algorithms [27]; Case B: 10-unit system
(PD = 2000MW), is a medium scale power system; Case C:
40-unit system (PD = 10500MW), is more complex and dif-
ficult, which can verify the performance of KSO better. The
detailed data of the three cases are extracted from the previous
studies [27].

In the proposed KSO, the population size N = 10, max-
imum iteration M = 100, the final results are the best

solutions of 30 runs. The application of KSO to EED problem
is implemented on the computer with 2.4-GHz Intel Xeon
central processing unit E5-2665 and 32G of random-access
memory using Matlab2014b.

FIGURE 2. The flowchart of kernel search optimization algorithm.
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TABLE 1. The best solutions for the fuel cost, total emission and transmission loss for w values of case A.

Algorithm 1 Kernel Search Optimization
1Initialize points x
2While t ≤ Tmax do
3 Initialize new points temp1 and temp2
4 For i from 1 to D step 1
5 x ′(i)← temp1(i)
6 End for
7 Take a random integer j
8 x ′′(i)← temp2(j)
9 y← {f (x), f (x ′), f (x ′′)}, ybest ← min(y),
˙ yworst ← max(y), xgbest ← arcmin(y)
10 y← (y−ymin)(e−1)

ymax−ymin
+ 1

11 sigma←
x ′j−x

′ ′
j

ln( y−b
y′j−b

)/(xj−x ′j)−ln(
y−b
y′′−b

)/(xj−x ′ ′j)

12 For i from 1 to D step 1
13 ai← 1

2 [xi + x
′
i − σ ln( y−by′i−b

)/(xi − x ′i)]
14 Calculate xbest according to Eq.13
15 End for
16 ya← f (xbest )
17 If ya < ybest then
18 xnew← xbest ,ybest ← ya
19 Else
20 xnew← xgbest + (xbest − xgbest ) ∗ rand ∗ e−t/Tmax

21 End if
22End while
23Print ybest

Table 1 shows the solution values of KSO for case A
with the weight factor w ranging from 0 to 1, the step size
of 0.1 and γ = 1000. The values of units P1 to P6 are the
active power of the six generators of the system. The value
of V is the violation of the equality constraints calculated by

V = |
N∑
i=1

Pi − PD − PL | because the inequality constraints

are satisfied easily by the swarm intelligence algorithms. The
violation V is an important parameter as the power plants
should meet the load demands as much as possible for the
stability of the power system. PL denotes the transmission
loss of the power system. And the fuel cost C and emis-
sion pollution E together form the Pareto-front as shown

FIGURE 3. The Pareto-front of KSO and the best comprise solutions of
other algorithms for case A.

in Fig. 3, which also illustrates the best comprise solutions
obtained by some algorithms in the literature. The farther the
best comprise solutions are above the Pareto-front of KSO,
the better performance KSO has compared with theses algo-
rithms. As is seen from Fig. 3, the best comprise solutions of
NSGA- [17], NPGA [11], MOPSO [13] are located far
away above the Pareto-front and the ones of SPEA [12],
FSBF [28] and NSBF [28] are also above the Pareto-front
which implies the better performance of KSO than them.
Meanwhile, the best comprise solutions of SMODE [17],
MOEA/D [12], MBFA [17] and NGPSO [27]are just on
the Pareto-front which mean the competitive performance of
KSO with them.

The best fuel cost (w = 1.0) and the best pollution emis-
sion (w = 0.0) of case A are given in Table 2, compared with
other results from the literature. At first glance, the results
of all the algorithms have no big difference and even little
improvement is difficult for the algorithms. In terms of
the best cost, KSO obtains a better result of 605.8960($/h)
than most of the algorithms except ISS, especially than
SMODE [17], MOEA/D [12], MBFA [8] and NGPSO [27]
which perform competitivewithKSOon the Pareto-front. ISS
obtains fewer cost but with a much larger value of V, which
means the greater violation of equality constraints. For the
best emission, KSO obtains the best result of 0.194178(ton/h)
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TABLE 2. Comparison of the best fuel cost and best emission rate of case A with different algorithms.

TABLE 3. The statistical results of fuel cost and emission pollution in case A.

TABLE 4. The best solutions for the fuel cost, total emission for w values of case B.

among all the algorithms. So in the comparison for both the
best fuel cost and the best pollution emission, only KSO
obtains the best result. So it can be concluded that KSO
performs better than all the algorithms on case A.

Table 3 gives the statistical results of fuel cost and emis-
sion pollution in case A over 30 runs. To be more precise,
the statistical metrics include themaximum,minimum,mean,
median and standard deviation. From Table 3, it can be seen
that KSO performed better and more robust than the com-
pared algorithms in the literature.

Table 4 shows the solution values of KSO for case B
with the weight factor w ranging from 0 to 1, the step
size of 0.1 and γ = 10. And the fuel cost C and
emission pollution E together form the Pareto-front as
shown in Fig. 4, which also illustrates the best comprise
solutions obtained by some algorithms in the literature. As is
seen from Fig. 4, the best comprise solutions of NSGA- [17],
FPA [5] are located above the Pareto-front clearly and the
ones of MODE [22], PDE [22], SPEA2 [22], GSA [29] and
εv-MOGA [30] are also above the Pareto-front and locate
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TABLE 5. Comparison of the optimal solution values for the fuel cost (w=1) of case B with different methods.

TABLE 6. Comparison of the optimal solution values for the total emission (w=0) of case B with different methods.

FIGURE 4. The Pareto-front of KSO and the best comprise solutions of
other algorithms for case B.

near the solution of KSO when w = 0.5, which implies that
the solution of KSO dominates the best comprise solutions
of these algorithms. Meanwhile, the best comprise solutions
of BSA [31], QOTLBO [16], TLBO [16], OGHS [32],
NGPSO [27] are just on the Pareto-front which mean the
competitive performance of KSO with them.

The best fuel cost (w = 1.0) and the best pollution emis-
sion (w = 0.0) of case B are given in Table 5 and Table6,
compared with other results from the literature. In terms of

FIGURE 5. The Pareto-front of KSO and the best comprise solutions of
other algorithms for case C.

the best cost, KSO obtains the best result of 111497.27($/h)
compared with all the algorithms especially better than BSA,
QOTLBO, TLBO, OGHS, NGPSO which are just on the
Pareto-front. KSO saves 0.36($/h) fuel cost compared with
OGHS which has the second best result. For the best emis-
sion, KSO obtains the best result among all the algorithms
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TABLE 7. The statistical results of fuel cost and emission pollution in case B.

TABLE 8. The best solutions for the fuel cost,total emission for w values of case C.

TABLE 9. The solution when w=0.6 in the Pareto-front of KSO compared with other algorithms of case C.

although most algorithms are the same as KSO. The statis-
tical results of fuel cost and emission pollution are tabulated
in Table 7, which shows that KSO is more robust than the
compared algorithms in the literature. In summary, all of this
show the better performance of KSO on case B.

Table 8 shows the solution values of KSO for case C
with the weight factor w ranging from 0 to 1, the step size

of 0.1 and γ = 0.1. And the fuel cost C and emission
pollution E together form the Pareto-front as shown in Fig.5,
which also illustrates the best comprise solutions obtained
by some algorithms in the literature. As is seen from Fig.5,
the best comprise solutions of GSA [25], MODE [8], PDE
[22], TLBO [16], FPA [5], εv-MOGA [30], SPEA2 [22] and
NSGA- [17] are located above the Pareto-front clearly and
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TABLE 10. Comparison of the best fuel cost and best emission rate of case C with different algorithms.

TABLE 11. The statistical results of fuel cost and emission pollution in case C.

near the solution of KSO when w = 0.6, shown in Table 9
for details,which implies that the solution of KSO dominates
the best comprise solutions of these algorithms. Meanwhile,
the best comprise solutions of SMPSO [10], LMPSO [10],
QOTLBO [16] and NGPSO [27] are just on the Pareto-front
which mean the competitive performance of KSO with them.

The best fuel cost (w = 1.0) and the best pollution emis-
sion (w = 0.0) of case C are given in Table 10, compared
with other results from the literature. In terms of the best cost,
KSO obtains a minimum result of 121376($/h) especially
better than SMPSO, LMPSO, QOTLBO and NGPSO which
were just on the Pareto-front. KSO saves 37($/h) fuel cost
compared with IABC-LS [37],ABCDP [37],ABCDP-LS [37]
HPSOGSA [38] and MAθ -PSO [40] which has the second
best result. And for the best emission, KSO also obtains a
minimum result of 176682(ton/h) among all the algorithms.
The statistical results of fuel cost and emission pollution are
tabulated in Table 11, which shows that KSO is more robust
than the compared algorithms. So it can be concluded that
KSO performs much better than all the algorithms in the
literature on case C.

V. CONCLUSION
This study proposed a new meta-heuristic algorithm of
KSO to deal with EED problem, which maps a non-linear
objective function into a linear one with higher-dimension.
When applied in the 3 real-world cases of EED problems,
the Pareto-front of KSO is much better than the best comprise
solution of most algorithms. Moreover, no matter on best
fuel cost or best total emission, KSO performs better than
all the compared algorithms in the literature. It is worth
noting that KSO performs much better on case C than case
A and B, which has more generators. So in general, KSO

achieved a better performance on EED problem, and no hyper
parameters need to be tuned.

Although the model of EED problem in this study is
static, KSO can also deal with the dynamic scenarios(e.g.
the external load changes). The study needs to establish the
model of EED problem with the external load changing and
deal with some new constraints. It can be expected that KSO
may perform competitively on the dynamic EED problem
which havemore decision variables, because it perform better
on case C with more generators. Future studies may also
aim to introduce some distributed algorithms to decompose
the global OPF problem into regional sub-problem for ultra-
large scale multi-area power systems, or an interval fuzzy
optimization-based technique to choose more optimal trade
off solutions, or a non-dominated constraints sorting strategy
to improve KSO for an MOP edition.
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