
Received November 18, 2019, accepted December 11, 2019, date of publication January 10, 2020, date of current version January 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965624

A GPU-Based Framework for Generating Implicit
Datasets of Voxelized Polygonal Models for the
Training of 3D Convolutional Neural Networks
CARLOS J. OGAYAR-ANGUITA , ANTONIO J. RUEDA-RUIZ , RAFAEL J. SEGURA-SÁNCHEZ ,
MIGUEL DÍAZ-MEDINA , AND ÁNGEL L. GARCÍA-FERNÁNDEZ
Department of Computer Science, EPS Jaén, University of Jaén, 23071 Jaén, Spain

Corresponding author: Carlos J. Ogayar-Anguita (cogayar@ujaen.es)

This work was supported in part by the Ministerio de Ciencia, Innovación y Universidades and in part by the European Union through the
Research Project under Grant RTI2018-099638-B-I00.

ABSTRACT In this paper we present an efficient GPU-based framework to dynamically perform the
voxelization of polygonal models for training 3D convolutional neural networks. It is designed to manage
the dataset augmentation by using efficient geometric transformations and random vertex displacements
in GPU. With the proposed system, every voxelization is carried out on-the-fly for directly feeding the
network. The computing performance with this approach is much better than with the standard method,
that carries out every voxelization of each model separately and has much higher data processing overhead.
The core voxelization algorithm works by using the standard rendering pipeline of the GPU. It generates
binary voxels for both the interior and the surface of the models. Moreover, it is simple, concise and very
compatible with commodity hardware, as it neither uses complex data structures nor needs vendor-specific
hardware or additional dependencies. This framework dramatically reduces the input/output operations, and
completely eliminates the storage footprint of the voxelization dataset, managing it as an implicit dataset.

INDEX TERMS Voxelization, B-rep, boundary representation, polygonal meshes, convolutional neural
network, 3D-CNN, geometric deep learning.

I. INTRODUCTION
3d object recognition is a key component of many systems,
such as vision, surveillance, augmented reality, robotics and
self-driving vehicles, among others. With the increasing pop-
ularization of 3D acquisition technologies, those systems will
greatly benefit from better 3D object classification methods.
Among them, the most successful are based on machine
learning, and especially deep learning. Within this research
field, one of the most promising methods is the 3D Con-
volutional Neural Network (3D-CNN), which relies on a
volumetric representation of the data. Several methods based
on 3D-CNNs have been recently proposed for the purposes
of object classification [1]–[9].

Generally speaking, machine learning methods heavily
rely on the availability of a large amount of data, so a scarce
dataset consisting of real-world objects (typically captured

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei .

with 3D scanning technologies) is not the best option for
training a neural network. Instead, current trends are based
on larger sets of synthetic objects, mainly Computer-Aided
Design (CAD) models, which are normally represented by
a boundary representation (B-rep) [1], [9]–[12]. With a
3D-CNN, one of the most appropriated object representations
is the voxel model, obtained by voxelization or 3D rasteriza-
tion [1]–[4], [9].

The voxelization of a 3D model consists of converting
its continuous geometric representation into a set of voxels
that approximates it. Voxel stands for volume element, in the
same way that pixel stands for picture element. Voxel rep-
resentations of 3D models have many applications in solid
modeling, volume graphics and physical simulation. They
have been extensively used for rendering objects which are
difficult to represent with traditional surface representations,
like clouds, fire, smoke or terrain models [13]. A voxelization
suffers from the limitations of any discrete representation
of a continuous signal. Therefore, the resulting data will be

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 12675

https://orcid.org/0000-0003-0958-990X
https://orcid.org/0000-0001-7692-454X
https://orcid.org/0000-0002-3075-6963
https://orcid.org/0000-0003-2577-323X
https://orcid.org/0000-0002-8183-7130
https://orcid.org/0000-0003-0810-1458

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

FIGURE 1. Some examples of voxelized CAD models.

limited by the sampling frequency, which is directly related to
the voxel space resolution. Moreover, each sampling (a voxel
in our case) of the original signal (the geometry of the 3D
model) will be quantized to a given level of precision. Typical
voxelizations for machine learning are binary, having a single
presence value that can be represented by a single bit (Fig. 1).

In this paper we present an efficient framework for dynam-
ically performing the voxelization of B-rep models based
on polygonal meshes. The proposed method is designed to
be used for training 3D CNNs, and takes into account sev-
eral aspects such as the dataset augmentation, geometrical
transformations and the storage footprint of the voxelizations.

The GPU-based algorithm used for voxelizing 3D models is
concise, very compatible with commodity hardware, and it
neither uses complex data structures nor has additional depen-
dencies such as CUDA. Our proposal reduces the loading and
saving operations to the bare minimum, and completely elim-
inates the storage footprint. Consequently, this framework
manages the voxelized 3D models dataset as a truly implicit
dataset.

II. RELATED WORK
Deep learning is one of the most active fields in machine
learning. Among the available techniques, CNNs have been
successfully used on images for many tasks, such as image
classification, semantic segmentation or object detection.
Later, in the context of Deep Learning for Graphics [14],
CNNs have been used for identifying and classifying 3D
data, from single points to structured data considered as
objects. Since deep networks need a large amount of training
data to achieve a good performance, real-world objects are
not the best option, because their capture with 3D scanning
technology, processing and labeling, is a cumbersome task.
Instead, there are many approaches that depend on 3D CAD
models for the training [1]–[4], [9]. By using CAD models,
the features of the samples from the training dataset are totally
under control, especially the topology. This also allows to
have other useful attributes, such as surface normals, colors,
labels for segmentation, etc. [1], [9]–[12].

There are several network architectures for learning from
CADmodels, which intrinsically involve the use of a specific
data structure. The main representations used in deep learn-
ing for graphics are images, volume elements, meshes and
point clouds [8], [14]. All of them can be used to describe
3D objects, although meshes are preferred for most tasks in
computer graphics, due to their completeness and precision.
In deep learning there are many 3D object segmentation and
classification methods based on CNNs [2], [4], [8]. Most of
them use volumetric information for representing the objects
[1], [2], [4]–[6], [15]–[18], or a set of images resulting from
projections of the objects from several virtual camera posi-
tions [7], [8]. However, volumetric representations provide
more suitable spatial information to identify and classify 3D
objects. Among current research results we can highlight the
work from Wu et al. [1], which introduces a dataset to evalu-
ate 3D shape classifiers (ModelNet), and Maturana et al. [2]
which introduces Voxnet, an architecture for recognizing
objects from point clouds in real time that integrates a vox-
elization with a supervised 3D-CNN. The authors tested their
system with LiDAR, RGBD and CAD data. Other works are
also based on this latter approach [18]. In addition to this,
some works mix several object representations in order to
improve the learning, including voxelizations [19].

Working with 3D-CNNs worsen the so called curse of
dimensionality. Because of this, voxelizations are normally
generated at low resolutions. However, sparse 3D-CNNs
can reduce this issue [20]–[22], allowing greater volumet-
ric resolutions in the architecture of the network. Other

12676 VOLUME 8, 2020

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

works also use hierarchical representations like octrees [23]
to further lessen the effect of this issue. Related to this,
Ghadai et al. [24] propose a multi-resolution CNN for object
recognition based on a multi-level voxel grid. In addition to
this, with upcoming hardware and more available memory,
it is expected that in the near future more detailed voxeliza-
tions could be used with CNNs, so an efficient voxelization
pipeline as the one proposed here would be very useful.

A. RELATED WORK ON VOXELIZATION
The voxelization of a 3D model has many applications and it
is a well researched topic. There are many works that propose
solutions for converting a 3D model B-rep representation to
voxels. Most of these works can be grouped according to four
main features: (1) the use of densities in contrast to binary
values for each voxel, (2) the voxelization of the surface
and/or the interior, (3) the geometrical method for calculating
each voxel, or (4) the computational method used for the
processing. Following, some previous works on voxelization
are discussed according to these criteria.

1) VOXEL VALUES
In general, most voxelization methods are designated
as binary rasterizarion algorithms [25]–[33], because the
result is a simple classification of whether the voxels lie
inside or outside the 3D model. The main drawback is that
they suffer from aliasing problems. To alleviate this, other
algorithms focus on the quality and accuracy of the result by
using some form of filtering [34] or distance field techniques
[35]. In contrast to binary approaches, these algorithms assign
a density value to each voxel that reflects its degree of occu-
pancy by the 3D model. However, most 3D-CNN architec-
tures work with binary voxels [1], [2], [4], therefore this
matter remains open for further experimentation.

2) SURFACE VOXELIZATION AND FULL VOXELIZATION
Avoxelization can produce presence values for each resulting
voxel from the surface of a 3D model [25]–[30], [34] or also
from the interior [26], [31]–[33]. The first voxelization algo-
rithms were mere extensions of 2D rasterization algorithms
to a 3D space. These methods produce a 3D rasterization of
graphical primitives, mainly polygons. In this case, the vox-
elization of a 3D model results in a volumetric representation
of the surface of the model, but not of its interior. Other
methods can also calculate the interior. Fig. 2 shows the
difference between voxelizing only the surface of amodel and
performing a full voxelization.

Both approaches can be implemented in GPU. Some pro-
posals perform a GPU-based surface voxelization of polyg-
onal models [25], [28], [29]. Those methods are very fast,
but only rasterize the surface of the models. In this category,
the best performance is achieved by Schwarz and Seidel [26],
and later by Pantaleoni [27]. Both of them use a massively
parallel approach for computing the surface voxelization,
and can also perform the voxelization of the interior. The
main drawback is their complexity and specific hardware

FIGURE 2. Voxelization of an sphere (left), a cut of the voxelization of its
surface (middle) and a cut of the full voxelization (right).

requirements. The work from Zhang et al. [30] is another
method for voxelization that produces a high-quality surface
voxelization, with better results than previous works [27],
especially at higher resolutions.

Apart from those mentioned above, there are other vox-
elization methods that take into account the interior of
the 3D models (Fig. 2). This is usually not addressed
because full voxelizations are computationally more expen-
sive, or because it is unnecessary for certain applications.
However, as there are 3D-CNNs that require the interior of
the objects, in this work we are more interested in this type
of algorithm. The best voxelization methods that rasterize the
interior of the solid are implemented in GPU. One of the most
cited is the work presented by Fang and Chen [31], which per-
forms a slice-based rasterization using the standard rendering
pipeline. Other classic methods use several views or a multi-
pass rendering approach in order to obtain better results, but
with a performance penalty [36]. The work from Eisemann
and Décoret [33] presents a single-pass technique for the
voxelization of the interior of the solids, with a filtering algo-
rithm that builds a density estimation for calculating surface
normals. The main drawback is that the implementation is not
so straightforward. As mentioned before, the method from
Schwarz and Seidel [26] can rasterize the surface of a 3D
model, but it can also perform a second step for obtaining
the interior, with the possibility of constructing an octree.
The method presented by Young and Krishnamurthy [37]
performs a multi-level voxelization using ray-triangle tests
for the finer levels.

3) METHODS FOR CALCULATING VOXELS
Another important feature of a voxelization algorithm is the
method used for calculating each voxel. Some proposals are
based on a direct rasterization of the graphical primitives
[34], [35]. The work presented by Zhang et al. [30] is an
example of a modern scan-line based method. It produces a
high-quality surface voxelization, with better results than the
fastest alternative [27], especially at higher resolutions. These
3D scan-conversion methods are extensions of their 2D coun-
terparts, and are usually very efficient. However, they suffer
from aliasing, only keep a part of the surface of the objects,
and cannot rasterize their interior. Many other algorithms are
based on a triangle-voxel 3D intersection test for checking
whether a given voxel intersects a given triangle [26], [27].
These computationally intensive solutions have the drawback

VOLUME 8, 2020 12677

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

of the cost of the triangle-voxel intersection test. However,
this is compensated by using GPU-based massively parallel
implementations that present a remarkable performance.

There are some approaches that rely on a GPU slicing-
based voxelization [31]–[33]. In general, this approach works
by moving a slicing plane, in some cases parallel to the
projection plane. This plane is displaced with a constant step
size that depends on the resolution of the voxelization. For
each position of the slicing plane, the object to be voxelized
is rendered, and the intersection between the geometry and
the plane is calculated. These methods also apply masks
for using an integrated presence function that allows the
definition of different materials for the interior. With the
introduction of the geometry shader in modern GPUs, other
methods took advantage of this option, like the proposal of
Chang et al. [28], which is is fast, but only rasterizes the sur-
face of the models. In general, slicing-based algorithms suffer
a performance penalty linked to the resolution, because they
require multiple rendering passes, and therefore the object to
be voxelized must be rendered multiple times. Moreover, this
approach can also produce some aliasing that can be resolved
by a conservative rasterization [25].

4) COMPUTING APPROACHES FOR VOXELIZATION
The technology used to implement a voxelization method
is of paramount importance. It can be CPU-based or GPU-
based, and the latter can be further classified into methods
that use the standard rendering pipeline [28], [29], [31]–[33],
and those that use computational methods, mostly based on
APIs like CUDA or OpenCL [26], [27], [30], [37]. The use
of the rendering pipeline is compatible with almost every
system, which is always a desirable feature. With the GPU
programmable stages (shaders), a particular voxelizer can
be designed with a custom rendering strategy [32], with the
possibility of using more advanced rendering resources like
layered depth images [38]. The geometry shader is often the
preferred GPU programmable resource, as it allows the mod-
ification or creation of new geometry during the rendering
[28], [29]. Our work uses this approach.

On the other hand, modern computational methods run in
a massive parallel fashion for achieving their highest per-
formance [26], [27], [30], [37]. The algorithm presented by
Schwarz and Seidel [26] is considered the state of the art of
the voxelization methods. Later, this method was enhanced
by the work of Pantaleoni [27], which improved the parallel
approach. The algorithm from Young and Krishnamurthy
[37] performs a voxelization with different levels of detail,
using ray-triangle intersection tests computed in GPU. The
main drawback with these last proposals is that they are
somewhat difficult to implement efficiently. They also require
additional dependencies like CUDA (with specific hardware),
which prevents the deployment on a variety of systems.

III. VOXELIZATION FRAMEWORK FOR CNNS
In this section we present the proposed voxelization frame-
work along with its design principles. Fig. 3 shows the

FIGURE 3. The proposed voxelization framework for training a CNN.

overall architecture of the framework for training a voxel-
based CNN. The main goal is to feed the CNN with vox-
elizations of 3D models as fast as possible, including all
the data augmentations achieved using a series of geometric
transformations. The best scenario allows us to get each
voxelization from the GPU and directly feed the CNN. For
achieving this, both components must be integrated into the
same program or be directly available as services, which
heavily depends on the platform used. It would be also possi-
ble to use temporary files for a batch or storing the full dataset
of voxelizations in secondary memory. However, this would
partially defeat the purpose of this work.

For the voxelization framework to be efficient, the core 3D
rasterization method must be as fast as possible. The fastest
voxelization methods in the previous section only work with

12678 VOLUME 8, 2020

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

FIGURE 4. A 2D simplicial covering of a n-sided polygon. A triangle is
generated for every segment, and has a sign for the covering that
depends on the orientation of the segment with respect to O. In this
example the simplicial covering of the polygon is composed of 3 positive
triangles and 2 negative triangles.

the surface of the solids [27]–[30], which is inadequate for
working with some CNNs that require the interior of the
objects for learning properly. Among the state of the art of
the methods that work with the interior of the solids [26],
[32], [33], our voxelization algorithm [32] is one of the most
concise and easy to implement, while having a reasonably
performance. It can directly handle any kind of polygon, not
only triangles, including non-convex, holed or non-manifold.
This is a very desirable feature for working with CAD mod-
els, not needing a polygon tesselator for decomposing n-sided
polygons into non-overlapping triangles. The only drawback
is that it needs topologically closed solids as input in order
to give correct results. On the other hand, in this work the
voxelization algorithm has been updated for allowing dataset
augmentation strategies based on efficient geometric trans-
formations and deformations, which are applied in every vox-
elization batch. Moreover, it is a very compatible GPU-based
approach, because it does not need vendor-specific hardware
nor additional dependencies, such as CUDA [26], [27].

3D models can be loaded into memory from several avail-
able file formats. Since the voxelization method is binary,
only topological information is taken into account. Materials,
textures, animations and other data are ignored. The first thing
to consider is the B-rep representation. We have adapted and
optimized an existing voxelization algorithm [32], of which
more details are presented in section III-A. Unlike most
voxelization algorithms, it can directly handle n-sided polyg-
onal faces without the need for tessellating them into non-
overlapping triangles. Each n-sided polygon is converted to
a triangle set using a 2D simplicial covering (Fig. 4). Logi-
cally, this step is omitted if the polygon is already a triangle.
After that, for each triangle a tetrahedron is created using the
centroid of the model as the fourth point. This tetrahedra set
forms a 3D simplicial covering of the model, and is used
for the rasterization of both the surface and the interior of
the model [32]. Actually, the union of the 2D simplicial
coverings of all the faces of the model can be treated as
a normal triangle mesh. Therefore, the data structure to be
handled by the GPU is completely standard: a list of vertices
shared by a set of triangles, in which each triangle is specified
by three vertex indices. The construction of a tetrahedron
from each triangle is directly carried out in GPU during the
voxelization. Therefore, the first step consists of uploading
vertices and triangles to GPU memory. From then on, all the
voxelizations of the same model can be directly carried out

FIGURE 5. 3D model voxelization workflow. This is the core of the
framework.

only by setting several input parameters of the GPU shaders.
In section III-B we present more details about the GPU-based
implementation.

A. 3D MODEL VOXELIZATION ALGORITHM
In this section we present the fundamentals of the 3D model
voxelization algorithm used, which is based on a previ-
ous work [32]. The theoretical foundation is the point-in-
tetrahedron inclusion test. This method works with 3D solids
defined with a polygonal B-rep, or polyhedron, which is a
standard representation in CAD and solid modeling.

Let G be a polyhedron and O an arbitrary origin point.
G is defined by the polygonal faces f1, f2, ..., fn. Then let
S = T1,T2, . . . ,Tn be a covering of G with 3D simplices
(tetrahedra). For the simplest case, that is, a polyhedron
defined only by triangles, Ti is defined byO and the triangular
face fi. For the general case, which is a polyhedron defined by
n-sided polygons, each face is represented by a 2D simplicial
covering which results in a signed n-triangle set [39] (see
Fig. 4), and therefore a set of tetrahedra is defined for that
triangle set. Then, an arbitrary point P is inside polyhedronG
if the following condition is met:∑

i

sign(Ti) · inclusion(P,Ti) > 0 (1)

where inclusion(P,Ti) = 1 when P ∈ Ti and 0 otherwise;
sign(Ti) = +1 when the vertices of the triangular faces of the
tetrahedron Ti follow a counterclockwise ordering, −1 when
they follow a clockwise ordering, and 0 when the tetrahedron
is degenerated.

This way, a point P inside G is covered by an odd number
of tetrahedra from S. By using the formulation of equation 1,
the voxelization algorithm for a given polyhedra is as follows
(Fig. 5):

VOLUME 8, 2020 12679

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

1) Clear the presence buffer (see below) with a value of 0.
2) Compute the centroid of the polyhedron. Set this point

as origin O.
3) Take every face of the polyhedron and construct its 2D

simplicial covering, which results in a triangle set [39].
For the simplest case, that is, the polygonal face is a
triangle, this step is unnecessary since the 2D simplicial
covering of a triangle is that same triangle.

4) Take each triangle 1ABC from the previous step, and
construct the tetrahedron OABC . This result in a tetra-
hedra set.

5) Voxelize (scan-convert) the tetrahedra set in the pres-
ence buffer using an XOR logical operation.

6) The final state of the 3D presence buffer represents the
voxelization of the polyhedron.

The presence buffer is a 3D array with the same dimension
as the voxel space. Each voxel will have a presence value,
which can be represented with a single bit; 1 means that the
voxel belongs to the polyhedron, whereas 0 means that the
voxel is not occupied by the polyhedron. The scan-conversion
of a tetrahedron in the buffer is done by flipping all the
presence values covered by it. Once every tetrahedron has
been scan-converted, a value of 1 is only present at those
voxels that approximate the interior of the polyhedron. The
centroid of the polyhedron is the best choice for the origin
O. This way, the average size of the tetrahedra is smaller,
which implies a lower total amount of voxels to be processed.
This algorithm is very simple and can handle any kind of
polyhedron, including non-convex, self-intersecting or holed.

This algorithm produces a full voxelization, therefore it
includes both the interior and the surface of the solid. If only
the surface is needed, it can be extracted from the full vox-
elization by using a filtering operation (Fig. 2 shows an
example). This way, every voxel that is adjacent to an empty
voxel is marked as part of the surface. The adjacency is
controlled by the filter. Each voxel has 26 neighboring voxels
that can be queried: 6 at the faces, 8 at the corners, and
12 at the edges. The most common connectivity function
is the 6-connectivity, which takes the six neighbors at the
faces, although different results can be obtained with other
functions, such as 18-connectivity and 26-connectivity.

1) TETRAHEDRA RASTERIZATION
As pointed out before, the core step in the voxelization algo-
rithm is the scan-conversion of a tetrahedron in the presence
buffer, which is in turn a voxelization itself. For this purpose,
each tetrahedron is processed by a scan-line algorithm. Let
ABCD be a tetrahedron as depicted in Fig. 6. Let us assume
that we use a right-handed coordinate system. The algorithm
works as follows.

1) A slicing direction must be chosen. We will assume the
slicing plane will move along the Y axis. Then, sort the
vertices of the tetrahedron by their y coordinate. Let A
be the vertex with the lowest y coordinate, B the next,

TABLE 1. Edges required for point interpolation depending on the
sweeping plane position.

FIGURE 6. Slicing planes for rasterizing a tetrahedron.

and so on with C and D (see Fig. 6). The slicing plane
starts at ys = Ay and finishes at ys = Dy.

2) Compute the intersections of the edges of the tetrahe-
dron with the current slicing plane. We denote these
points P0, P1, P2, P3, as shown in Fig. 6. These inter-
sections can be computed by a simple linear interpola-
tion or by applying a faster incremental approach. Point
P3 is only needed in the interval By < ys ≤ Cy
(Table 1).

3) Voxelize the slice ys of the tetrahedron. This is achieved
by rasterizing the triangle 1P0P1P2. In the interval
By < ys ≤ Cy, a second triangle1P1P3P2 must also be
rasterized. During this operation, the presence values of
all the voxels (x, ys, z) covered by the triangles must be
flipped with an XOR logical operation.

4) Increment ys and repeat steps 2 and 3 until ys = Dy.

B. GPU-BASED VOXELIZATION
As presented just before section III-A, prior to performing
the voxelization of a 3D model, all required data must be
available in GPU memory. Our implementation uses a vertex
buffer and an index buffer for the triangles. It must be noted
that these buffers are not modified at any time after they
have been loaded into GPU memory. For every step of each
possible voxelization of the current 3D model, including data
augmentation techniques, the stored triangles are taken as
the source of all the GPU processing, which generates the

12680 VOLUME 8, 2020

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

FIGURE 7. Voxelizations of a level-3 Menger Sponge fractal with different rotations. Top row: without safe scale-to-fit. Bottom row: with safe
scale-to-fit.

needed intermediate data on the fly. This allows the vox-
elization framework to perform a full batch of voxelizations
of a 3D model without the need for continuously access-
ing files or transferring data from CPU to GPU. Section V
presents the source code of the shaders.

Apart from the buffers of vertices and triangles, in order to
perform a single voxelization of a 3D model several parame-
ters have to be specified to the shaders. First, the model has
to be centered and scaled to fit the voxel space. This work
assumes that this space is bounded by a cube, and has a given
resolution (N 3). As several geometric transformations can be
applied to the model, it is necessary to limit the scale-to-fit
operation in order to get correct results. In this work we have
used the maximum diagonal of the bounding box for calculat-
ing the scaling factor, although there are other choices, such
as the diameter of the bounding sphere, the convex hull of the
model, etc. This way, the object can be transformed without
being clipped against the borders of the voxel space. The only
drawback of this safe scale-to-fit operation is that the object
will appear a bit smaller when voxelized (Fig. 7). All the
transformations that can be applied are mainly used as a data
augmentation technique for training the network. This matter
will be further explained in section III-C).

1) VERTEX PROCESSING
All the geometric transformations mentioned before are
applied in the vertex shader, in which all the vertices are
processed and their new attributes are passed to the next stage
of the GPU pipeline. Only the position of each vertex is
relevant for our framework. Relating to this, a random vertex
displacement can be performed at this point. This is one of
the techniques for the dataset augmentation, and it allows
us to get slight variations of the morphology of a 3D model
(more details in section III-C). The main drawback with this
step is that there is no truly support for random number
generation in the GPU. Moreover, as every pseudo-random
number generator depends on a previous state, this data can-
not be shared by all GPU threads in an efficient way without

seriously harming the parallelism. A simple solution to this
problem consists of generating a large enough user controlled
random sequence to be used along all the voxelizations, and
uploading it to the GPU as a read-only circular buffer. This
operation is very fast and is performed only once for each
3D model. Moreover, the performance impact on the vertex
shader is minimal, because the random number generation
in the shader is actually reduced to a memory access and a
simple calculus. In order to control the starting of the series
of random numbers within this buffer, an additional input
parameter for the offset is used.

2) TETRAHEDRA GENERATION AND SLICING
As mentioned before, for each triangle a tetrahedron must
be constructed using the centroid of the model as the fourth
vertex. The vertices shared by the triangles have been mod-
ified by the vertex shader, and now they are passed to the
geometry shader. The centroid of the model is specified as
an input parameter as it is fixed for every tetrahedron. The
slicing plane is determined by the current slice number, which
is also specified as an input parameter. Source code is shown
in section V. The geometry shader uses the algorithm from
section III-A1. First, it computes the tetrahedron by taking
the vertices of the input triangle and the centroid. It sorts
the vertices of this tetrahedron by their y coordinate. Then,
it calculates the intersections of the edges of the tetrahedron
with the current slicing plane by applying linear interpo-
lation (Table 1). Finally, it generates one or two triangles
that result from these intersections, depending on the case
(Fig. 6). Those triangles will be processed by the GPU built-
in standard rasterizer and the corresponding fragments will
be generated in the next stage of the rendering pipeline.
Of course, if the tetrahedron does not intersect the slicing
plane, no triangles are generated for rasterizing.

It is necessary to remark the following. As we stated
before, for every slice of the voxelization, a tetrahedra set is
dynamically generated from the input set of triangles, which
corresponds to the entire surface of the 3D model, including

VOLUME 8, 2020 12681

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

the simplicial coverings for the n-sided polygons. At first
look, this seems to be quite inefficient, because the best option
would be to previously calculate the tetrahedra set for a whole
model voxelization, and then use it for rasterizing each slice.
We have implemented and tested three alternatives for this:
(a) calculate the tetrahedra in CPU and upload them as a
buffer to the GPU; (b) generate the tetrahedra in a first GPU
pass using transform feedback; (c) calculate the tetrahedra
in a first GPU pass using a compute shader. Surprisingly
enough, none of these options improved the performance of
the algorithm. In fact, they were about 15-20% slower with
our hardware configuration. Both alternative GPU versions,
based on transform feedback and compute shader, had worse
results probably because the generation of the tetrahedra
only comprises a few algebra calculations, and the rest of
the code is basically conformed by several random memory
accesses and conditional instructions. This clearly does not
take advantage of massive parallel processing of the GPU.
Therefore, the best option is to calculate a tetrahedron when
necessary, including the sorting of their vertices.

3) VOXELS GENERATION AND STORAGE
As the last stage of the GPU processing, the fragment shader
stores the result of the rasterization of every slice of every
tetrahedron. Each pixel stored in the current rendering buffer
is actually a voxel write operation. At this point, an aspect
function can be applied in order to get a material value for
each voxel. However, since we are only interested in a binary
voxelization, this step is not included in our implementation.

This algorithm is implemented using a simple data struc-
ture for storing the result. The presence buffer can be repre-
sented by a 3D array of bits, but for most cases it is more
convenient to store each voxel in a byte or even an integer for
performance reasons. Most time is spent in the rasterization
of 2D triangles corresponding to the intersections of the
tetrahedra with the slicing plane. In this aspect, the GPU-
based implementation is logically far more efficient than any
CPU-based version, and is one of the main reasons why this
framework is based on GPU processing.

The result of the voxelization can be stored in GPU in
several ways. The best option is to use a 3D texture. While
it can be used as a standard buffer for retrieving the data
into CPU memory space, it can also be directly used for
rendering purposes. Moreover, when using a 3D texture for
storing the voxelization, two options are available: (a) render
all the geometry in a single pass, generating triangles that
will be targeted to a specific slice of the texture, (b) render
the corresponding part of the geometry to each texture slice
separately.

Modern GPUs can render to multiple buffers simultane-
ously, including several 2D slices from a 3D texture. The
rendering is still done in 2D, but in the shaders we can select
the target buffer (texture slice) for each rasterized triangle.
At first glance, this is the ideal solution, mostly because each
tetrahedron is processed only once, and multiple tetrahedron
slices are generated and rasterized into the proper texture slice

FIGURE 8. Some examples of non-uniform scaling transformations
applied to a CAD model of a radio prior to rasterization.

for a single geometry shader execution. However, there are
some drawbacks. The number of triangles that can be gener-
ated from a single shader execution is limited by hardware,
forcing a cumbersome multi-pass approach. In any case,
we have tested this solution with the result of a noticeable
performance loss compared to the second option mentioned
before. With this option the rasterization is carried out by a
loop that moves the slicing plane. For each 2D slice of the
resulting 3D buffer, all tetrahedra are processed in parallel
in a rendering pass. Each tetrahedron is processed in the
geometry shader, which tests whether the tetrahedron inter-
sects the slicing plane and, if so, calculates the corresponding
tetrahedron sections thatmust be rasterized, which are formed
by a triangle or a pair of triangles (Fig. 6). This option is
much faster that rasterizing all the slices of all the tetrahedra
in a single pass. It is possible that, if multi-target rendering to
3D texture is improved in upcoming hardware, this situation
could revert in the future.

C. DATASET AUGMENTATION STRATEGIES
Although there are more available CAD models than seg-
mented real-world objects, they are clearly not sufficient for
a proper training of a neural network. In order to increase
the performance of the CNN it is convenient, even nec-
essary, to augment the training dataset. As noted before,
several actions can be carried out. The most important one
is to perform multiple rotations on the models in order to
improve the learning of rotational invariance (Fig. 7), and
to break any possible symmetries along any axis [17]. The
rotational invariance depends on the purpose of the network.
For example, to identify urban furniture in an outdoor scene,
rotational invariance along the gravity axis could be enough,
making the training much faster, but at the cost of raising
the probability of not properly recognizing fallen or damaged

12682 VOLUME 8, 2020

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

FIGURE 9. A series of random vertex displacements for dataset augmentation, with a uniform distribution limited to the 5% of the voxel space width.

structures. In order to properly identify and classify a real-
world object, rotational invariance is essential for achieving
a good performance of the network. For achieving a whole
model rotation, a rotation matrix is a part of the calculation
of the model transformation matrix that is passed as an input
parameter to the vertex shader.

Another convenient form of augmentation is based on the
concept of object similarity. A given type of object (a class)
can have multiple variations in dimensions and proportions.
As the object is always maximized to fit the voxel space,
the original size loses relevance. On the other hand, dif-
ferent proportions can mislead the network. To solve this,
several controlled non-uniform scaling transformations can
be applied to each model (Fig. 8). By performing this, the net-
work can learn invariance to that type of transformation.
As before, this operation is implemented with a transforma-
tion matrix that is part of the model transformation matrix
(Fig. 3). This step is straightforward, and have no impact on
the GPU performance.

Related to the above, more variations of an object can
be obtained by slightly displacing the spatial coordinates of
the vertices of the models, which allows us to get variations
of the morphology (Fig. 9). The displacement carried out is
random and has a user-controlled distribution. Section III-B1
presented some details about the management of the random
numbers generation in GPU. Since we work with polygonal
meshes (polyhedra), this operation is straightforward, and
can be performed on-the-fly in the vertex shader without
changing the original mesh data stored in GPU. This way,
the system allows the network to learn invariance to small
deformations within the same object class.

It must be noted that combining all the possible data aug-
mentation options, the total number of voxelizations to be per-
formed for each model greatly increases. This must be taken
into account because this data augmentation would improve
the overall performance of the network, but at the cost of
increasing the training time. In any case, the dataset aug-
mentation strategy must be adapted to meet several criteria

imposed by the nature of the data, because not every option
is desirable for every situation. For example, variations in
proportions could be considered as different versions of the
same object or not, depending on whether we use only one
class for that type of object or we also use sub-classes.

D. CONNECTION WITH THE CNN
The last step of the framework is the connection with the
neural network. As it was mentioned earlier, in order to have
an efficient training process, the feeding of the network must
be as fast as possible. To be more precise, only a minor part
of the hardware resources must be used for the voxelization
of 3D models, including all the data augmentations. Most
processing power must be left for the neural network process-
ing. By no means the network training should be interrupted,
waiting for the voxelizer to finish the next sample. Therefore,
this connection between the voxelizer and the neural network
is of upmost importance. The standard approach performs
every voxelization of every model separately by using dif-
ferent programs. On the other hand, the best implementation
possible is the direct connection, which is accomplished by
having the neural network interface and the voxelizer in the
same program. In order to perform several training iterations
with an implicit dataset of voxelizations, it must be always
the same for each iteration. This is typically motivated by
a change of the CNN parameters, such as the learning rate,
the dropout, the mini-batch size, etc., but not by a change
to the dataset. This means that random-based augmentation
techniquesmust always give the same output. This is achieved
by processing the same 3D models in the same order, and
controlling the seeds for all the random number generators
used. This is the way the dataset of voxelizations can be
truly considered as implicit, because it is always calculated
on demand without the need of any data storage.

As an alternative, the voxelizer and the CNN can be in
different programs. An example would be a Python script
that uses the voxelizer as an external program written in
C++. In this case, each voxelization must be stored on

VOLUME 8, 2020 12683

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

TABLE 2. Results of the benchmarks carried out with a commodity computer. Two resolutions are presented, 643 and 2563. The dataset augmentation
was a combination of 10 non-uniform scalings, 5 random vertex displacements and 100 rotations. 5000 voxelizations were generated for each CAD
model, making a total of 5 million samples for the training of the CNN.

secondary memory and then read from the Python script in
order to feed the neural network. Logically, this approach
is much slower, especially when using a data augmentation
configuration that causes a great number of voxelizations to
be generated for each 3Dmodel to be learnt. However, we can
still take advantage of the framework. For achieving this, it is
necessary to produce all the voxelizations needed for a given
3D model in a single step. In this work, we name this process
the one-model batch approach. Consequently, the voxelizer
will generate all the voxelization variants using a given data
augmentation setup, and a mini-dataset of files will be written
into secondary memory. In this case, it is mandatory that all
the data of the current 3D model are kept in GPU until the
last voxelization of that model is finished.

A direct connection with the neural network is not only
convenient for performance reasons. Its storage footprint is
zero, which supposes a total saving of secondary memory.
In the case of using the one-model batch approach, the foot-
print would be minimal, because only the temporary files
for the current model will be kept in secondary memory.
On the contrary, the standard approach imply a huge storage
footprint, which possibly will force the user to configure the
system for generating, saving and then loading the voxeliza-
tions as needed by the CNN.

IV. EXPERIMENTS AND RESULTS
We have implemented the entire framework in C++, includ-
ing the three approaches described before: the standard
approach, the one-model batch, and the direct connection
with the CNN. We have implemented a dummy 3D-CNN
used through its C++ interface for testing the performance
of the framework. The hardware used was a commodity com-
puter based on an Intel
 CoreTM I7-8700 CPU with 16 GB of
main memory, and an Nvidia GeForce GTX 1060 with 6GB
of memory. For testing the performance of the storage input

and outputs operations we have used M.2 SSDs. All the tests
have been performed with a single-thread implementation of
the framework, in order to show the benefits of our approach
with the simplest configuration. However, it can handle mul-
tiple CPU threads and also several GPUs. This ultimately
depends on the needs of the CNN training. The main goal is
to avoid the training from being interrupted, waiting for the
voxelizer to finish the next sample.

We tested our framework with 3D CAD models from
standard datasets, mainly from Princeton ModelNet10 and
ModelNet40 [1]. The largest dataset used is ModelNet40,
which consists of 12311 CADmodels, split into 9843 models
for training and 2468 models for testing. However, since the
main goal of our tests is to analyze the performance of the
voxelization framework, no division was made into training,
test and validation sets for the neural network. We chose a
total of 1000 models with different topological complexities.
For analyzing the impact of performing a high number of
voxelizations per model, we have used all the augmentation
techniques described in section III-C. First, for each model
10 versions have been generated by using a random non-
uniform scaling. This produces variations in term of propor-
tions along the three axes. These variations in width, length
and height have a maximum factor of ±50%. Combined
to this, other 5 variations have been created using random
vertex displacement for helping the network to learn from
small deformations. In these tests we have used a uniform
distribution in order to obtain a high number of noticeable
variations, with a maximum of the 5% of the width of the
voxel space. However, for the actual training of the CNN,
more subtle and convenient results can be obtained using a
normal distribution with a standard deviation of 5-10% of the
width of the voxel space. Finally, 100 rotations around the
three axes have been done in order to improve the learning
of rotational invariance. This is to ensure that every object is

12684 VOLUME 8, 2020

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

learnt regardless the original vertical alignment of the CAD
model. In total, 5000 voxelizations have been generated for
each CAD model, making a total of 5 million samples for the
CNN. Unfortunately, a considerable number of CAD models
tested did not meet the topology conditions for the voxeliza-
tion algorithm used to work correctly. Therefore, an straight-
forward pre-processing step was carried out for the models
after loading. The main problemwith the original models was
the duplicity of the triangles (with opposite normal vectors),
that was resolved by a merging operation.

We performed our experiments with several resolutions,
albeit we have only included 643 and 2563 in Table 2, for the
sake of clarity. Although voxelizations for CNNs are nowa-
days generated at low resolutions, with upcoming hardware
improvements more detail could be used with more com-
plex network architectures. Therefore, the resolutions used
in our experiments are feasible nowadays. Table 2 shows the
results for the voxelization of 1000models with a geometrical
complexity ranging from about 10000 to about 265000 tri-
angles. There are several aspects that should be discussed.
At first glance, there is a clear difference between the three
approaches tested, especially regarding to loading operations.
With the standard approach the system must be restarted for
every voxelization. The program setup overhead is negligible,
but the loading of the 3D models have a severe accumulated
performance penalty. On the contrary, both direct connec-
tion and one-model batch approaches load each model only
once.

The performance of the GPU-based voxelization algorithm
depends on both resolution and geometrical complexity of
the models. Its performance cost is the same for all the
approaches. As can be seen, the higher the resolution, the big-
ger the impact of the GPU-CPU memory transfers. This also
applies to the time taken for saving and loading the voxelized
model files. For the direct connection approach, these opera-
tions do not apply.

For the footprint storage testing, all the voxelization files
have been generated. In the case of the standard approach,
we have used temporary files for simulating a full storage.
For achieving realistic results, a FIFO queue has been used for
managing a set of files that occupies a fixed and large enough
portion of the storage space. This is to avoid the optimizations
of the cache policies of the system, and to force the hard drive
to write data in different physical locations.

Two file formats have been used for storing the voxelized
models: a 8-bit per voxel using run length encoded com-
pression (RLE), and a 1-bit per voxel uncompressed RAW
binary format. The total times shown in Table 2 include the
input and output operations only in RLE format. Table 3
shows the storage footprint of the 9843 models of the training
dataset fromModelNet40, augmented up to 5000 samples per
model. The one-model batch approach only needs to store
the voxelizations of the model that is being processed. When
using RLE compression, the peak of storage occupation is
reached with the model whose voxelization has the highest
entropy.

TABLE 3. Storage footprint for the training models from
ModelNet40 dataset with the different approaches presented. The
dataset augmentation setup is the same as in the main tests, which
produces 5000 voxelizations for each one of the 9843 models, making a
total of 49,21 million samples. The storage footprint of the direct
connection is not included here as it is always zero.

As can be seen in Tables 2 and 3, results clearly reflect that
the main weakness of the standard approach is the need for
using secondary storage. It has a severe impact both on the
storage footprint and the performance of the overall process.
On the other hand, direct connection is logically the best
approach, but if the voxelizer system and the CNN can not
have that level of cohesion in the system used, there is always
the option of using the one-model batch approach with a
moderate impact on the performance and an almost negligible
storage footprint.

V. CONCLUSION
In this paper we have presented an efficient framework for
dynamically performing 3D model voxelizations for train-
ing CNNs. The GPU-based algorithm used for voxelizing
3D models is concise, very compatible with commodity
hardware, and it neither uses complex data structures nor
has additional dependencies such as CUDA. The method
is designed to manage the dataset augmentation by using
efficient geometric transformations and random vertex dis-
placements directly in GPU. Every voxelization is carried out
on-the-fly for directly feeding the network. Results show that
the overall performance with this approach is much better
than with the standard method, which carries out every vox-
elization of everymodel separately, havingmuch higher setup
and data processing overhead. This framework dramatically
reduces the input/output operations to a minimum.Moreover,
the storage footprint of the generated voxelization dataset
is zero, since every voxelization is carried out on-the-fly
for directly feeding the network. This way the framework
manages the voxelized 3D model dataset as a truly implicit
dataset.

APPENDIX - SOURCE CODE
// GLSL Shaders source code

// Vertex shader ---------------------------------
#version 430

uniform mat4~matrix;
uniform float randomSequenceFactor;
uniform int randomSequenceSize;
uniform int randomCurrentOffset;

VOLUME 8, 2020 12685

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

layout(std430, binding=0) buffer
InRandomSequence vec3 random[]; ;

layout(location = 1) in vec3 vertex;

void main() {
vec4 displacement = randomSequenceFactor *
vec4(random[(gl_VertexID+randomCurrentOffset)%
randomSequenceSize], 0.0);

gl_Position = matrix * vec4(vertex,1.0) +
displacement;

}

// Geometry shader -------------------------------
#version 430

#define INTERP(A,B,s)

(mix(A, B, (s - A[1]) / (B[1] - A[1])))
#define ORDERY(A,B) if (A.y > B.y)

vec4 tmp = A; A = B; B = tmp;

layout(triangles) in;
layout(triangle_strip, max_vertices = 6) out;

uniform float slice;
uniform vec3 centroidPoint;

void main() {
vec4 tVertexA = gl_in[0].gl_Position;
vec4 tVertexB = gl_in[1].gl_Position;
vec4 tVertexC = gl_in[2].gl_Position;
vec4 tVertexD = vec4(centroidPoint,1);

ORDERY (tVertexA, tVertexB);
ORDERY (tVertexC, tVertexD);
ORDERY (tVertexA, tVertexC);
ORDERY (tVertexB, tVertexD);
ORDERY (tVertexB, tVertexC);

if (tVertexA.y < slice && slice <= tVertexD.y) {
gl_Position = vec4(INTERP(tVertexA, tVertexD,

slice).xz, 0.0, 1.0);
EmitVertex();

vec4 v1 = (slice <= tVertexB.y) ?
vec4(INTERP(tVertexA, tVertexB, slice).xz,

0.0, 1.0) :
vec4(INTERP(tVertexB, tVertexD, slice).xz,

0.0, 1.0);
gl_Position = v1;
EmitVertex();

vec4 v2 = (slice <= tVertexC.y) ?
vec4(INTERP(tVertexA, tVertexC, slice).xz,

0.0, 1.0) :
vec4(INTERP(tVertexC, tVertexD, slice).xz,

0.0, 1.0);
gl_Position = v2;
EmitVertex();

EndPrimitive();

// Extra triangle between vertices B and C
if (tVertexB.y < slice && slice <= tVertexC.y)

{gl_Position = vec4(INTERP(tVertexB, tVertexC,
slice).xz, 0.0, 1.0);

EmitVertex();

gl_Position = v2;
EmitVertex();

gl_Position = v1;
EmitVertex();

EndPrimitive();
}

}
}

// Fragment shader --------------------------
#version 430

out float result;

void main() {
result = 1;

}

REFERENCES
[1] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,

‘‘3D ShapeNets: A deep representation for volumetric shapes,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1912–1920.

[2] D. Maturana and S. Scherer, ‘‘VoxNet: A 3D convolutional neural network
for real-time object recognition,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2015, pp. 922–928.

[3] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, ‘‘Multi-view con-
volutional neural networks for 3D shape recognition,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 945–953.

[4] C. R. Qi, H. Su, M. Niebner, A. Dai, M. Yan, and L. J. Guibas, ‘‘Volumetric
and multi-view CNNs for object classification on 3D data,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 5648–5656.

[5] A. Kar, S. Tulsiani, J. Carreira, and J. Malik, ‘‘Category-specific object
reconstruction from a single image,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 1966–1974.

[6] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, ‘‘3D-R2N2:
A unified approach for single and multi-view 3d object reconstruction,’’ in
Proc. 14th Eur. Conf. Comput. Vis.Amsterdam, The Netherlands: Springer,
Oct. 2016, pp. 628–644.

[7] E. Johns, S. Leutenegger, and A. J. Davison, ‘‘Pairwise decomposition of
image sequences for active multi-view recognition,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 3813–3822.

[8] D. Shin, C. C. Fowlkes, and D. Hoiem, ‘‘Pixels, voxels, and views:
A study of shape representations for single view 3D object shape predic-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 3061–3069.

[9] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev,
M. Alexa, D. Zorin, and D. Panozzo, ‘‘ABC: A big CAD model dataset
for geometric deep learning,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 9601–9611.

[10] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, ‘‘The prince-
ton shape benchmark,’’ in Proc. Shape Modeling Appl., Nov. 2004,
pp. 167–178.

[11] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, and H. Su, ‘‘ShapeNet: An information-
rich 3D model repository,’’ 2015, arXiv:1512.03012. [Online]. Available:
https://arxiv.org/abs/1512.03012

[12] Q. Zhou and A. Jacobson, ‘‘Thingi10k: A dataset of 10,000 3D-
printing models,’’ 2016, arXiv:1605.04797. [Online]. Available: https://
arxiv.org/abs/1605.04797

[13] T. Akenine-Moller, E. Haines, and N. Hoffman, Real-Time Rendering.
Boca Raton, FL, USA: CRC Press, 2018.

[14] N. J. Mitra, I. Kokkinos, P. Guerrero, N. Thuerey, and T. Ritschel, ‘‘Cre-
ativeAI: Deep learning for graphics,’’ in Proc. SIGGRAPH Asia Courses
(SA), 2018.

[15] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, ‘‘Generative and dis-
criminative voxel modeling with convolutional neural networks,’’ 2016,
arXiv:1608.04236. [Online]. Available: https://arxiv.org/abs/1608.04236

[16] X. Xu and S. Todorovic, ‘‘Beam search for learning a deep convolutional
neural network of 3D shapes,’’ in Proc. 23rd Int. Conf. Pattern Recognit.
(ICPR), Dec. 2016, pp. 3506–3511.

[17] N. Sedaghat, M. Zolfaghari, E. Amiri, and T. Brox, ‘‘Orientation-boosted
voxel nets for 3d object recognition,’’ 2016, arXiv:1604.03351. [Online].
Available: https://arxiv.org/abs/1604.03351

[18] C.Ma, Y. Guo, Y. Lei, andW. An, ‘‘Binary volumetric convolutional neural
networks for 3-D object recognition,’’ IEEE Trans. Instrum. Meas., vol. 68,
no. 1, pp. 38–48, Jan. 2019.

12686 VOLUME 8, 2020

C. J. Ogayar-Anguita et al.: GPU-Based Framework for Generating Implicit Datasets of Voxelized Polygonal Models

[19] L. Minto, P. Zanuttigh, and G. Pagnutti, ‘‘Deep learning for 3D shape clas-
sification based on volumetric density and surface approximation clues,’’
in Proc. 13th Int. Joint Conf. Comput. Vis., Imag. Comput. Graph. Theory
Appl., 2018, pp. 317–324.

[20] B. Graham, ‘‘Sparse 3D convolutional neural networks,’’ in Proc. Brit.
Mach. Vis. Conf. (BMVC), Sep. 2015, pp. 150.1–150.9.

[21] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and P. Dubey,
‘‘Faster CNNs with direct sparse convolutions and guided pruning,’’ 2016,
arXiv:1608.01409. [Online]. Available: https://arxiv.org/abs/1608.01409

[22] X. Chen, ‘‘Escoin: Efficient sparse convolutional neural network inference
on GPUs,’’ Univ. Texas at Austin, Austin, TX, USA, Tech. Rep., 2018.
[Online]. Available: https://arxiv.org/abs/1802.10280

[23] O. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
‘‘3D U-Net: Learning dense volumetric segmentation from sparse annota-
tion,’’ inMedical Image Computing and Computer-Assisted Intervention—
MICCAI (Lecture Notes in Computer Science), vol. 9901, S. Ourselin,
L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, Eds. Cham,
Switzerland: Springer, 2016, pp. 424–432.

[24] S. Ghadai, X. YeowLee, A. Balu, S. Sarkar, andA.Krishnamurthy, ‘‘Multi-
level 3D CNN for learning multi-scale spatial features,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops, 2019.

[25] L. Zhang,W. Chen, D. S. Ebert, and Q. Peng, ‘‘Conservative voxelization,’’
Vis. Comput, vol. 23, nos. 9–11, pp. 783–792, Aug. 2007.

[26] M. Schwarz and H.-P. Seidel, ‘‘Fast parallel surface and solid voxelization
on GPUs,’’ TOGACM Trans. Graph., vol. 29, no. 6, p. 179, Dec. 2010.

[27] J. Pantaleoni, ‘‘VoxelPipe: A programmable pipeline for 3D voxelization,’’
in Proc. ACM SIGGRAPH Symp. High Perform. Graph. (HPG), 2011,
pp. 99–106.

[28] H.-H. Chang, Y.-C. Lai, C.-Y. Yao, K.-L. Hua, Y. Niu, and F. Liu,
‘‘Geometry-shader-based real-time voxelization and applications,’’ Vis
Comput., vol. 30, no. 3, pp. 327–340, Mar. 2014.

[29] Z. Zhang and S. Morishima, ‘‘Application friendly voxelization on GPU
by geometry splitting,’’ in Smart Graphics (Lecture Notes in Computer
Science), vol. 8698, M. Christie and T. Y. Li, Eds. Cham, Switzerland:
Springer, 2014, pp. 112–120.

[30] Y. Zhang, S. Garcia, W. Xu, T. Shao, and Y. Yang, ‘‘Efficient voxelization
using projected optimal scanline,’’ Graph. Models, vol. 100, pp. 61–70,
Nov. 2018.

[31] S. Fang and H. Chen, ‘‘Hardware accelerated voxelization,’’ Comput.
Graph., vol. 24, no. 3, pp. 433–442, Jun. 2000.

[32] C. Ogáyar, A. Rueda, R. Segura, and F. Feito, ‘‘Fast and simple hard-
ware accelerated voxelizations using simplicial coverings,’’ Vis. Comput,
vol. 23, no. 8, pp. 535–543, Jul. 2007.

[33] E. Eisemann andX. Décoret, ‘‘Single-pass GPU solid voxelization for real-
time applications,’’ in Proc. Graph. Interface, 2008, pp. 73–80.

[34] M. Sramek and A. Kaufman, ‘‘Alias-free voxelization of geometric
objects,’’ IEEE Trans. Vis. Comput. Graphics, vol. 5, no. 3, pp. 251–267,
Jul. 1999.

[35] M. W. Jones, ‘‘The production of volume data from triangular meshes
using voxelisation,’’ Comput. Graph. Forum, vol. 15, no. 5, pp. 311–318,
Dec. 1996.

[36] G. Passalis, I. Kakadiaris, and T. Theoharis, ‘‘Efficient hardware voxeliza-
tion,’’ in Proc. Comput. Graph. Int., Nov. 2004, pp. 374–377.

[37] G. Young and A. Krishnamurthy, ‘‘GPU-accelerated generation and ren-
dering of multi-level voxel representations of solid models,’’ Comput.
Graph., vol. 75, pp. 11–24, Oct. 2018.

[38] Y.-S. Leung and C. C. L. Wang, ‘‘Conservative sampling of solids in image
space,’’ IEEE Comput. Graph. Appl., vol. 33, no. 1, pp. 32–43, Jan. 2013.

[39] F. Feito and J. Torres, ‘‘Inclusion test for general polyhedra,’’ Comput.
Graph., vol. 21, no. 1, pp. 23–30, Jan. 1997.

CARLOS J. OGAYAR-ANGUITA received the
M.S. degree in computer science and the Ph.D.
degree in computer science from the University
of Granada, in 2001 and 2006, respectively. He
is currently an Associate Professor of computer
science with the University of Jaén, Spain. His
researches focus are on GPU computing, geomet-
ric algorithms, virtual reality, and 3D scanned data
processing.

ANTONIO J. RUEDA-RUIZ received the Ph.D.
degree in computer science from the University
of Málaga, in 2004. He is currently an Associate
Professor of computer science with the University
of Jaén, Spain. His main interests are related to
Computer Graphics, focused on designing geo-
metric algorithms, processing 3D laser scanned
data, and GPU computing.

RAFAEL J. SEGURA-SÁNCHEZ received the
M.S. degree in computer science from the Univer-
sity of Granada, in 1994, and the Ph.D. degree in
computer science from the University of Granada,
in 2001. He is currently an Associate Profes-
sor with the University of Jaén, Spain. He has
been working on several topics related to com-
puter graphics, including solid modeling, compu-
tational geometry, virtual and augmented reality,
and GPGPU.

MIGUEL DÍAZ-MEDINA received the B.S.
degree in computer sciences from the University
of Jaén, Spain, in 2019, where he is currently
pursuing the M.S. degree in computer science. His
research interests include GPU-based algorithms
and deep learning techniques.

ÀNGEL L. GARCÍA-FERNÁNDEZ received the
B.S. degree from the University of Jaén, Spain,
in 1998, and the M.S. and Ph.D. degrees from
the University of Granada, in 2000 and 2007,
respectively. He is currently an Associate Profes-
sor with the University of Jaén. His research inter-
ests include free-form and heterogeneous solid
modeling, ambient intelligence, building informa-
tion models, and spatial information systems.

VOLUME 8, 2020 12687

