IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 23, 2019, accepted January 7, 2020, date of publication January 10, 2020, date of current version January 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965647

Discovery of Frequent Patterns of Episodes
Within a Time Window for Alarm

Management Systems

ADEL HIDRI!, AHMED SELMI 2, AND MINYAR SASSI HIDRI“!

!Computer Department, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
2Data Scientist, Applied Mathematics Research Engineer, National Engineering School of Tunis, Tunis EI Manar University, Tunis 1068, Tunisia

Corresponding author: Minyar Sassi Hidri (mmsassi@iau.edu.sa)

ABSTRACT The sequential pattern mining field is expanding through numerous researches and has a
large number of applications such as language processing, alarms management and event management on a
broader scale. Its use began with processing items baskets to learn patterns and have a directed marketing
strategy but it is generalized to telecommunication alarms management with several works. Our work is in
line with this, as it tries to locate patterns and identify them to make predictive statements about certain
patterns. It is axed around providing a way to break sequences into episodes and assigning them a value
of confidence and support, more precisely in the discovery of frequent patterns of episodes within a time
window. Experimental results have shown the effectiveness of our sequential pattern mining approach and

its adaptability to alarm management and analytics.

INDEX TERMS Sequential pattern mining, alarm management, association rules, data mining, artificial

intelligence.

I. INTRODUCTION

Data mining is defined as the science of extracting meaning-
ful information from several flows of large data. It is about
building empirical models on data-driven models, not with
an underlying theory behind it. It aims to provide insight and
useful visualization to its users, to reduce the complexity of
huge databases. It is also referred to as Knowledge Discovery
in Databases (KDD) [27]. There are several fields of applica-
tion such as:

« Business Intelligence [40].

« Exploratory Data Analysis [1].

o Bioinformatics [22].

« Big Data [9], [36].

o Predictive Analytics [20].

Thus science groups a number of underlying methods and
techniques, whose aims vary and spread all over a spectrum of
applications: pattern recognition [4], statistical models [19],
predictive analysis [20], machine learning [25], Information
science [6], etc. It can be used in many different ways. Some
of the tasks most commonly found are:

o Summarization & Reduction [35].

The associate editor coordinating the review of this manuscript and

approving it for publication was Sunith Bandaru

VOLUME 8, 2020

o Cluster Analysis [12], [18], [29].

« Regression Analysis [34].

« Classification and case-based reasoning [28].

o Association rule learning and sequential pattern

mining [2], [24].

Industrial plants are an environment filled with data and it
has become a critical issue to uncover knowledge in the large
databases generated by the systems that are in play. The goal
is that models built upon data mining will uncover relevant
information that will help increase productivity, decrease
potential risks, improve processes, pinpoint deviations in Key
Performance Indicators (KPI) and aid the operators dealing
with a huge overload of information. This is done by grouping
key elements (clustering), providing a reduced dashboard
through Human Machine Interfaces (HMI) with visualiza-
tion, find recurring patterns to uncover cause-effect relation-
ships and predict outputs or errors. And, in the new paradigm
of industrialization and the new Industry 4.0 fashion, Data is
at the essence of any industrious project. As well as collec-
tion and valorization which could be interpreted as feedback
and monitoring, Data Analytics are starting to be critical:
between getting correlations among interacting systems, and
root-cause analysis, the techniques are numerous. Another
bridge to cross in the future:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 11061

https://orcid.org/0000-0003-0222-8562
https://orcid.org/0000-0002-5442-4226
https://orcid.org/0000-0002-0417-6586
https://orcid.org/0000-0001-5436-2128

IEEE Access

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

o Logs and records are raw Data. Information is the prod-
uct of refining these data to obtain something relevant,
knowledge. How to get there?

o How can we use past data to access knowledge about the
future?

o Are frequent patterns in an alarm system (or even in a
broader sense) indicator of relevant data? If so, how do
we quantify that?

Since the number of alarms is growing and the monitoring
process is getting harder as the operator has to acknowledge
multiple alarms and deal with them, predictive models have
become a necessity to assess the situation and set up con-
tingency plans: alarms behavior is mapped and dealt with
accordingly.

The application of data mining techniques to industrial
engineering is a field that is getting more momentum, but
that is currently underdeveloped. Data mining can, however,
be strategically applied to industrial engineering processes
such as scheduling, quality control, cost reduction, safety, and
others.

There are various data mining techniques, most are data-
specific. There are no algorithms that apply on everything.
e.g. Neural network algorithms can be used on quantitative
data, but adapting them to a qualitative data analysis is a quite
rigorous and difficult task. Some of the techniques applied
in data mining include traditional statistics. The predictive
models are based on already logged data and generated using
many algorithms that find frequent patterns that can pinpoint
recurring problems. Also is considered that in dealing with
said alarms, the operator creates his own set of patterns, that
indicate how a problem A has been resolved following a
solution pattern. This can improve reaction time but also be
used in a manner to assist the operator if an issue presenting
a degree of similarity to the one that has been resolved.

To do so, the system should be able to compute the similar-
ity between patterns and align them correspondingly. Align-
ment and similarity are important, they allow to pinpoint
patterns in dataflows with all data noise that may arise.

Our work is axed around alarm systems in industrial plants,
the data being the alarms logs generated by the plant, more
precisely in the discovery of frequent patterns of episodes
within a time window.

Many approaches have been proposed to extract theses
patterns to manage alarm systems [10], [11], [17].

The events of interest are the alarms triggering factors, their
return to normal and whether they have been acknowledged
by an operator or not. Some alarms floods can be defined
briefly as the triggering of a high number of alarms in a small
time window.

The remainder of this paper is organized as follows: in
section II, we briefly present a state of the art on sequential
pattern mining. Section III presents the preliminaries relates
to our approach. Section IV is a bit more theoretical, as it
presents our modeling approach related to sequential pattern
mining. In section V, a performance analysis is brought for-
ward to set the advantages of the implementation. Finally,

11062

we conclude in section VI our work and bring out some
insights and potential future works.

Il. RELATED WORK ON SEQUENTIAL PATTERN MINING
Several applications of data mining and machine learn-
ing emerge from analyzing data that comes from events
sequences and alike data sets. Such data can come from
alarms systems in different areas like telecommunications
and industrial plants, natural language processing, users’
actions on web sites and data flows on illnesses, etc.

In a more structured view, this data, which is streaming,
can be viewed as a sequence of events ordered by a timestamp
assigned to it. Events are viewed from a time and qualitative
perspectives, both carry the data along with them.

To transform this data into meaningful information and
knowledge, it has to be quantified and structured. This part
of data mining has been gaining momentum since early
1990 and the interest is growing. From the pioneering work of
Srikant and Agrawal [32] which has led to the Apriori family
of algorithms and the definition of itemsets and association
rules, to the later work of Mannila and Toivonen that has
formalized episode mining and gave birth to the WINEPI
(Sliding window approach for finding frequent episodes) /
MINEPI (Minimal occurences approach for finding frequent
episodes) family of algorithms.

Through 30 years of study and development, many tech-
niques and approaches have been proposed for mining
sequential patterns in a wide range of real-word appli-
cations [13], such as Web mining [3], classification [5],
and mining motifs from biological sequences [8]. Some
well-known serial algorithms for sequential pattern mining,
such as AprioriAll [2], GSP algorithm (Generalized Sequen-
tial Pattern algorithm) [33], BIDE algorithm (BI-Directional
Extension algorithm) [38], CloSpan (Software package of
mining closed sequential patterns in a sequence database)
[37], FreeSpan (Frequent Pattern-Projected Sequential
pattern Mining) [16], PrefixSpan (Prefix-projected Sequen-
tial pattern mining) [26], SPADE (Sequential PAttern Discov-
ery using Equivalence classes) [39], etc., have been proposed.
Since many parallel SPM (Sequential Pattern Mining) algo-
rithms are extended by the traditional serial SPM approaches,
it is quite necessary for us to have an understanding of
the systematic characteristics of traditional serial sequential
pattern mining approaches. Thus, the state-of-the-art of serial
SPM are reviewed below. Based on the different mining
mechanisms, some well-known serial SPM approaches are
divided into several categories, including Apriori-based tech-
niques, pattern growth techniques, algorithms with early-
pruning, and constraint-based algorithms.

Each method of serial SPM algorithm has advantages and
disadvantages. Besides, there are also many different defini-
tions of categories for SPM algorithms. A more comprehen-
sive discussion of these methods has been given in [15], [21],
[24], and an up-to-date survey of the current status of SPM
can be referred to [13].

VOLUME 8, 2020

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

IEEE Access

175

T T v

150 =

125

T ' B

75

50

25

o 50000 100000

FIGURE 1. A scatter plot of an alarm log.

IIl. PRELIMINARIES

A. SCOPE

A pattern is defined as a repeated sign with regularity, as such,
ithas been linked to prediction as the regularity and frequency
of repetition make it distinguishable.

It has been theorized that superior human intelligence
comes certainly from its great pattern recognition features.
Artificial Intelligence is considered to have surpassed it when
it can recognize pattern better when a computer learned how
to find patterns in chess, as would a chess grandmaster,
it could beat him and surpasses him. Pattern Recognition is
at the essence of machine learning and ranges from visual
patterns to patterns in information. Visually, a pattern is a
geometric figure that is repeated using geometric transforma-
tions, one of the greatest mathematical patterns are fractals.
Our greatest feat is that we decomposed a seemingly infinite
figure to a finite pattern that is repeated infinitely.

One of its features is our capacity to differentiate shapes,
recognize people and extrapolate relations (knowing that two
people are related or are from a certain country).

In data patterns, the approach is less obvious. Patterns in
data sequences are not as much visual and the problems arise
of how do we find those patterns. We can visualize data so that
we can make those pattern geometric as shown in figure 1, but
the problem arises of what if there are patterns that have no
geometric visualization.

B. DEFINITIONS
To introduce the different methods and algorithms, we should

firstly layout the various necessary definitions that formalize
the work done in this field [32], [41].

VOLUME 8, 2020

150000 200000

Definition 3.1 (Event): Let E be the set of event types,
called also an alphabet, and for the sake of simplicity,' the
event types are a finite subset of N so that we have:

E=1{1,2,...,n) (1)

An event «; is defined as the pair of an event type from the
alphabet and occurrence time. The event can contain several
other attributes but in this overview, we will limit ourselves
to this pair:

@)

a; = (e, 1),

with e¢; € E and #; a positive integer denoting the time.

Definition 3.2 (Sequence): A sequence of data can be pre-
sented in the form of a database, a log file from the alarm
plant system, etc. In this formalization, a sequence is defined
as the succession of events sorted by their time of occurrence.
The sequence itself is a triple (s, Ty, T,) where T and T, are
respectively the start time and the end time of the sequence’:

(€)

s = {aaz...a,) = {(e1, t1)(e2, 1)...(en, 1))

with Ty<t<th<..<t,<T,
Example 3.1: On figure 2, we can represent the following
sequence:

(s, 30,44) = ((4,31), (5,32), (3, 33), (4, 33), (3, 35),
(5,35), (4,37), (5, 38), (4,39), (5, 39),
(3,40), (4, 40), (5, 40), (3,41), (4, 42))

I'Without loss of generality, as any subset can be mapped to this one with

any bijective functionf : A — E
2 An event with occurrence time equal to 7 is not counted in the sequence

11063

IEEE Access

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

R A A AT] P
:"\f_l___/: (E/ﬁ :\ A ;| | 5 | (\i) \a/ | . ‘| "II\ 5 ;"II |\3/ \4)
. . NS NS . NS NS . . o
s x Tme
(w,29,33) ”

FIGURE 2. A representation of a sequence (in this example there are some events that occur at the same time).

inwindow

LY

30

(w,29,33)

FIGURE 3. A detailed representation of a sequence.

We can see that events are happening at the same time,
there are gaps in the sequence, (i.e. periods with no events
happening). This is very convenient for our modeling pur-
poses as the alarms can happen at the same times and there
can be a duration in time where no alarm is triggered.

To be able to count, events occurrences and later episodes
(which will be defined later on), we have to define when does
occurrences count and how events are considered successive
and/or close enough. For that purpose, the user should specify
an event window and events in that window can be taken into
consideration.

We define an event window as an event sequence:

w=(w,tst) wheret; <T,andt, > Ty

“

and by this definition, the window can extend outside of the
sequence as shown in figure 2.

Example 3.2: The window (w,29,33), as shown in
figure 3, contains the events types: 4 and 5. It should be noted
that the events (3, 33) and (4, 33) happened at the end of the
window but as the sequence is defined: those shall not be
counted. A representation of a sequence; in this example there
are some events that occur at the same time

We call the width of a window its length in time:

w, 29, 34) = ({4, 31), (5, 32)), 29, 33)
width(w) = t, —t, =4

&)
(6)

11064

W(s, win) is the set of all windows of width win, it contains
all the windows inside the sequence and those extending
outside it, so it follow that:

IW(s, win)| = Ty — T, + win — 1)

Definition 3.3 (Episodes): Previously, we defined
sequences and events as the primary brick of this formalism,
they represent the raw data, few modifications to the logs
are done to get to this point, but to transform them into
knowledge, we have to set up an essential part of the theory:
Episode. We need to find the frequent pattern in the sequence
that was provided to us, as such, events must organize into
a meaningful structure that can be quantified as recurrent
and/or happening. These are the episodes that are a class of
event types, that are held up to a certain structure.

In a broader sense, an episode is an ordered (or par-
tially ordered) collection of event types occurring together.
Episodes can be described as directed acyclic graphs. They
can be viewed as a relation mapping different event types,
creating an antecedent/precedent relation between each event
or a simultaneity relation.

Consider, for instance, episodes «, 8 and y in the figure 4:

Serial Episode a

O~

Complex Episode ~

Parallel Episode /3

<

D

</

FIGURE 4. The different types of episodes.

Episode « is a serial episode: it occurs in a sequence
only if there are events of types 4 and 5 that occur in this
order in the sequence. In the sequence, there can be other
events occurring between these two. The alarm sequence, for
instance, is merged from several sources, and therefore it is
useful that episodes are insensitive to intervening events.

Episode B is a parallel episode: no constraints on the
relative order of 3 and 4 are given.

Episode y is an example of the non-serial and non-parallel
episode: it occurs in a sequence if there are occurrences of 3

VOLUME 8, 2020

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

IEEE Access

and 4 and these follow an occurrence of 5; no constraints on
the relative order of 3 and 4 are given. We mostly consider
the discovery of serial and parallel episodes.
We now define episodes formally. An episode « is a triple
(V, <, g) where V is a set of nodes, < is a partial order on V,
and g : V — E is a mapping associating each node with an
event type. The interpretation of an episode is that the events
in g(V) have to occur in the order described by <. The size
of @, denoted ||, is |V].
« Episode « is parallel if the partial order < is trivial (i.e.,
x <y Vx;ye Vsuchthatx <y)

o Episode « is serial if the relation < is a total order
(l.e.x <yory<x Vx,yeV).

« Episode « is injective if the mapping g is an injection,
i.e., no event type occurs twice in the episode.

To be able to specify whether an episode is recurrent,
we define its frequency as the number of windows in which
the episode occurs divided by the total number of windows
[W(s, win)| on a sequence s.

Such as the frequency of an episode « in a sequence s with
a window constraint win is:

[{w € W(s, win) such as « occurs in w }|

IW(s, win)|

fr(a, s, win) =
®)

In this work, you will witness the influence of both works
and how it is important in today’s industrial revolution to have
these tools that were formulated two decades ago provided
that we adapt them to our needs in speed and efficiency.

We will set up a modeling approach to view the problems
from a systems point-of-view and to get more perspective.
The tools that are built in this work are alarm plant oriented
but to preserve the generality of the work, we chose to sep-
arate the alarms part and the data mining part to get a more
broader view of its applications.

IV. SEQUENTIAL PATTERN MINING: MODELING
APPROACH

Now that the formalism is set and every aspect of the under-
lying theory is defined, we will move on developing a few
algorithms that would encompass the goals of this work.
These algorithms aim to find frequent patterns in sequences,
and optimal alignment between those frequent episodes.

A. OPTIMAL ALIGNMENT PROCESSING

The Smith-Waterman algorithm was first proposed in [30]. Its
objective is to find a pair of segments, one from each of two
long sequences, such that there is no other pair of segments
with greater similarity (homology)?

The Smith-Waterman algorithm is a local sequence align-
ment method. Before discussing the algorithm, we first intro-
duce the concept of local alignment. Given a pair of symbolic
segments, one from each of two symbolic sequences, we can
equalize the length of the two segments by inserting gaps

3Smith and ‘Waterman, 1981.

VOLUME 8, 2020

(symbol *“-’) in one or both of them (if the two segments have
the same length, we can also choose to insert no gap). Then
each symbol in one segment has a corresponding symbol
in the other segment in the same position. This is called
alignment, as shown in figure 5.

s
1
Alignement X ;”
|
1

FIGURE 5. An alignement of two subsequences of a A, which could be
identified as two alarms floods on the same database of alarms.

Since the two symbolic segments are two contiguous
sub-sequences of the two symbolic sequences, respectively,
the alignment on the pair of segments is called the local
alignment of the two sequences.

An example of the similarity function used in this work is:

1 ifx=y
st.y) = {—0.6 else &

If there is no alignment i.e. there is a gap, the penalty will
be smaller § = —0.4 and for simplicity’s sake it will be a
uniform penalty (for successive gaps there are no additional
penalty). Let /(Ap., A1) be the similarity index of the align-
ment of sequences Ay, and Ag;.

I(Apg, Arc) = >

O<i<max(l—k,p—q)

sAp+ir Ak+i) - (10)

It represents the similarity of two sequences and the larger
it is, the more similar the sequences are. It can be negative in
cases which lead us to apply a constraint: if two sequences
are completely dissimilar, their similarity score should be 0.

Let S(A, B) be the similarity score of two sequences
A and B, we have then:

S(A,B) = max (I(Aip,Bjg),0) (11)
1<i<p<M
l<j=q=N

The Smith-Waterman algorithm [30] makes use of a sim-
ilarity matrix that is generated while iterating through every
occurrence of both sequences.

This similarity matrix is then used to trace the optimal
route which represents the best alignment strategy for the
sequences: so after generating the matrix, all we have to do is
backtrack from the best score and how it was computed. This
matrix is generated using the following formula:

Hpi1,4+1 = max (I(Ai:pa Bj:q)» 0) (12)

1<i<m

l<j=n
This can be used more easily in the recursive form which
will help us use a dynamic programming approach to com-

pute all terms of the matrix as in figure 6.

Hpp1,g+1 =max(Hp 4 +s(ap, by), Hp g+1+3, Hy11,4 + 6, 0)
13)

11065

IEEE Access

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

Alifalal1]1]2]s3
alfololofofofolo
~
1o |t oe ozl 1|1 |06]|02
SN
2| 0 |06|0af16)12|08]| 2 |16
y
- Y
1o 1 |o6|12f2e)22]18]14
410 |06]|04]|08 2 | 16|12
10| 1]06]|04 (22 28| 24
N,
A 1 — 2 1 4 1
Score 1 —-04 1 1 -04 1 = 32
Agne: 1 3 2 1 - 1

FIGURE 6. A test of a similarity of two sequences.

In the topic of alarm floods, we have to keep in mind
that the sequence of data has a time factor that should be
accounted for. Alignment is considered not on the sequence
itself and its order but events that hold a type and a timestamp.
This will change the score function as it should take into
consideration the timestamp.

If we choose the alphabet of event types as*:

E=1{1,2,..,N} (14)
and the alarm sequence A as:

A=A,y + 1) =< (er,n), ..., (em,) >,
eecE i=1.M (15)

The idea behind this modification of the Smith-Waterman
algorithm is to switch from a time-independent similarity
function s(x,y) to a time-dependant one s((e;, ;), (e}, t)).
This brings us to the need to define new concept: time dis-
tance vector and time weighted vector.

For an event (e, t,,) we define the time distance vector as
follows:

d,, = [d,},di...d,’,f]

min {|t; — ty| : e; = k} if the set is not empty
d,lfq = Ji<i<m
00

These vectors are needed to see the proximity of events
that hold the same type, thus the denomination time distance
vector.

To homogenize the time distance vector and obtain weights
needed for the similarity function, a mapping is used, a func-
tion f(.) that has the following properties:

o f:RT —0,1],

« f is monotonically decreasing,

e f(0)=1andf(4+00) =0.

4This is without loss of generality because a bijective function can map
this alphabet to another with the same cardinality.

11066

As an example here are a few weighting functions:

2
f(x) =exp <—z—2>

fx) = exp (—Ax)
TO=17a
fx) =8(x)

In this work, and for the sake of simplicity, we used the
Gaussian distribution, as we can control its variance. Then,
we defined the time weight vector as follows:

(Gaussian distribution)
(Exponential Distribution)
(Cauchy Distribution)

(Dirac Distribution)

Wy = [whiw?,..wh] (16)
= [Fwp) W) f W] (17)

We use the Gaussian distribution for the first sequence
and the Dirac distribution for the second one. This makes
the similarity function asymmetric: s(A, B) # s(B, A). The
similarity function is defined as follows:

s(A, B) = lllaaicK[wﬁ X wlé](l —w+u (18)

B. SEQUENTIAL PATTERN MINING ALGORITHM WITH
WINDOW CONSTRAINT

The work presented in [23] is a pioneering step forward
in sequential pattern mining and opened the way to some
improvements on the technique used to generate frequent
episodes and differentiate between them. Many of the mod-
ern pattern recognition algorithms in sequences, (e.g. natural
language recognition) have their roots from the WINEPI
algorithm [23]. The name WINEPI is derived from the words:
Window and Episode. This algorithm uses a window con-
straint to compute the support of an episode (see 3.3). This
idea makes the generation of frequent and the rule discovery
distinct tasks that could be done separately.

Simplified view of the Apriori Lemma.

Algorithm 1 recognizes candidate parallel episodes in a
sequence, it proceeds as subsequently, when an event in a
parallel episode o enters the current window, it is counted
in a.eventCount which keep how much of this episode is in
the window. Once «.eventCount = |o|, which indicates that
episode « is entirely in the window, we save the starting time
in a.inwindow.

When the episode o leaves the window, as the
a.eventCount decreases, it is saved in «.freqCount to mark
how many windows the episode has remained entirely in,
it will lead us to compute the support of the episode presented
by the formula in 3.3.

In order to organize all candidates and make access effi-
cient, it is useful to index them by a dictionary of how many
events A, the key is the event type A and its number of
occurrence in the episode, and the value is a list of episode
having a number of event types A: this dictionary is called
contains[(A, a)], a being the number of occurrences.

Example 4.1: As an example in figure 7, suppose we have
a window update and the new addition to the window is

VOLUME 8, 2020

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

IEEE Access

Algorithm 1 Algorithm for recognizing parallel episode

Input: A collection C of parallel episode, an event sequence
s = (s, Ty, T,), a window width win, and a frequency
threshold minFr

Output: The frequent episode of C with respect to win and
minFr

1: function FindParallelFrequent(s, C;, win, minFr)

2: > Initialization

3 for all « in C do

4 for all A in o do

5: A.count < 0

6 for i < 1 do|x|

7 contains(A, i) <

8 forall« € C do

9

for VA € a do
10: a < number of event of type A in «
11: contains(A, i) < contains(A, i) U {«a}
12: a.eventCount < 0
13: o.freqCount <— 0
14: > Recognition
15: for start < Ty—win + 1 doT,
16: for all (A, 1) C s/t = start + win — 1 do
17: A.count < A.count + 1
18: for all o« € contains(A, A.count) do
19: a.eventCount <— a.eventCount +A.count
20: if a.eventCount = |a| then
21: o.inwindow < start
22: > Delete old event from window
23: for all (A, 1) C s/t = start — 1 do
24: for all o € contains(A, A.count) do
25: if a.eventCount = |a| then
26: a.freqCount <« «a.freqCount —
a.inwindow + start
27: a.eventCount < a.eventCount —A.count
28: forallo € C do
29: if % > minFr then
30: return o«

a={A,A A AB B R)

v

1

5

3

. s
a.inwindow 6 7 6
. freqCount 2 3 3
contains[(A4)] | 0 | o | 0
o
N\ [B “ NN
\I‘A\ T b \’B"“’AI\ N TN N
\e) (c)\E/ Vo) \e) (a) (a) (r)
AN, NN RN SR N N

wy

w3

FIGURE 7. Parallel episode counting demonstration.

an event of type A, the window having 3 events of type A,
the entry contains[(A, 4)] is updated to signal to episodes
expecting 4 A events, that this window contains them.

VOLUME 8, 2020

not e not ep not ez

es enters

ey enters ey enters o
start — 53

e leaves

ey leaves

FIGURE 8. State automata recognizing a serial episode « =< e, €5, €5 >.

The algorithm 2 is used for recognizing serial candidates
episodes in an event sequence make use of state automata
(like the one on figure 8). These automata that take candidates
serial episodes as their sole input. For a serial episode o,
we create an automaton, which we can instantiate many times
simultaneously. These simultaneous instances can show the
active states of the prefixes of .

As the first event of a serial episode « enters the window,
we create a new automaton for that episode; this automate
is erased with the exit of the same first event from the time
window.

The accepting state for an automaton is when all of its
events have entered the window, with no other instance of
this automaton in their accepting state. The starting time of
the windows is saved in the variable «.inwindow. This allows
us to count the event once in a window since the frequency is
the number of windows containing the episode at least once.
In the situation where the accepting state automaton is exiting
the window and when there is no accepting state automaton,
we increase the variable o.freqCount with the number of
windows in which the episode « has been in.

Having numerous automata with the same state is redun-
dant, it provides the same information in this algorithm and
would provide the same transitions. The optimal way is to
keep the automaton that has to reach the most advanced state
at the latest, as it will be removed last. At most, we should
have |«| automata. To find the automaton that we should
remove, we represent the automata with an array of size |«|.
In the variable «.initialized[i], we store the latest initializa-
tion time of an automaton in its i state. As « is a sorted array
of events, this array is used to label the state transition.

To access and traverse the automata efficiently they are
organized in the following way: in a list waits(A) we store the
automata that are waiting for an event A € E; waits(A) con-
tains the episode and which event its automata is waiting for:
(a, x) i.e. an automata for the x™ event of «. As event A, 1)
enters the window, we consult the list waits(A). If any automa-
ton reaching the same state i as another, «.initialized[i] is
overwritten to allow the latest state automaton to be saved.

We store transition at the shift of the window in a list, in the
form (o, x, t): an episode « has reached its xth event, with lat-
est initialization time of the prefix of length x is 7. We update
old states of the automata immediately, new states are updated
only after all the transitions have been pinpointed, only to
not overwrite useful information. To easily remove automata
instantiated at time ¢, we store them in a list beginsat(t).

11067

IEEE Access

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

Algorithm Optimization

Algorithms
[—

Post-mortem debugging

Code optimization
& tweaking

Benchmarking]__—b{ Finalization
Final

Validation

BuiweaBouy

Implementation

FIGURE 9. Our validation procedure.

A (LD (B (24 (L42) (AT (3.9 (2125

A [UN] 0 0 0 0 0 0
4010 o0 0 0 0 1 0.6 0.2
(L3 [0 1 06 02 1 0.6 L1370 0970

(3.5 |0 06 2 1.6 1.2 0.8 1.6 1.290

{1,7.5)] 0 1 1.6 2951 2.6 2.2 1.8 2.551
(2,8) | 0 0951 1.2 2.6 3902 3502 3.102 2.8
(3,13)| 0 0551 1951 22 3502 3302 4502 4102

(L20)| 0 1 1.551 L8 3.2 2902 4102 3.902

(@) Similarity table &

A (1L3) (3,5) (1,7.5) (2,8) - (3,13)
Seore: | + 1 + 0951 + 0951 + 04 + 1 = 4502
B (LO) (3.1) (2.4) (1,4.2) (4.7) (3,9)

FIGURE 10. A test of a similarity of two sequences.

1 Number of rules found: 4

3 <Rule: 4 -> 4 4 / 0.3846153846153846>
n <Rule: 4 -> 4 5 / 0.7692307692307692>
<Rule: 5 -> 4 5 / 0.9090909090909091>
<Rule: 5 -> 55 / 0.2727272727272727>
Time of execution: 0.004784 sec

FIGURE 11. A serial episode mining run on the example with window size
win = 3, minFr = 0.2 and minConf = 0.1.

V. COMPUTATIONAL RESULTS

After presenting the underlying structure of the used algo-
rithms and the theories they are based upon, it is crucial to
test their implementation to validate the work done but also
to have a showcase of performance indicators:

2000
1750 4

» 1500

S

1250

1000

750

Number of episode;

500 1
250

0

50 100 150 200 250 300
Window size (win)

(a)

1 Number of rules found: 73

3 <Rule: 3 -> 3 4 / 0.8888888888888888>
4 <Rule: 3 -> 3 5/ 0.6666666666666666>
<Rule: 4 -> 3 4 / 0.6153846153846153>
<Rule: 4 -> 4 4 / 0.4615384615384615>
<Rule: 4 -> 4 5/ 0.6153846153846153>

9 <Rule: 5455 ->54545/0.5>
0 <Rule: 5545 ->54545/0.5>
n Time of execution: 0.017568 sec

FIGURE 12. A serial episode mining run on the example with window size
win = 3, minFr = 0.01 and minConf = 0.1.

Number of rules found: 2515

<Rule: 288-PI-1272 -
+ |<Rule: 288-PI-1272 -
<Rule: 288-PI-1272 -
<Rule: 288-PI-1272 -

288-PI-1272 340-FI-434 / 0.7668530088786584>
288-PI-1272 462-FI-1109 / 0.6941795462019072>
288-PI-1272 462A-152QC2 / 0.5771127918447878>
288-PI-1272 462C-L52QC1 / 0.5656034199276554>
<Rule: 288-PI-1272 -> 288-PI-1272 462C-L52QC2 / ©.6885892798421571>
<Rule: 288-PI-1272 -> 288-PI-1272 IFC04-608INT / 0.6997698125616573>
<Rule: 340-FI-434 -> 288-PI-1272 340-FI-434 / 0.6959116681587586>
<Rule: 340-FI-434 -> 340-FI-434 340-FI-434 / 0.5601313040883318>
<Rule: 340-FI-434 -> 340-FI-434 462-FI-1109 / 0.7057594747836466>
<Rule: 340-FI-434 -> 340-FI-434 462A-L52QC2 / 0.5475977320202924>
<Rule: 340-FI-434 -> 340-FI-434 462C-L52QC1 / 0.5684870188003581>
<Rule: 340-FI-434 -> 340-FI-434 462C-L52QC2 / 0.6356311548791406>

VVVVVYV

<Rule: 462-FI-1109 462-FI-1109 462-FI-1109 462-FI-1109 462-FI-1109 462-FI-1109
462-FI-1109 462-FI-1109 462-FI-1109 462-FI-1109 462-FI-1109 462-FI-1109
462-FI-1109 -> 462-FI-1109 462-FI-1109 462-FI-1109 462-FI-1109 462-FI-1109
462-FI-1109 462-FI-1109 462-FI-1109 462-FI-1109 462-FI-1109 462-FI-1109
462-FI-1109 462-FI-1109 462-FI-1109 / 0.9687380861608845>

Time of execution: 8:9

FIGURE 13. First run of the algorithm on un-processed data: win = 300,
minFr = 0.7.

« Stability;
o Time Consumption;
« Space Consumption;

These attributes are key indicators for algorithms that
are bound to run on huge databases. Space and time con-
sumption are as important as stability mainly because they
affect it.

In this section, we aim to check the performance and the
validity of such algorithms, as demonstrated in figure 9 and
to extract the strengths of our procedure as well as the tweaks
and optimizations applied.

12000

10000 A

Number of rules
[=2] o
(=] (=]
(=1 (=]
(=] (=]
: :

'
o
S
S
L

2000 1

50 100 150 200 250 300
Window size (win)

(b)

FIGURE 14. (a) Number of serial episodes, and (b)Number of rules generated as a function of the window size for serial episodes.

11068

VOLUME 8, 2020

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

IEEE Access

Algorithm 2 Algorithm for recognizing Serial Episode
Input: A collection C of serial episode, an event sequence

s = (s, Ty, Te), a window width win, and a frequency
threshold minFr
Output: The frequent episode of C with respect to win and
minkr
1: function FindSerialFrequent(s, C;, win, minFr)
2: > Initializing
3: for all € C do
4: for i < 1 do|«|
5: a.initialized[i] < 0
6: waits(a[i]) < @
7: forallx € C do
8: waits(a[1]) < waits(ax[1] U {(«, 1)}
9: a.freqCount < 0
10: for t < Ty — windoT; — 1
11 beginstat(t) < ¥
12: > Recognizing Episodes
13: for start < Ty — win doT,
14: > Bring new events
15: beginstat (start + win — 1) <
16: transitions < {)
17: for all (A, 1) € s/t = start +win — 1 do
18: for all (o, j) € waits(A) do
19: if j = || and «a.initialized[j] = O then
20: a.inwindow < start
21: if j = 1 then
22: transitions <~ transition U
{a, 1, start + win — 1}
23: else
24: transitions <~ transition U
{a, j, a.initialized[j — 1]}
25: beginstat(a.initialized[j — 1] <«
beginstat(a.initialized[j — 1] — {(«, j — 1)}
26: a.initialized[j — 1] < 0
27: waits(A) < waits(A) — {(«, j)}
28: for all (v, j, t) € transitions do
29: a.initialized[j] <t
30: beginstat(t) < beginstat(t) U {(«, j)}
31: if j < || then
32: waits(a[j+1]) < waits(a[j+ 1D U{(a, j+
D}
33: else
34: > Delete old events from window
35: for all (o, [) € beginsat(start — 1) do
36: if = |o| then
37: a.freqCount <~ ofreqCount —
a.inwindow + start
38: else
39: waits(a[l4+1]) < waits(a[l+1])—{(c, [+
D}
40: a.initialized[l] < 0
41: for all « € C do
42: if % > minFr then
43: return o

VOLUME 8, 2020

w

=

S
L

[¥]
ot
L

o

=]

S
L

100 4

Time spent (Seconds)
&
o

S
o
L

50 100 150 200 250 300
Window size (win)

FIGURE 15. Run time as a function of the window size for serial episodes.

A. EXPERIMENTAL PROTOCOL
The test of the several algorithms is done on a laptop with
an Intel i5 3230M CPU 2.60 GHz with 2 cores and 4 logical
processors, a4.0 GB of SODIMM DDR3 RAM @ 1600GHz.

The algorithms are programmed in Python 3.6 on an Ana-
conda 4.3.8 distribution and in C# using the Visual Studio
2015 distribution. Our validation procedure

The modified Smith-Waterman implementation aims to
find alignment between two sequences. These sequences
can be two subsets of the same data sequence, to compare
two-alarm floods that follow the same pattern.

The modified Smith-Waterman algorithm uses a similarity
score to pinpoint the best alignment of two sequences. The
sequences are:

A=1[(1,0),3,1),2,4),1,42),4,7),3,9), (2, 12.5)]
B =1[4,0),(1,3),(3,5),(1,7.5), (2, 8), (3, 13), (1, 20)]

The algorithms presented in section IV-B have been imple-
mented in Python 3 and tested on a few sample cases to be
validated. The test cases range from simple text sequences to
alarms databases.

To verify that our theoretical approach was on point,
we started with a few test cases that will validate our imple-
mentation. Those test cases were text sequences and a suc-
cession of arbitrary events chosen randomly.

The next step is, of course, a performance showcase
where the algorithms are put to a rigorous benchmark to
see their computing ability. Those benchmarks are on an
alarms database provided by Integration Objects.” It contains
roughly 200000 events and a few thousand event types.

We, then, proceeded to plot the results in terms of numbers
of episodes generated, rules generated and time consumed as
a function of the several inputs of the algorithm.

B. RESULTS

The first part of our work to be tested is for optimal alignment.
For the test case presented in the foundational paper [7], seen
in figure 10 we found the same similarity score, which led us

5 https://integrationobjects.com

11069

IEEE Access

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

200 A

100 A

Number of episodes

T T T

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frequency Threshold (minF'r)

(a)

Number of rules

T T T

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frequency Threshold (minf'r)

(b)

FIGURE 16. (a)Number of serial episodes, and (b)Number of rules generated as a function of the frequency threshold minFr for serial

episodes.

to conclude on the correctness of our implementation. This
was implemented in.NET C# under Visual Studio 2015.

The complexity of this algorithm is ®(nm) and in that
spirit, the lower bounds and upper bounds of complexity are
the same. The performance of the algorithm is depending
on the size of the sequences to be aligned. The matrix of
correspondence is generated in its entirety every time the
algorithm is running.

The whole focus of our implementation is to be useful in
using data generated from the episode mining algorithm. It is
a secondary objective for this work, but it can prove to be
useful in ulterior research. Alignment can be used to find
similar episodes and scoring sequences.

The second part of our work to be tested is for sequential
pattern mining. This part of the algorithm is programmed
in Python 3.6 under the same system. The rules are in the
following form:

<Rule:ax— B> withf <« (19)

At first, we run the algorithm with data from the example
in figure 11. The results are similar to those obtained from
the manual computation which validates the correctness of
our implementation.

The result was fairly fast and the number of rules is
low since the frequency is considered high. A second run
with a lower frequency would give us more rules as shown
in figure 12.

The main objective of this algorithm is to run on a vast
amount of data, we should benchmark its capabilities and how
much resources it needs to run.

As afirst run of the algorithm, we used a database provided
by Integration Objects.® This has been done without pre-
processing, to demonstrate the capabilities of the algorithms
and to show that it can be used on alarms database.

We observe the need for pre-processing the data, as in
figure 13, we have a chattering alarm that created a list of
episodes that are quite frequent. Also, we can use this to

SURL: https://integrationobjects.com.

11070

12

104

Time spent (Seconds)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frequency Threshold (minF'r)

FIGURE 17. Run time as a function of the frequency threshold minFr for
serial episodes.

pre-process the data in itself as the chattering alarms will
create frequent patterns with only one event type.

This run used up to 700 MB of memory and generated
2515 rules, with Ty = 0 and T, = 100000 which represent
roughly 28 hours of alarms data.

We will begin by testing the serial episode generation
algorithm. As our implementation uses four algorithms and
the algorithm that takes up most of the time is the candidate
generation algorithm. We separate the testing for both imple-
mentations to benchmark performance.

In figure 14(a), we can observe that the number of episodes
grows exponentially as a function of the window size. It is
expected that episodes are an increasing function of the
window size, since the bigger the windows the larger the
spectrum of the search for episodes.

Like the previous statement, in figure 14(b), the number of
episodes grows exponentially so the number of rules which
is the number of relationships that episodes and their parents
(super-episodes) share, i.e. confidence index.

In figure 15, we show the performance as the time spent
to generate all episodes as a function of the window size.
As stated in the theoretical analysis, it grows exponentially
and window constraint should be chosen in a way that it is
still generating enough meaningful data but on time.

VOLUME 8, 2020

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

IEEE Access

400 4

300 1

)

=]

S
L

Number of episodes

,_

o

s
L

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frequency Threshold (minFr)

(a)

1400 4

1200 4

1000

800

600 4

Number of rules

4004

200 4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Frequency Threshold (minFr)
(b)

FIGURE 18. (a)Number of parallel episodes and (b)Number of rules generated as a function of the frequency threshold minFr for

parallel episodes.

TABLE 1. Results of prediction-rule model for sequential rules, MineAlarmRulesForKind, and the proposed algorithm.

Algorithm Prediction Count

Rule Occurrence Count Accuracy Recall

RuleGrowth
MineAlarmRulesForKind
Proposed algorithm %

2,702
366
283

864
266
211

32.0%
72.7%
76.4%

69.8%
86.4%
91.1%

In both figures 16(a) and 16(b), we have two monotonically
decreasing plots of respectively, the number of episodes and
the number of rules, with the frequency threshold as the
variable.

The time plot in figure 17, as a function of the frequency
threshold, is a step ladder like function. The time taken for
generating episodes is the same for segments of time. Since
the generation process is taken with the Apriori Principle,
most of the runtime is for finding the 1-episodes and then
generating the episodes from them.

The same process goes for parallel episode generation.
We plot the figures with the frequency threshold and the time
window as parameters and we see runtime, the number of
episodes and rules generated.

In figures 18(a), 18(b),19,20(a), 20(b) we obtain similar
results as the serial episode generation algorithms. There
is a difference in the runtime as a function of the window
constraint.

In figure 21, we see that we have a linear behavior which
is a really interesting feat of the algorithm. This is due to the
small size of the window. Its complexity has shown that it
has to present quadratic like property but the implementation
is more straightforward and process management in Python
gave it a boost.

C. COMPARATIVE STUDY

After presenting the tests on the influence of system param-
eters, the proposed algorithm is compared with a tradi-
tional sequential data mining algorithm, RuleGrowth [14] and

VOLUME 8, 2020

254

20 A

151

Time spent (Seconds)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frequency Threshold (minFr)

FIGURE 19. Run time generated as a function of the frequency threshold
minFr for parallel episodes.

MineAlarmRulesForKind algorithm [31]. For this evaluation,
the same prediction occurrence model with the alarm rules
presented in [31] is implemented.

This model is based on the rule occurrences on the events.
If the antecedent alarms of the sequential rule of a node
happen in a transaction, then the prediction the consequent
alarm of this rule will also occur in this transaction is made.
If this consequent one also happens, the prediction is accu-
rate. Then, the correctness of the prediction is calculated as
accuracy. The alarm rules are mined from data set (alarm
count: 369,345) which are dated from 10-08-2012 to 23-08-
2012 based on the Nokias radio access network logs with
a support value of 10 and confidence value of 0.9. The

11071

IEEE Access

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

800 1

@
L

400 4

Number of episodes

200 4

50 100 150 200 250 300
Window size (win)

(a)

3000 4

2500 -

& 2000

1500 4

Number of rules

1000

50 100 150 200 250 300
Window size (win)

(b)

FIGURE 20. (a)Number of parallel episodes and (b)Number of rules generated as a function of the window size for parallel episodes.

50 1

40

300

S
S

50 100 150 200 28
Window size (win)

FIGURE 21. Run time as a function of the frequency threshold minFr for
parallel episodes.

prediction accuracy is created from these logs (alarm count:
27,855) on 24-08-2012.

As shown in Table 1, the RuleGrowth algorithm makes
2,702 predictions and 864 rule occurrences take place based
on these predictions in this experiment. Therefore, its accu-
racy is around 32.0%.

The MineAlarmRulesForKind algorithm makes 366 pre-
dictions and 266 rule occurrences take place based on these
predictions in this experiment. Therefore, its accuracy is
around 72.7%.

The proposed algorithm makes 283 predictions where
211 of them has occurred.

Therefore, the accuracy becomes 76.4%. In the experi-
ments, the RuleGrowth and MineAlarmRulesForKind algo-
rithms made many predictions while it utilizes a lot of
resources and time.

These results show that the proposed method makes more
precise predictions by using fewer resources and time.

VI. CONCLUSION

Thorough bibliographical research showed us that current lit-
erature considers sequential pattern recognition as an expand-
ing field of research. The problem lies in its usage. The

11072

mining pattern from a single timed sequence of events is
called: episode mining. This distinction helps us in refining
our bibliographical research, finding and tweaking the exis-
tent algorithms.

In Data Mining, association rules is a machine learning
tool to get information from sets of data but do not con-
sider order (or time). Sequential pattern mining is finding
the frequent/special pattern with no scoring method that has
predictive capabilities. The algorithm present here was a
reconciliation of both and the result obtained has probabilistic
interpretation.

This work is axed around providing a way to break
sequences into episodes and store those in a database with
an assigned value of confidence and support. With this pro-
cedure, we can analyze data in a different way as episodes
could have a certain meaning.

However, this approach still depends tightly on the choice
of parameters as they will affect directly the extracted rules.
In this context, further works can focus on making the choice
of parameters more dynamic and dependent on the charac-
teristics of data. Moreover, it is important to preprocess data
due to noisy data, errors, inconsistencies, and lack of variable
values. Different data preprocessing techniques like cleaning
methods, data integration and transformation can be carried
out before extracting rules to achieve successful analysis and
prediction.

REFERENCES

[1] Y. Dodge, Exploratory Data Analysis. New York, NY, USA: Springer,
2008, pp. 192-194.

[2] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc. 11th
Int. Conf. Data Eng. (ICDE), Washington, DC, USA, 1995, pp. 3-14.

[3] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining
using a bitmap representation,” in Proc. 8th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), New York, NY, USA, 2002,
pp. 429-435.

[4] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Germany: Springer-Verlag, 2006.

[5] S. Boggan and D. Pressel, “GPUs: An emerging platform for general-
purpose computation,” Comput. Inf. Sci., Army Res. Lab., Adelphi, MD,
USA, Tech. Rep. ARL-SR-154, 2007.

[6] S. Y. Chen and X. Liu, “The contribution of data mining to information
science,” J. Inf. Sci., vol. 30, no. 6, pp. 550-558, Dec. 2004.

VOLUME 8, 2020

A. Hidri et al.: Discovery of Frequent Patterns of Episodes Within a Time Window for Alarm Management Systems

IEEE Access

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Y. Cheng, I. Izadi, and T. Chen, ‘“Pattern matching of alarm flood
sequences by a modified Smith—-Waterman algorithm,” Chem. Eng. Res.
Des., vol. 91, no. 6, pp. 1085-1094, Jun. 2013.

D.-Y. Chiu, Y.-H. Wu, and A. Chen, “An efficient algorithm for mining
frequent sequences by a new strategy without support counting,” in Proc.
20th Int. Conf. Data Eng., Washington, DC, USA, Sep. 2004, p. 375.

J. Dean, Big Data, Data Mining, and Machine Learning: Value Creation
for Business Leaders and Practitioners. Scotts Valley, CA, USA: CreateS-
pace Independent Publishing Platform, 2014.

G. Dorgo and J. Abonyi, “Sequence mining based alarm suppression,”
IEEE Access, vol. 6, pp. 15365-15379, 2018.

G. Dorgo, K. Varga, and J. Abonyi, ‘“Hierarchical frequent sequence min-
ing algorithm for the analysis of alarm cascades in chemical processes,”
IEEE Access, vol. 6, pp. 50197-50216, 2018.

S. Brian Everitt, S. Landau, and M. Leese, Cluster Analysis, 4th ed.
Hoboken, NJ, USA: Wiley, 2009.

P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas,
“A survey of sequential pattern mining,” Data Sci. Pattern Recognit.,
vol. 1, no. 1, pp. 54-77, 2017.

P. Fournier-Viger, R. Nkambou, and V. S.-M. Tseng, “‘RuleGrowth: Mining
sequential rules common to several sequences by pattern-growth,” in
Proc. ACM Symp. Appl. Comput. (SAC), TaiChung, Taiwan, Mar. 2011,
pp. 956-961.

W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, and S. P. Yu,
“A survey of parallel sequential pattern mining,” ACM Trans. Knowl.
Discov. Data, vol. 13, no. 3, pp. 25:1-25:34, Jun. 2019.

J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu,
“FreeSpan: Frequent pattern-projected sequential pattern mining,” in
Proc. 6th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD),
New York, NY, USA, 2000, pp. 355-359.

R. Karoly and J. Abonyi, ‘“Multi-temporal sequential pattern mining based
improvement of alarm management systems,” in Proc. IEEE Int. Conf.
Syst., Man, Cybern. (SMC), Budapest, Hungary, Oct. 2016, pp. 3870-3875.
R. S. King, Cluster Analysis and Data Mining: An Introduction. Herndon,
VA, USA: Mercury Learning & Information, 2014.

P. D. Kroese and J. C. C. Chan, Statistical Modeling and Computation.
New York, NY, USA: Springer, 2013.

D. T. Larose and C. D. Larose, Data Mining and Predictive Analytics,
2nd ed. Hoboken, NJ, USA: Wiley, 2015.

N. R. Mabroukeh and C. I. Ezeife, “A taxonomy of sequential pattern min-
ing algorithms,” ACM Comput. Surv., vol. 43, no. 1, pp. 1-41, Nov. 2010.
A.M. Mabu, R. Prasad, R. Yadav, and S. S. Jauro, “‘A review of data mining
methods in bioinformatics,” in Proc. Recent Adv. Eng., Technol. Comput.
Sci. (RAETCS), Feb. 2018, pp. 1-6.

H. Mannila, H. Toivonen, and A. Inkeri Verkamo, ‘‘Discovery of frequent
episodes in sequences,” Dept. Comput. Sci., Assoc. Adv. Artif. Intell.,
Univ. Helsinki, Helsinki, Finland, Tech. Rep., 1995.

C. H. Mooney and J. F. Roddick, ““Sequential pattern mining—Approaches
and algorithms,” ACM Comput. Surv., vol. 45, no. 2, pp. 1-39, Feb. 2013.
P. K. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge,
MA, USA: MIT Press, 2012.

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu,
“PrefixSpan: Mining sequential patterns by prefix-projected growth,” in
Proc. 17th Int. Conf. Data Eng., Apr. 2001, pp. 215-224.

G. Piatetsky-Shapiro, “Knowledge discovery in databases: 10 years after,”
SIGKDD Explor. Newslett., vol. 1, no. 2, pp. 59-61, Jan. 2000.

M. T. Rezvan, A. Z. Hamadani, and A. Shalbafzadeh, ““Case-based rea-
soning for classification in the mixed data sets employing the compound
distance methods,” Eng. Appl. Artif. Intell., vol. 26, no. 9, pp. 2001-2009,
Oct. 2013.

A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari,
M. J. Er, W. Ding, and C.-T. Lin, “A review of clustering techniques and
developments,” Neurocomputing, vol. 267, pp. 664-681, Dec. 2017.

T.-F. Smith and M.-S. Waterman, ‘“‘Identification of common molecular
subsequences,” J. Mol. Biol., vol. 147, no. 1, pp. 195-197, Mar. 1981.

S. E. Solmaz, B. Gedik, H. Ferhatosmanoglu, S. Soziier, E. Zeydan, and
C. O. Etemoglu, “ALACA: A platform for dynamic alarm collection and
alert notification in network management systems,” Int. J. Netw. Manage.,
vol. 27, no. 4, p. 1980, Jul. 2017.

R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations
and performance improvements,” in Advances in Database Technology.
London, U.K.: Springer-Verlag, 1996, pp. 1-17.

R. Srikant and R. Agrawal, “Mining sequential patterns: Generaliza-
tions and performance improvements,” in Proc. 5th Int. Conf. Extend-
ing Database Technol., Adv. Database Technol. (EDBT). London, U.K.:
Springer-Verlag, 1996, pp. 3-17.

VOLUME 8, 2020

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

tion,

S. Tuffry, Data Mining and Statistics for Decision Making, 1st ed.
Hoboken, NJ, USA: Wiley, 2011.

1. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed. San Francisco, CA, USA: Morgan
Kaufmann, 2011.

X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97-107, Jan. 2014.

X. Yan, J. Han, and R. Afshar, “CloSpan: Mining: Closed sequential pat-
terns in large datasets,” in Proc. SIAM Int. Conf. Data Mining, May 2003,
pp. 166-177.

D. Yu, W. Wu, S. Zheng, and Z. Zhu, “BIDE-based parallel mining of
frequent closed sequences with MapReduce,” in Algorithms and Architec-
tures for Parallel Processing, Y. Xiang, I. Stojmenovic, B. O. Apduhan,
G. Wang, K. Nakano, and A. Zomaya, Eds. Berlin, Germany: Springer,
2012, pp. 177-186.

M.J. Zaki, “Spade: An efficient algorithm for mining frequent sequences,”
Mach. Learn., vol. 42, nos. 1-2, pp. 31-60, Jan. 2001.

M. J. Zaki and W. Meira, Jr., Data Mining and Analysis: Fundamental
Concepts and Algorithms. New York, NY, USA: Cambridge Univ. Press,
2014.

J. Zhong, W. Guo, and Z. Wang, “Study on network failure prediction
based on alarm logs,” in Proc. 3rd MEC Int. Conf. Big Data Smart City,
Mar. 2016, pp. 1-7.

ADEL HIDRI was born in El Kef, Tunisia.
He received the master’s degree in automatic and
signal processing, and the Ph.D. degree in elec-
trical engineering from the National Engineer-
ing School of Tunis (ENIT), Tunis El Manar
University, Tunisia, in 2004 and 2014, respec-
tively. He is currently an Assistant Professor with
the Imam Abdulrahman Bin Faisal University,
Dammam, Saudi Arabia. His research is focused
on multichannel speech separation and extrac-
denoising speech, beamforming and microphone array, and machine

learning.

AHMED SELMI was born in Tunis, Tunisia.
He received the Engineering Diploma from the
National Engineering School of Tunis, in 2017.
He has worked as an IEEE Student Leader for a
few years and was a member of different com-
mittees and the IEEE initiatives around the world,
most notably internet initiative, ethical Al, and
humanitarian connectivity.

MINYAR SASSI HIDRI was born in Nabeul,
Tunisia. She received the degree in computer sci-
ence engineering and the Ph.D. degree from the
National Engineering School of Tunis (ENIT),
Tunis El Manar University, Tunisia, in 2003 and
2007, respectively. She obtained the Habilitation
to lead researches in computer sciences from Tunis
El Manar University, Tunisia, in June 2014. She
is currently an Associate Professor with ENIT,
Tunisia, and an Assistant Professor with the Imam

Abdulrahman Bin Faisal University, Dammam, Saudi Arabia, since Septem-
ber 2017. Her experience in teaching, in computer science and information
systems is around 16 years. She had worked for five years as a Teaching
Assistant at ENIT, and 10 years as an Assistant Professor. Besides her
academic responsibilities, she had participated in several administrative tasks
such that student’s projects supervision and courses coordinator. Her research
interests include combinatorial aspects in Big Data and their applications to
different fields, including data mining, machine learning, deep learning, and
text mining, with over 65 publications. She is also a member of the steering
committee of many international conferences and a reviewer of impacted
journals.

11073

	INTRODUCTION
	RELATED WORK ON SEQUENTIAL PATTERN MINING
	PRELIMINARIES
	SCOPE
	DEFINITIONS

	SEQUENTIAL PATTERN MINING: MODELING APPROACH
	OPTIMAL ALIGNMENT PROCESSING
	SEQUENTIAL PATTERN MINING ALGORITHM WITH WINDOW CONSTRAINT

	COMPUTATIONAL RESULTS
	EXPERIMENTAL PROTOCOL
	RESULTS
	COMPARATIVE STUDY

	CONCLUSION
	REFERENCES
	Biographies
	ADEL HIDRI
	AHMED SELMI
	MINYAR SASSI HIDRI

