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ABSTRACT Nowadays, the object detection techniques have been developed rapidly for different
applications, ranging from remote sensing to autonomous vehicles. We demonstrate identification of object
open angle and direction using machine learning (ML) algorithms based on received light beam’s intensity
profiles. Compared with previous optical orbital-angular-momentum (OAM) spectrum system and other
related works, our proposed technique only uses a single-shot image, and can efficiently reduce the
complexity of hardware implementation. Specifically, we verify the reliability of the simulation results
experimentally for 14 open angles and 32 directions. Experimental result shows that convolutional neural
network (CNN) outperforms the other traditionalML algorithms, such as decision tree (DT), k-nearest neigh-
bor algorithm (KNN), and support vector machine (SVM). As one of the variant of CNN, MobileNet (MN)
has relatively simplified iteration algorithm than VGG-like net. It reduces the computational power, while
still maintaining high accuracy for identification issues.

INDEX TERMS Object detection, remote sensing, machine learning.

I. INTRODUCTION
When an object is interrogated by a light beam, its
characteristics can be identified by the intensity or phase
information of the deviation from the original incidental
beam [1]. Orbital angular momentum (OAM) beam, due to
its unique features, has enabled novel applications in mul-
tiple fields [2]. Recently, researchers started to apply OAM
beams into object identification [3]–[8]. As the intensity of an
OAM beam is circularly symmetric, the intensity information
itself is not enough to identify the rotation characteristics.
For free space object detection issues, proposed systems
require additional phase information of the OAM beams, and
thus complex OAM spectrum analysis is usually required
[5]–[8]. In such systems, spatial light modulator (SLM)
and power meter are indispensable to acquire the OAM
spectrum, and the process takes a lot of time and efforts.
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Consequently, a simple method with reduced hardware
requirement is thus highly desirable.

In the field of computer vision, object detection has been
developed for many highly practical applications, such as
human behavior analysis, face recognition, and autonomous
driving [9]–[11]. The object’s location, movement, occlusion
and background conditions are all useful information to be
detected. One of the popular method it to use the image
captured by a camera. However, the image can be easily
influenced by the environment, and be blurry due to the
diffraction caused by the truncation after propagating through
the object. Therefore, it is vital to capture the subtle feature
of the images, and classify them with suitable methods [12].

Recently, machine learning (ML) technique, which has the
ability to automatically extract features of data at multiple
levels of abstraction, has already been impacting a wide range
of sensing and detection work by creating nonlinear detection
boundaries. Deep learning (DL) with hierarchical structure
has emerged as a new field ofML research and achievedmore
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significant results based on the structure of multi-layer [13].
It has been extensively developed for many innovated optical
applications, such as computer vision, optical communication
performance monitoring, face identification and augmented
reality, etc., [14]–[18]. Convolutional neural network (CNN)
based DLmethod can extract the features and recognize input
data in an efficient manner, especially aiming at complicated
data. Nowadays, DL has been applied to further improve the
ability of computers to identify objects in texts, voice, images,
even videos [19]–[23]. The accuracy, storage space, compu-
tation cost and energy consumption are critical factors to be
considered for real-time detection problems. There are some
methods to reduce the model size and improve the function of
the whole neural network, like convolutional kernel decom-
position, flattened networks, low bit networks, and bottleneck
structure based squeezenet [24]–[26]. Specifically, many
innovative techniques, such as the StuffNet [27], the Hyper-
Net [28], and the MobileNet (MN) [29], which can reduce
the requirement on computational resources by transforming
from the traditional vanilla CNN.

In this work, we propose to use a reference Gaussian beam
to simplify the OAM spectrum system for object identifi-
cation mission using several ML methods. We demonstrate
object parameter identification, such as open angle and direc-
tion by two CNN-based deep learning methods. Comparing
with previous OAM spectrum analysis system, our work
could reduce the hardware implementation complexity, and
potentially serve for remote sensing and real-time object
feature detection. Meanwhile, the MN can further reduce the
computation of the CNNmodel. Our demonstrated technique
has the potential to extend its applications, ranging from
monitoring fan blade, propeller, to tire pressure. Furthermore,
using external interrogated source could help detect cloaking
objects.

The paper is organized as following: in section 2,
we present the concept of our proposed object identification
system, and provide the comparison with previous OAM
spectrum analysis system. In section 3, we first describe the
experimental setup and the algorithms implemented. Next,
we display the simulated and experimentally captured images
of light beams truncated by various objects. In section 4,
we achieve object identification with various open angles and
direction angles. The advantage of CNN, especially the MN,
is explained in details. In section 5, we sum up the work and
provide additional outlook.

II. CONCEPT
In general, Fig. 1(a) depicts the common concept of pre-
viously demonstrated object identification techniques using
SLMs and power monitor [6]. In such systems, complex
OAM spectrum analysis is needed to monitor rotation objects
by acquiring additional phase information of the interrogated
OAM beam. The complex OAM spectrum of a beam forms
a Fourier pair with its spatial distribution in the azimuthal
direction, in which an opening in the object would lead to
a Sinc function of its OAM intensity spectrum. Furthermore,

FIGURE 1. (a) Concept of using the OAM spectrum to measure an object’s
parameters in Ref. [6]. (b) Concept of open angle and direction
identification using Gaussian beam and ML in our work.

additional data analysis is needed to determine the object’s
characteristics. To improve the detection accuracy, some
works used the interference of two OAM beams, which is
even more complicated [7]. Overall, none of these techniques
can identify images in bulk.

Here, we propose a method that effectively simplifies the
system’s hardware, as displayed in Fig. 1(b). It reduces at
least two SLMs and a power monitor, by introducing a cam-
era. Machine learning methods can achieve extremely fast
processing, and even batch identification.

After the object, the truncated beam is captured as inten-
sity images and further processed by ML algorithms. The
amplitude of a Gaussian beam, propagating along the z-axis,
is given by:

U(r,ϕ,z) = exp(−r2/w2
o)exp(ikzz) (1)

where wo is the waist size and r is the radial distance of the
beam from the central axis.

When the beam is truncated by the object in the x-y plane,
the amplitude is given by:

U(r,ϕ,z) = 3(x, y, α, θ) exp(−r2/w2
o)exp(ikzz) (2)

where 3(x, y, α, θ) is a deformation of the Heaviside step
function in the polar coordinate system, which is used to
emulate the object.

III. EXPERIMENTAL SETUP
Figure 2(a) illustrates our experimental setup, in which we
use a Gaussian beam as the probe. The SLM is used to
emulate objects with various features of different open angles
and directions. Different ML techniques, such as decision
tree (DT), k-nearest neighbor (KNN), support vector machine
(SVM), VGG-like (visual geometry group network-like) net
and MN are trained to identify the images collected by the
camera.

Figure 3 shows the object’s features, together with
the simulated and experimental images of the trun-
cated optical beam. We generated a dataset containing
1345 collected images with 14 open angles and 32 directions
(open angle θ : 2π

2 , 2π
3 , . . . ,

2π
15 and direction
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FIGURE 2. (a) Experimental setup. Col: collimator; HWP: half-wave plate;
SLM: spatial light modulator. (b) The phase masks implemented to the
SLM. A free-space Gaussian beam emitted from the laser source passes
through lenses and HWP. The SLM is used to emulate the objects with
different open angle and direction. The truncated beam can be captured
by the camera, and the results are processed by different ML methods.

FIGURE 3. Some simulation and experiment results of the light beam
truncated by various objects with different open angle (θ) or direction
angle (α) relative to the x axis.

angle α: π
64 ,

2π
64 , . . . ,

32π
64 ). Using data argumentation,

the dataset has been expanded by 6 times. Images are divided
into training and testing sets by randomly selecting 80% and
20% of the overall images.

The pseudo codes of vanilla VGG-like CNN and the ML
methods we used for identification are shown in Fig. 4.
In the proposed technique, the vanilla CNN typically includes
three convolutional (Conv) layers in a hierarchical manner
for parameter prediction, pooling layers, and fully-connected
(FC) layers. After preprocessing and data argumentation,
the input images are preprocessed to a size of 224×224×3.
The first convolutional layer has three channels with sample
input. We used different filter in each layer and set recti-
fied linear unit (ReLU). Max pooling layer with a stride
of 2×2 can reduce the data size by half. The fully connected
layer can flatten andmemorize the data. Linear regression and
soft-max algorithms are typically applied. Backpropagation
and stochastic gradient descent (SGD) are used to train the
CNN, adding dropouts to handle overfitting and gradient
vanishing problems. Each layer chooses specific elements to
learn, such as the curves or edges in the image.

We used a few traditional machine learning methods,
including DT, KNN and SVM. The corresponding pseudo
codes are shown in Fig. 5. DT is a flowchart-like structure in
which each internal node represents a ‘‘test’’ on an attribute.
This method can directly reflect the characteristics of the data

FIGURE 4. (a) The pseudo codes of the VGG net. (b) ML methods for
classification and the structure of VGG. N: the total number of categories.
Val: validation.
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FIGURE 5. The pseudo codes of the (a) DT; (b) KNN; (c) SVM methods.

and not susceptible to extreme data but easy to go overfit-
ting. We categorized different feature vectors into the corre-
sponding branches with the largest gain to train the model
using the ‘‘sklearn.tree.DecisionTreeClassifier’’ module of
python with the binary recursive segmentation algorithm of
classification and regression tree (CART), as Fig. 5(a) shows.
KNN is an algorithm especially suitable for mutiparameter
problems, but it cannot be applied when the samples are
unbalanced. KNN can divide the feature space into some
subspaces for the test point to find the subspace to which
it belongs. The number of the nearest neighbor was opti-
mized after the dimensionality reduction for the KNNmethod
by the ‘‘KNeighborsClassifier’’ module in python, which is

FIGURE 6. Different kernel structures (in the dashed boxes) of the VGG
and MN can transform to each other. Conv: convolutional kernel; BN:
batch normalization; ReLU: rectified linear unit; Depthwise Con:
depthwise convolutional kernel; Pointwise Cov: pointwise convolutional
kernel.

displayed in Fig. 5(b). SVM is an algorithm to minimize
structural risk by constructing the optimal decision surface,
which can achieve nonlinear classification by kernel method.
It has lower error rate and strong generalization ability, but
it is sensitive to missing data and puts high requirement on
space and time. Combing with the oriented gradient (HOG)
features, the parameters in SVMwere set to find the optimum
location of the decision surface using the ‘‘fitcecoc’’ function
in the MATLAB, as Fig. 5(c) illustrates.

We further used MN, which is a lightweight model with
less parameters and computations, based on depthwise sepa-
rable convolutions. For VGG, its convolution core is used on
all the input channels, while depthwise separable convolution
basedMN uses different convolution cores, depthwise convo-
lutions and pointwise convolutions, for each input channel.
We used depthwise convolutions to apply a single filter to
the input channel of each layer. Pointwise convolution is a
1×1 convolution, which is used to create a linear combination
of the output of the depthwise layer, as Fig. 6 illustrates. The
number of the two-dimensional convolution kernels is the
same as the number of the input channels.

IV. RESULTS AND DISCUSSION
For each identification issue, we selected different parameters
to be variable or fixed. Accuracies of these two CNNmethods
are very close to each other for all the classification issues
studied. In the following accuracy line charts, they are thus
expressed by a single orange line (CNN). Accuracy curve
of different open angle θ (14 sets) over specific direction
angles α is shown in Fig. 7(a). One can see that all the four
methods have>75% accuracy for open angle θ classification
under direction angle α from 2π /64 to 33π /64. The collected
images are blurred due to the object truncation or other envi-
ronmental factors. One can see that traditional ML methods
can’t judge small features accurately.

As Fig. 7(b) shows, we depicted the accuracy curve of
different direction angle α (32 sets) over specific open angles.
SVM performs slight better than DT and KNN, but still worse
than CNN. CNN outperforms other methods significantly,
even more improvement than the open angle identification
issue.
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FIGURE 7. Accuracy curves of object identification using different ML
methods when one parameter is fixed. (a) Open angle identification
under different direction. (b) Direction identification under different
open angle.

FIGURE 8. HOG features of some specific turning point. (The efficient
amount of the white gradient symbols is marked on the top left corner of
each image.)

One can see that the trends of the DT and SVM methods
are similar. We divided the images into small cells, calculated
the gradient of each pixel in the image, and got the histogram
of the HOG for each cell with 20×25 pixels. For intuitive
understanding, we extracted some HOG features of several
turning points, which have been circled with various colors
in Fig. 7(b). As shown in Fig. 8, the features can be rep-
resented by the complexity and the efficient amount of the
gradient symbols.

The amount and complexity of the features altogether
determine the accuracy of different ML algorithms. When
the features are blurred and complex, the difference between
CNN and traditional ML methods is more pronounced. CNN
can achieve higher accuracy due to extensive interconnec-
tions among a large number of neurons.

FIGURE 9. Accuracy histograms of identification using different ML
methods. (a) Open angle identification under all directions. (b) Direction
identification under all open angles.

Furthermore, by expanding the dataset, we identified the
open angles under all directions and the directions under all
open angles, respectively.

The results are shown in Fig. 9. Although the change
of the images is too tiny to be recognized, CNN can still
achieve 100% prediction accuracy by updating the model
using dropout and backpropagation. On the contrary, DT is
inevitable to be over-fitted and to ignore the correlation
between attributes. KNN typically has bad estimation accu-
racy when the features are not obvious. Using the optimized
number of support vectors, the accuracy of SVM is still
slightly lower than CNN and need longer testing time.

Two CNN-based deep learning methods both have high
accuracy for the above identification problems with different
complexity. To show the comparison, the parameters and
computations of the VGG and MN are as follows. For VGG,
the sizes of the input F , the traditional kernel, and the output
feature mapG are (Nk ,Nk , M), (N, N, M, K), and (Ng,Ng, K),
respectively. The number of the input channels isM , and the
number of the output channels is K . A vanilla convolution
layer has the computational of N × N ×M × K × Nk × Nk .
For MN, after splitting vanilla convolution, we get a deep
convolution kernel with a size of (N, N, 1, M) and a point
by point convolution kernel with a size of (1, 1, M, K). In
sum, the computation of the whole depthwise convolution is
N × N × 1×M × Nk × Nk + 1× 1×M × K × Nk × Nk .
By comparing these two methods, the computation

reduction of MN over VGG is:

N × N ×M×Nk × Nk +M × K×Nk × Nk
N × N×M × K × Nk × Nk

=
1
K
+

1
N 2 .

(3)

In our MN structure, batch normalization and ReLU
nonlinearities are added to the output part. The depthwise
and the pointwise convolution parts are treated as two inde-
pendent modules. We further calculated the computation of
some layers in the two CNN networks, which is shown in
TABLE 1. In comparison, the computation cost reductions of
the four convolutional layers using MN are 74.44%, 87.22%,
90.42%, and 95.74%, respectively. In sum, compared with
VGG, MN has negligible precision loss, while reducing
computation and storage space significantly.
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TABLE 1. Computational cost of each layer.

As dynamic image processing is an arduous task in all the
fields, there are many other parameters and algorithms that
need to be optimized. For real-time and complex problems,
we could choose less computationally intensive deep learn-
ing techniques, such as MN, with little compromise on the
prediction accuracy.

Comparing with previous techniques using OAM beams,
our demonstrated technique can significantly reduce the sys-
tem complexity and simplify the subsequent data analy-
sis process. From the complex characteristics of the OAM
beams, one can see that the intensity images of the OAM
beams would provide more features for machine learning
methods to identify, and thus potentially achieving higher
prediction accuracy. Nevertheless, for the above object open
angle and direction identification problem, experimental
results show that the prediction accuracy using Gaussian
beam has already achieved 100% with CNN methods.

V. CONCLUSION
In sum, CNN-based deep learning method has high accuracy
and can stay stable when detecting the open angle and
the direction of the object. CNN performs better than the
other traditional ML methods, and it can achieve 100%
accuracy, even under extremely slight change of the object.
Compared with other works, our method can significantly
reduce the hardware implementation complexity, and it only
requires a single-shot measurement. We also find that MN,
a lightweight model with less parameters and computa-
tions, performs much better than VGG on reducing compu-
tation, while still maintaining high prediction accuracy of

the identification issues. Meanwhile, the computation can be
reduced significantly by>95%. At present, our demonstrated
technique targets at relatively regular and static objects. In the
future, more complex identification problems, such as multi-
opening, irregular or moving objects, will be further explored.
Onemight need to leverage OAMbeam or multiple beams for
complex feature extraction. Furthermore, unique reflection
features for objects using different materials, such as stealth
materials, could impact the detection techniques. Accord-
ingly, we will also look for more suitable algorithms.
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