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ABSTRACT A sparse-imaging-based methodology for the clutter suppression and refocusing of multiple
slow-moving targets (MT) in passive bistatic synthetic aperture radar (SAR) is proposed in this paper. The
defocused regions of MTs in the bistatic imagery are utilized here. A joint radar projection operator for the
static and moving objects is formulated and employed to construct a source separation problem. The Lp
norm and square difference maximization constraint are utilized to promote the separation of MT data and
the suppression of clutter. After the joint sparse processing, static-scene imagery and MT imagery can be
derived simultaneously. Finally, numerical simulations can verify the validity of the proposed methodology.

INDEX TERMS Passive SAR, moving target, clutter suppression.

I. INTRODUCTION
In passive bistatic synthetic aperture radar (SAR), the exter-
nal illuminator might be static or moving during the data
collection integral time and the receiver is placed on a sep-
arate platform. As a result of the separation of transmitter
and receiver, the passive system has the advantages of good
concealing performance, flexible and convenient use, as dis-
cussed in [1]–[3]. For the same reason, the clutter nonsta-
tionary [4]–[6] is increased and will degrade the performance
of traditional suppression methods. The complexity of clutter
suppression and imaging processing for moving targets (MT)
will also be increased severely [7], [8].

To realize MT imaging processing in passive bistatic SAR,
essential clutter suppression and MT data separation are crit-
ical since radar data is mix-received. When the Doppler fre-
quencies of MTs are discriminative from the clutter, filtering
operation can be performed to extract MT data directly. Many
scholars proposed to implement MT refocusing based on the
extracted defocused regions of interest (ROI). The analytical
expressions of the phase error terms ofMTs are derived in ref-
erence [9]–[11]. Then, refocusing operation is implemented
via phase error compensation and Fourier transform. Some
autofocus-based methods [12], [13] have also been discussed
to realize MT refocusing by searching for moving parameters
in a predefined region. The focal qualities of the derived
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imageries are evaluated to find the best result. Whereas filter-
ing operation generally cannot remove the energy of clutter
and static targets completely, especially when MTs located
inside strong clutter regions. Besides, these algorithms cannot
be applied for multiple MTs imaging simultaneously, and the
computational burden is generally severe.

However, it is more common that MTs locate inside
strong clutter regions. The displaced phase center antenna
(DPCA) [14], space-time adaptive processing (STAP) [15]
and along-track interferometry (ATI) [16] algorithms have
been developed to suppress clutter in this case. An over-
completed velocity dictionary and a Doppler dictionary
are then constructed to realize multiple MTs refocus-
ing [17], [18], respectively. However, these algorithms are
generally derived for multi-channel monostatic SAR data.
The DPCA and STAP processing have been extended to
bistatic cases [19], [20], respectively. Nevertheless, the non-
stationary characteristic and severe range dependence of
clutter, which is introduced by the bistatic collection geom-
etry, will degrade the performances of these algorithms.
Several methods are considered to restore the performance of
STAP by using some prior information of the data collection
geometry or aligning the dominant clutter subspaces of each
range [21], [22]. Moreover, the Doppler-DPCA and ATI
are also discussed to suppress the clutter in reference [23].
However, these methods generally are not suitable for the
single-channel data, and the performance is closely related
to the bistatic data collection geometry.
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To implement the MTs refocusing processing in one chan-
nel passive SAR, we propose a joint sparse-based method
in this paper. The sparse constraint has also been utilized
in compressed sensing (CS) [24], [25] to realize SAR/ISAR
imaging, tomography, and groundmoving target indication in
the past decades. The CS theory can implement the complete
recovery of the original signal with fewer measurements and
thus is very useful when the data is under-sampling or a part
is missing. In reference [26], the CS theory is discussed to
reconstruct the imagery with very few sampling data. Then,
Hu et al. investigate a series of CS-based algorithms from dif-
ferent aspects [27]–[29] to implement high-resolution imag-
ing based on sparse apertures or random down-sampling data.

Given the above attractive and successful application expe-
riences, we try to use the same sparse constraint in CS to
realize the suppression of clutter and separation of MT data
in this paper. The Doppler phase history differences between
MT signal and clutter data, which were used for moving
objects detection [30], [31], are utilized in this paper to
separate MT data from the mixed imagery. A joint projection
operator is formulated instead of using an over-complete
Doppler or velocity dictionary. The MT data separation from
the smeared SAR imagery is thus converted to be a sparse-
based optimization problem. After the joint sparse-based
refocusing, MT imagery and static scene imagery could be
derived. The general SARdata collection geometry and signal
model are described in Section II firstly. Then, the joint
sparse imaging methodology is presented and discussed in
Section III. Finally, numerical simulation verifies that the
algorithm can implement multiple moving target imaging
conveniently.

II. PASSIVE BISTATIC SAR SIGNAL MODEL
Fig. 1 depicts the passive bistatic SAR data collection geome-
try, where the scene center is defined as the origin of the coor-
dinate system. The external illuminator is stationary during
the data collection interval while the receiver platform flights
along y axis with a constant velocity vr and the altitude hr .
The coordinates of transmitter and receiver at aperture center
time are defined as (xtc, ytc) and (xrc, yrc), respectively.
We assume that the illuminated scene is static and multiple

MTs located at (xm, ym)move with constant velocities during
the data collection interval. The received passive SAR data
is thus a mixture of clutter and the electromagnetic wave
reflected from MTs. After range compression, the passive
SAR data can be expressed as

Sr (kr , t)

=

∑
s

wr (fr )wa (t − tc) exp
[
−j2π

(fr + fc)
c

Rs (t)
]

+

∑
m

wr (fr )wa (t − tc) exp
[
−j2π

(fr + fc)
c

Rm (t)
]
,

(1)

where the operator
∑
· indicates the coherent addition of

the signal from all the illuminated targets, t is the azimuth

FIGURE 1. Passive SAR data collection geometry with one static
transmitter.

(slow) time centered at tc, fr is the range frequency, fc denotes
the center frequency, and c is the speed of light. In Eq. (1),
the function wr (·) is the range envelope, wa(·) is the azimuth
envelope determined by the composite antenna pattern, and
Rs (·) and Rm (·) are referred to as the instantaneous bistatic
slant ranges of the static target and MTs. Herein, without loss
of generality, we define the azimuth center time tc = 0.
Since the transmitter is stationary, the Doppler phase his-

tory of the static targets is only determined by their coordi-
nates and the flight path of the receiver. Performing Taylor
expanding on the phase term in (1), we can derive the Doppler
center frequency fac and modulation rate ka in the phase
history domain as

fac =
vr
λ

(yrc − ys)
Rsr (tc)

, (2a)

ka =
1
λ

[
v2r

Rsr (tc)
−
v2r (yrc − ys)

2

R3sr (tc)

]
, (2b)

where Rsr (tc) is the slant range from the targets (xs, ys)
to the receiver aperture center. Due to the motion of MTs,
the Doppler parameters of themselves become

f ′dc =
1
λ

[
(xrc − xm)vxm − (yrc − ym)

(
vr − vym

)
Rmr (tc)

+
(xtc − xm)vxm − (ytc − ym)vym

Rmt (tc)

]
, (3a)

k ′a =
1
λ

{
v2xm +

(
vr − vym

)2
Rmr (tc)

+
v2xm + v

2
ym

Rmt (tc)

−

[
(vr − vym)(yrc − ym)− vxm(xrc − xm)

]2
R3mr (tc)

−

[
vym(yrc − ym)+ vxm(xrc − xm)

]2
R3mt (tc)

}
, (3b)

where, Rmr (tc) and Rmt (tc) are referred to as the slant ranges
of the MT to the receiver and the transmitter at aperture
center time, respectively, vxm and vym are the velocities of
MTs along x and y axes, and λ denotes the wavelength. For
convenience, the subscript s andm in the following discussion
all correspond to the static scene andMTs. It can be seen from
Eq. (2) and Eq. (3) that the Doppler characteristics of static
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targets and MTs are generally discriminative. So, the phase
compensation filters in traditional imaging algorithms, which
are designed by assuming the illuminated targets are station-
ary, are commonly mismatched forMTs data. Thus, smearing
and geometry distortion will generate in the derived SAR
imagery.

III. SEPARATION AND REFOCUSING OF MTs IMAGERY
In consideration of the discriminative Doppler characteristics
of clutter andMTs data, we try to separate the bistatic imagery
by projecting it on different radar system matrixes. The clut-
ter suppression and MTs separation are thus converted to a
sparse-based source separation problem. Then, the back data
from MTs can be reconstructed and refocused with a signif-
icantly decreased signal to clutter ratio (SCR). The detailed
processing flowwill be described in the following discussion.

A. PROPOSED OPTIMIZATION PROBLEM
Based on the equation in Eq. (1), a joint bistatic radar projec-
tion operator is formulated as Fr = [Fs,Fm]. The matrixes
Fs ∈ CNI×NI and Fm ∈ CNI×NI are denoted as the imaging
projection operators of static scene andMTs, and the notation
NI is referred to as the length ofMT imagery. In thematrix Fs,
the column vector is a composite vector obtained by stacking
the system function from one static target and one MT. Using
the composite matrix Fr , the bistatic scene imagery and MT
imagery can be obtained after as

S = F f + nI , (4)

where,

F = FHr Fr ,

In Eq. (4), S ∈ C2NI×1 is derived by stacking the bistatic
SAR imagery reconstructed via the joint radar projection
operator Fr , f = [fs, fm]T ∈ C2NI×1 is a composite column
vector composed of the radar field information of clutter and
MTs, the superscriptH indicates the conjugate transpose of a
matrix, and the notation nI is referred to as the noise vector.
Generally, the expression of Fs is deterministic since it is

only related to SAR system parameters and back-projection
pixel coordinates. By contrast, the MT radar projector Fm
is difficult to formulate as it needs an accurate estimation
of the Doppler parameters of MTs. In this case, there is
no closet analytical solution of Eq. (4). The sparse-based
optimization method could be employed to help find the
solution and realize the separation of clutter. After denoting
the reconstructed imagery as the sparse representation of
one over-completed dictionary D, we formulate the following
optimization function as,

min
α,Fm

J0 (α,Fm) = min
α,Fm
‖S− FDα‖22 + λ1 ‖α‖

p
p , (5)

where ‖·‖pp denotes `p norm, λ1 is a positive scaling param-
eter, α = [αs, αm]T is the sparse coefficient of the imagery.
In Eq. (5), only the sparse coefficient α and MT radar projec-
tor Fm are unknown and needed to be updated in the iterative

computation. The first term is a data fidelity term, which
incorporates the joint SAR observation model in Eq. (4) and
the RCS information of the illuminated targets. The second
term aims to constrain the solution to be sparse. Moreover,
the dictionary D could be designed as a fixed wavelet or DCT
dictionary. We do not discuss the combination and training of
the dictionary as it is beyond the research scope of this paper.

B. DATA SEPARATION BY USING LP NORM
Generally, the `p norm with p = 0 is selected to constrain the
solution to be sparse. Greedy methodologies [23] and the `1
relaxation method have been developed to solve this problem
approximately. Whereas the accuracy of these methods will
degrade when the initialized MT radar projection operator
is mismatched. As discussed in reference [28], [29], the `p
norm with 0 < p < 1 will result in a more sparse solution in
comparison and thus is used in our method.

The utilization of `p norm is viewed as imposing an energy-
type constraint on the solution in reference [28]. From a
statistical point of view, this would be equivalent to assume
a prior model on the coefficients α. Herein, we use it to
suppress artifacts and increase the resolvability of scatters in
the solution. By solving the optimization problem in Eq. (5),
the mixed imagery will be projected on the system operators
Fs and Fm, respectively. The extraction of MT signals is thus
converted as a source separation operation. As the coherence
of clutter and MTs signal to the two system operators are
distinct, the energy of them will be separated with differ-
ent signal to noise ratio (SNR). Since Fm is mismatched
for clutter, the static targets will be focused in the vector
fs and smeared in MT vector fm. These smeared impulse
response functions are viewed as artifacts and generally can
be suppressed by using the sparse constraint. After several
iteration computations, most of the energy of the static scene
will thus be concentrated on fs and removed from fm. The
separated static-scene imagery and MTs imagery will finally
be obtained simultaneously.

However, the differences between the Doppler phase his-
tories of the static scene and MTs sometimes are not so
large and a few cross-projection coefficients might still exist
after using the sparse constraint. It is normal as the two
radar projection operators are not orthogonal or severely
discriminative. In this case, the separation results might not
be satisfactory. To limit the energy of the cross-projection,
we modify the cost function in Eq. (5) as

min
α,Fm

J (α,Fm) = min
α,Fm
‖S− FDα‖22 + λ1 ‖α‖

p
p

− λ2 ‖Dα − FdDα‖22 (6)

where

Fd =
[

I, FHm Fs
FHs Fm, I

]
In Eq. (6), the matrix Fd originates from the cross-projection
components in the matrix FHF, λ2 is a positive parameter
for the cross-projection suppression, and I ∈ CNI×NI is an
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identity matrix. The third term in Eq. (6) aims to maximize
the sum of squared differences of clutter and MTs imageries.
Based on these constraints, the bistatic imagery could be
separated after several iterations.

C. ITERATIVE SOLUTION
The iterative computation of Eq. (6) can be divided into
two sub-problems. First, updating α by fixing Fm and then
updating Fm by fixing α. The two procedures are iteratively
implemented until the derived results converge.

1) THE SPARSE COEFFICIENT UPDATE
Since the `p norm is non-differentiable around the origin,
an exact solution of Eq. (6) is difficult to obtain directly.
As discussed in reference [28], the following approximation
expression is applied instead of `p norm

‖z‖pp ≈
Nz∑
i=1

(
|z(i)|2 + ε

)p/2
, (7)

where ε ≥ 0 is a small positive constant, Nz denotes the
length of the vector z, z(i) is referred to as the ith element
in z. Substituting Eq. (7) into the cost function in Eq. (6),
a modified equation is given as

Jm (α,Fm) = ‖S− FDα‖22 + λ1
2NI∑
i=1

(
|α(i)|2 + ε

)p/2
− λ2 ‖Dα − FdDα‖22 , (8)

The modified cost function Jm (α,Fm) will always close to
J (α,Fm) when ε → 0. There is no closed-form solution for
the minimization of Eq. (8) and the quasi-Newton methods
might be used to derive the solution as discussed in reference
[29].

Calculating the gradient of Eq. (8) to α, we can obtain
the following iterative formula based on the Hessian matrix
approximation [29][
H
(
_
α
(n))] _

α
(n+1)

= (1− γ )
[
H
(
_
α
(n))] _

α
(n)
+ 2γFHS,

(9)

where

H
(
_
α
(n))

, 2DHFD

+ pλ1diag

{(∣∣∣_α(n) (j)∣∣∣2 + ε)p/2−1},
− λ2 [(I− Fd )D]H (I− Fd )D (10)

In Eq. (9), γ denotes the iteration step, _
α
(n)

is the esti-
mation result after the nth iteration. Eq. (10) is a linear
equation with conjugate matrix coefficients. The sparsity of
H
(
_
α
(n))

is increased by neglecting the elements in FHF
whose magnitudes are smaller than 1% of the largest element.
Hence, the conjugate gradient method could be applied to
search for the solution of Eq. (8). However, we find that

FIGURE 2. Joint sparse-based processing flow.

the second term in Eq. (10) sometimes might amplify the
small values in the solution and thus affect the convergence
rate. To solve this problem, we employ the conjugate gradient
hard threshold method here, which has been proposed in ref-
erence [32] to solve for data recovery problem. The threshold
function is applied to the derived solution _

α
(n)

to accelerate

the convergence rate. Finally, the vector
_

f
(n)
= D_

α
(n)

can
be restacked to obtain the static scene and refocused MT
imageries simultaneously.

2) MT RADAR PROJECTION OPERATOR UPDATE
Another factor that affects the separation of MTs imagery
is the designing of radar operator Fm. In practical data pro-

cessing, the initialized
_

F
0

m could be formulated based on
some prior information or the estimation results of moving

parameters. When the mismatched phase error of
_

F
0

m is not
too large, static-scene imagery and MT imagery could be
separated and derived directly. Otherwise, the residual energy
of clutter might still exist in the reconstructed MT imagery.
To avoid this problem, we try to update the operator Fm during
the iterative computation interval until the solution converges.
In this case, the optimization problem becomes as

min
Fm

∥∥∥∥∥S−
[
FHs FsD

_
α
(n)
s + FHs FmD

_
α
(n)
m

FHmFsD
_
α
(n)
s + FHmFmD

_
α
(n)
m

]∥∥∥∥∥
2

2

(11)

As no additional constraint is performed on Fm, the
direct solution of Eq. (11) is difficult to obtain. In
reference [12], [13], theMT parameters are updated by search
in a predefined region based on the maximization of imagery
sharpness or entropy. However, this method is computation-
ally expensive and cannot cope with multiple MTs with dif-
ferent velocities.

In the iterative computation, the complex matrix product
is denoted as the multiplications of real value matrixes. The
sparse constraint is employed on the coefficient of the ampli-
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FIGURE 3. The simulated MTs and SAR data. (a) The geometry
relationship of MTs; (b) The range compressed MT data; (c) The range
compressed radar data combined with clutter and noise.

TABLE 1. System simulation parameters.

TABLE 2. Moving parameters.

tude information of f . The phase information of the imagery
is thus not maintained after the iterative deduction. Herein,
we design to reconstruct the complex MT patch data as

_

Y
(n+1)

m =
_

F
(n)

m

[∣∣∣∣_f (n)m ∣∣∣∣� exp
(
6
_

f
(0)

m

)]
, (12)

where, � denotes an elementwise product operation, |·|
and 6 · indicate the computation of amplitude and angle of

a vector,
_

f
(n)

m and
_

f
(0)

m are referred to as the constructed
and initialized MT imagery, respectively. Though the MT

system operator
_

F
(n)

m might deviate from the real values,
most of the clutter energy is still suppressed in the derived
sparse MT imagery. Compared with the original SAR data,

the SCR in the reconstructed MT data
_

Ym will be decreased
significantly.

Clearly, parameter estimation operation could be per-
formed on the reconstructed MT data

_

Ym directly to update
the system function. The time-frequency analysis and inter-
ferometry processingmethodologies have been developed for
moving parameter estimation in one channel SAR. However,
the existence of the range cell migration (RCM), gener-
ally will degrade the performance of these methods. Many
methodologies [33], [34] have been proposed for range cell
migration cell (RCMC) based on one-order or two-order
Keystone transforms. Herein, the fractional Fourier transform
is used to estimate the residual RCM and phase error. The

radar projection operator is updated as
_

F
(n+1)

m =
_

F
(n)

er �
_

F
(n)

m , where
_

F
(n)

er is formulated based on the time-frequency

analysis results. The ith column vector of
_

F
(n+1)

m is derived
via stacking the Doppler phase history data of MTs in fm (i),
which is space-variant and related to the positions of the
pixel fm (i). Using this matrix structure, we can formulate the
Doppler data vectors of MTs according to their locations in
the imagery and do not need to compute multiple projection
operators when MTs move with different velocities. Then,
the subsequent iterative processing could be carried con-
tinually until the solution converges. The detailed iteration
processing is listed in Algorithm 1.

Algorithm 1 Joint Sparse-Based Clutter Suppression andMT
Refocusing

1. Input: Defocused MT imagery patches;

2. Initialization:
_

f
(0)
,
_

F
(0)

m , F, λ1, λ2, p;
3. While not converge do
4. Update the reconstructed result _α

(n+1)

according to Eq. (9);

5. Update the MT projection operator
_

F
(n+1)

m
according to the parameter estimation results;

6. End
7. Output: Static scene imagery and MT imagery.

IV. PATCH DECOMPOSITION
The huge dimension of SAR real data and imagery for the
illuminated scene will increase the complexity of our method
and limit the application. As the defocused area of MTs is
usually distributed in small patches of SAR imagery, we do
not need to construct the radar projection operator of the
whole scene. Patch processing is introduced and employed
in the proposed method to reduce the computational
burden.

The defocused MT patches in SAR imagery is extracted
firstly as the input of iterative computation. Then, the SAR
joint imaging operator F corresponding to the imagery
patches is formulated and utilized. The number of multipli-
cation operations in the computation of F is proportional to
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FIGURE 4. Comparison of the 3-D imaging results. (a) Original bistatic imagery; (b) Refocused MT
imagery via matched filtering; (c) Interferometry result; (d) MT imagery derived via our method.

the dimension of SAR data and patch imagery. To further
reduce the computational cost, we employ an azimuth down-
sampling operation when reconstructing the radar projection

operators and MT data
_

Y
(n+1)

m . In iteration processing, a
conjugate gradient hard threshold algorithm with high con-
vergence speed is used and the computational burden is
proportional to the length of the sparse coefficient of SAR
imagery vector. As a result of the utilization of sub patch pro-
cessing and azimuth down-sampling, the computational cost
in joint sparse MT imaging will be decreased significantly.

In practical data processing, the size of one MT patch is
generally very small (the patch size for one MT might be
restricted as 30× 30 in low resolution case) and the number
of iteration computation is less than 10 when the derived
solution converges. Moreover, as the dimensions of the SAR
imagery patches are very small, the computation of F can
be implemented approximately, in which the value of the
elements F (i, j) with |i− j| = m is the same. In this case,
the total computational burden is much lower than that of
autofocus processing of SAR data. In conclusion, the detailed
flow of joint sparse imaging processing is depicted in Fig. 2.
After iteration converges, the static scene and MT imageries
can be derived simultaneously.

V. SIMULATION
Numerical simulations will be performed in this section
to prove the validity of the joint sparse-based algorithm.

The passive SAR data from 5 ground MTs and 72 static
targets in Fig. 3(a) are simulated and then processed via the
joint sparse-based processing. The receiver platform flights
along y axis with the constant velocity 250m/s while the trans-
mitter is stationary during the data collection interval. The
system parameters and MTs velocities are given in Table 1
and Table 2. The bistatic angle is 45◦ and the polar angle of
transmitter is 45◦. After range compression, theMTs data and
synthesized SAR data are obtained in Fig. 3(b) and Fig. 3(c),
respectively. It could be seen from these figures that the
received radar data of MTs is masked by the clutter which
should be suppressed in advance.

After back-projection processing, the bistatic SAR
imageries can be derived in Fig. 4(a) and Fig. 5(a). The SCR
values are calculated as the ratio of the energies of MT and
clutter in SAR imagery and listed in Table 2. It can be seen
from Fig. 4(a) and Fig. 5(a) that the smeared MTs are masked
by the strong surrounding clutter. In this case, it is difficult to
suppress or separate the clutter to derive the refocused MT
imagery with high SCR.

The regularization parameters employed in the simulation
are defined as λ1 = 0.15, λ2 = 0.05, and p = 0.5.
These parameters are empirical value which are derived from
reference [29] and our experience. The bistatic SAR imagery

can be used as the initialization
_

f
(0)
. Assuming the estimated

velocities of MTs along x and y axes are v′xm = vxm +1vxm
and v′ym = vym + 1vym respectively, an initial estimation of
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FIGURE 5. MF and sparse imaging result. (a) Original SAR imagery; (b) Refocused imagery derived by frequency domain
matched filtering; (c) Imagery result after interferometry; (d)Imagery derived based on `1 norm regularization; (e) and (f) MT
imagery and static scene imagery after the joint sparse processing.

FIGURE 6. Comparison of azimuth profiles of MTs before and after clutter suppression. (a)MT1, MT2 and MT3;
(b)MT4; (c) MT5.

the radar MT projection operator
_

F
(0)

m could be constructed.
The notations 1vxm and 1vym are referred to as mismatched
velocity errors. In practice, if some prior information about
MT is given in advance, a larger velocity could also be
selected to start for the first iteration without parameter
estimation.

Here, for comparison with our method, the matched fil-
tering, multi-look interferometry, and `1 norm regulariza-
tion methods are performed on the defocused MT imagery,
respectively, and the results are given in Fig. 5(c), (d) and (e).
After using these methods, the clutter is suppressed to some
extent but there is still residual energy of the strong static
targets, which can be concluded from Fig. 5 (a)-(e). By con-
trast, the imageries of 5MTs and 72 static targets are obtained
with high quality by using our joint sparse processing and the
results are depicted in Fig. 5 (e)-(f).

To further verify our method, the azimuth profiles of the
refocused 5 MTs are depicted in Fig. 6 for comparison. It can
be seen from Fig. 6 that some residual energy of strong
static targets still exists after interferometry and `1 regular-
ization processing. It is noteworthy that the strong clutter is
suppressed significantly after the joint sparse processing as
depicted in Fig. 6.

When the initialized parameters deviate from the real val-
ues, MT doppler parameter estimation and update should be
performed in the iteration computation. Though the initial-
ized MT radar projection operator is mismatched, most of
the clutter energy is still suppressed in the derived imagery
after the iteration computation, as shown in Fig. 7 (b). The
horizontal and vertical axis in Fig. 7(a)-(c) are referred to as
the back-projection pixel along x and y axes. MT radar patch
data is then reconstructed based on the Eq. (12) and given
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FIGURE 7. MT imagery and the reconstructed MT data. (a) and (d) Initialized MT imagery and radar data; (b) and (e) MT imagery and
reconstructed data after the first iteration; (c) and (f) MT result and reconstructed data derived after joint sparse processing.

FIGURE 8. Results after the joint sparse-based refocusing. (a) Simulated MTs; (b)
Detection results.

in Fig. 7 (e) and (f). It can be concluded that the clutter is
suppressed after the first iteration computation. The Doppler
parameter estimation operation is then performed after key-
stone transform and range cell migration correction. After
updating the MT system operator based on the estimated
parameters, we can finally obtain the MT imagery and radar
patch data in Fig. 7(c).

To assess the performance of our algorithm, we synthetic
the passive SAR data from 80MTs and a real static scene

imagery. Then, the joint sparse-based processing is performed
on the synthesized data to derive the refocused MT imagery.
The azimuth velocities and SCR values of simulated MTs are
given in Table 3. Patch decomposition operation is performed
and then sub-imageries are derived and combined. The refo-
cused result is depicted in Fig. 8(b) and given in Table 2,
where the false refocused targets are marked by the white
ellipse and the missed targets are denoted with the red rect-
angles. It can be concluded from Fig. 8 and Table 3 that our
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TABLE 3. Simulation parameters of MTs.

algorithm can realize the refocus processing of multiple MTs
effectively.

VI. CONCLUSION
A joint clutter suppression and MT refocusing method is
proposed in this paper. The defocused ROI in bistatic SAR
imagery is utilized in this method. After the joint sparse
processing, the mixed imagery is separated to obtain the refo-
cused MT imagery and the static scene imagery, respectively.
Numerical simulations verify that the presented methodology
can realize the refocusing of multiple MTs effectively. In the
joint sparse-based processing, the designing of the regular-
ization parameters does affect the separation of the energy of
the static and moving targets. However, this problem is com-
mon in sparse-based iterative computation methods. We plan
to discuss the influence of the parameter designing on the
performance of our algorithm in the future.
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