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ABSTRACT In the problem of causal discovery, conditional independence (CI) tests are generally used to
detect the causal relationships among observed data. Due to the curse of dimensionality and the limitation
of causal direction learning based on V -structure learning, it is difficult for constraint-based methods to
distinguish the actual graph from a set of Markov equivalence classes. To alleviate this problem, in this work,
a novel regression-based method to test CIs over linear Non-Gaussian data is proposed. The main purpose
of this proposal is to relax the CI test of x⊥y|Z to two unconditional independence tests x − f (Z )⊥y −
g (Z )+ΣH (Z ) and x − f (Z )+ΣH (Z )⊥y− g (Z ), where f and g can be estimated by linear regression
independently. In addition, we further show that x−f (Z )⊥y−g (Z )+ΣH (Z ) ( or x−f (Z )+ΣH (Z )⊥y−
g (Z ) ) can lead to x ← Z ( or y ← Z ). According to this regression-based method, we design a causal
structure learning algorithm to learn the actual graph instead of a set of Markov equivalence classes over the
observed data. Experiments indicate that our method can detect much more causal relationships than other
existing methods, especially in large-scale cases.

INDEX TERMS Causal inference, linear non-Gaussian additive noise model, Markova equivalence classes.

I. INTRODUCTION
In the problem of causal discovery, the causal relationships
among given variables are usually detected through statis-
tical independence [1], [2] (or unconditional independence,
marginal independence) and conditional independence (CI).
Concretely, causality between two variables X and Y can be
checked by testing x⊥y|Z , where Z is an arbitrary set of ran-
dom variables within the given variables set. If x⊥y|Z , gen-
erally X and Y have no directed causal relationship. By using
CI tests, the existing causal structure learning method likes
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PC algorithm [3], can determine a rough graph with respect
to the given variables set, and the rough graph might contain
a set of graphs, which is called Markov equivalence class [4].

In practice, it is easy to conduct statistical independence
test while CI test is much difficult [5]. Traditional methods
can only be applied to discrete cases, then the CI results can
be derived by P(X ,Y |Z ) = P(X |Z )P(Y |Z ) on the basis of
conditional probability table. Hence there are no technical
setbacks to solve discrete situations. Another way to measure
CI is providing some simplified assumptions on the given
variables with the continuous property. For example, the zero
partial correlation is equivalent to CI under the assumption
of joint Gaussian distribution [6], and the former one could

10924 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9433-7883
https://orcid.org/0000-0002-6322-6563
https://orcid.org/0000-0001-7108-4553
https://orcid.org/0000-0002-9552-0767
https://orcid.org/0000-0003-1617-4147
https://orcid.org/0000-0002-5895-0418
https://orcid.org/0000-0001-6607-1440


G. Mai et al.: Distinguish Markov Equivalence Classes from Large-Scale Linear Non-Gaussian Data

be easily tested. But non-linearity and non-Gaussianity are
common in real-world cases, therefore these methods are
often unreliable and incompetent.

Most of the existing methods use discretizing technique to
solve the problems motioned above [7]–[9]. When Z contains
a large set of variables, the required sample size should be
very large. For example, CI is tested through the distance
calculation of conditional densities estimate PX |YZ = PX |Z
[10]. However, if the conditional set became sufficient large,
then it would be very difficult to estimate the conditional
densities.

Recently, researchers resorted to solve the problem of
CI test by using kernel-based techniques. For the test of
unconditional CI, many kernel-based testing methods were
proposed. The most important reason was that kernel-based
techniques could represent high order moments, while the
reproducing kernel Hilbert spaces [11] (RKHSs) can measure
the properties of high-dimensional distributions like inde-
pendence [12]. [13] used the Hilbert-Schmidt norm [14] of
conditional cross-covariance operator. It is a measure of the
conditional covariance of X and Y images under RKHSs
correspondence function, if RKHSswere feature kernels [15],
the operator normmust be zero if and only if X⊥Y |Z . Among
the recent kernel-based methods, KCIT should be one of the
most excellent methods proposed in [16]. KCIT used the rel-
evance among regression functions to measure X⊥Y |Z . Let
f ∈ L2XZ and g ∈ L

2
Y ( L2XZ and L

2
Y ) denoted the square integral

functions spaces of (X ,Z ) and Y ), then E
(
f̃ g̃
)
= 0 can be

inferred when f̃ (X ,Z ) = f (X ,Z ) − rf (Z ) and g̃ (Y ,Z ) =
g (Y )−rg (Z ) held, where rf , rg ∈ L2Z denote the correspond-
ing regression functions. Therefore, KCIT could relax the
kernel space defined by functions f , g, rf and rg in RKHSs.
Kernel-based methods could generally detect more complete
information from the given variables than discretizing-based
CI tests. It had been shown from related literatures that causal
inference based on kernel-based methods is able to obtain
more accurate causal relationship [17]–[19].

On the issue of causal inference, researchers used to con-
sider the causal functional model in the first place. And the
additive noise model (ANM), which includes three types:
linear, non-linear and discrete, is one of the widely used func-
tional models [20]–[22]. It had been shown that many real-
world datasets were likely to follow a certain ANM model
[22]–[24]. Technically, ANM requires that the observed vari-
ables are generated by following a directed acyclic graph
with a set of causal model functions: X = f (Y ) + ε, where
Y is the parent node of X , and is independent of the noise
term ε. [25] presented a method to measure CI based on
the assumption of ANM. Inside, x − f (Z )⊥Y − g (Z ) and
X − f (Z )⊥Z ( or Y − g (Z )⊥Z ) were used to check CI in
non-linear cases, they proved if the two conditions hold, then
X⊥Y |Z holds. However, when Z contained more than one
variable, X − f (Z )⊥Z was difficult to measured, thus one
has to consider the interaction among Z . Moreover, in Non-
linear cases, there need to be high time cost to measure the

regression functions therefore this method was difficult to be
applied to cases with more than 10 variables [26].

In this work, an effective CI test method for causal
inference was designed from the point of view of lin-
ear non-Gaussian additive noise model (LNANM) [27].
Assuming that the data generation process of a given set
of variables follows LNANM, and X⊥Y |Z could be sim-
plified to x − f (Z )⊥y − g (Z ) + ΣH (Z ) or x − f (Z ) +
ΣH (Z )⊥y − g (Z ), in which f and g could be obtained
by using least squares regression, and H (∗), meeting con-
dition

∑
H (Z ) = hi

(
zj
)
+, · · · ,+hk (zl)

(
hi ∈ H , zj ∈ Z

)
,

was a linear function of Z . We showed that x⊥y|Z can
be derived from x − f (Z )⊥y − g (Z ) + ΣH (Z ) or x −
f (Z ) + ΣH (Z )⊥y − g (Z ) . In practice, f and g can be
estimated independently by minimizing the residuals w.r.t.
(x,Z ) and (y,Z ). H can be randomly fixed at a set of linear
function.
The proposed conditional independence test method was

denoted by Residual Independence Test (RIT). RIT provided
a way to simplify conditional independence testing into a
simpler set of unconditional independence testing. Finally,
the RIT method was applied to causal inference, at the
same time, it showed that x − f (Z )⊥y − g (Z ) + ΣH (Z )
( or x − f (Z ) + ΣH (Z )⊥y − g (Z ) ) can lead to x ← Z
( or y ← Z ) . Therefore causal discovery methods, like PC
algorithm using RIT to check CI, can detect more causal
directions rather than returning a set of Markov equivalent
classes. Our experiments showed that on various real-world
causal structures, the capability of our method is superior to
the state-of-the-art approaches, and our method was high-
efficient that can handle high-dimensional cases of more than
400 variables.

This paper is organized as follows: Section II describes
Preliminaries include causal network, conditional indepen-
dence test, D-separated criterion and Markov equivalent.
Section III describes the framework of residual independence
test (RIT). Section IV proposes the details of causal inference
based on RIT. Section V completes performance evaluations
by comparing the proposed algorithm with other approaches
in the literature. Section VI concludes the paper.

II. PRELIMINARIES
A. CAUSAL NETWORK
Causal network is generally denoted by a directed acyclic
graph (DAG), which can represents the probability depen-
dency between variables. Let X = (x1, x2, . . . , xn) denote
the nodes contained in DAG, E =

{
e
(
xi, xj

)
|xi, xj ∈ X

}
denote the edges between two nodes in DAG, where e

(
xi, xj

)
stands for dependencies xi → xj between xi and xj. P ={
P
(
xi|paxi

)
|xi, paxi ∈ X

}
is a set of conditional probabilities,

where P (x1, x2, . . . , xn) stands for the probabilistic impact of
xi’s parent node set on xi. We can see that a causal network
is essentially a graphical representation of all the conditional
independence with respect to the joint probability distribution
P =

{
P
(
xi|paxi

)
|xi, paxi ∈ X

}
.
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B. CONDITIONAL INDEPENDENCE TEST
Conditional independence (CI) is an very useful concept in
statistics. LetXi,Xj and Z denote the sets of random variables.
CI between Xi and Xj given Z can be denoted by Xi⊥Xj|Z ,
which reflects given the values of Z , further knowing the
values of Xi (or Xj) would not provide any additional informa-
tion about Xj (or Xi). Traditional CI testing methods include
G-test, Chi-squared test and kernel-based test. Throughout
this work, we use ⊥ to denote (conditional) independent.
In practice, CI testing plays a central role in causal discovery.
For one, d-separation criterion is usually used in CI test. The
main relations between d-separation and CI are the Markov
condition and faithfulness condition. The joint distribution
P(X ) is said to be Markov with respect to the DAG G in case
Xi, Xj d-separated by Z H⇒ Xi⊥Xj|Z , for all disjoint sets
Xi,Xj and Z . P(X ) is said to be faithful to the DAG G in case
Xi, Xj d-separated by Z H⇒ Xi⊥Xj|Z , for all disjoint sets
Xi,Xj and Z .

C. D-SEPARATED CRITERION
D-separated criterion is an important graph property to
describe the relation among nodes in a causal network. Let
X ,Y ,Z be the set of any three disjoint nodes in the causal
undirected graph G, Z d-separate node sets X and Y in graph
G, P is blocked If any path from a node of X to a node of Y
is blocked by Z , That is, there is a node xi which on the path
P satisfies one of the following conditions:

• xi has a collision arrow on P, that is→ xi ←, xi and its
descendant nodes are not in Z .

• xi has no collision arrow on P, that is → xi → or ←
xi→, and xi ∈ Z .

According to the probability density implication of the
desperation criterion, X and Y are independent by given Z
in case X and Y are d-separated by Z . Conversely, if X and Y
are not d-separated by Z , thenX and Y are dependent given Z .

D. MARKOV EQUIVALENT
We said two DAGs are Markov equivalent (or they are
Markov equivalent classes) iff they have the same skeleton
and V -structures (if a node is a child of two other adjacent
nodes, as shown in Fig.1). According to this definition, if a
DAG G1 has no V -structure, another arbitrary DAG G2 with
the same skeleton as G2 is Markov equivalent to G1.

FIGURE 1. V -structure.

III. THE FRAMEWORK OF RESIDUAL INDEPENDENCE
TEST (RIT)
Generally, Linear non-gaussian additive noise model
(LNANM) consists of a joint distribution (S,P(X )), where
S = {S1, S2, · · · , Sn} denotes n equations, Si : xi =
fi
(
paxi

)
+εi, i = 1, 2, · · · , n, inside, paxi is the direct parents

set of xi in the corresponding DAG G, fi is a set of linear
functions, and the noise variables εi have Non-Gaussian
distributions and satisfy εi⊥paxi . LNANM reflects the data-
generating process of X in directed acyclic graphG. LNANM
is identifiable if it can distinguish asymmetric causal vari-
ables [26], [28]. In fact, LNANM is usually recognizable.

In this study, we first study such a situation: Given a DAG,
in which the data-generating process of G follows LNANM
and two nodes xi and xj are randomly selected, we aim to test
if xi and xj are (conditionally) independent under the given Z ,
where Z ∪ V\xixj . If not, all variables in this chapter follow
LNANM by default.

In the next part, the foundation of CI testing method was
laid by the theoretical results describing CIs ( like xi⊥xj|Z
) under the assumption of LNANM. We first presented the
Darmois-Skitovitch theorem [29], [30], that is used for deriv-
ing the subsequent contents, and as follows:

Darmois-Skitovitch theorem (DST) Given two random
variables x and y as linear combinations of independent ran-

dom variables: si (i = 1, · · · , l) , x =
l∑
i=1

aisi, y =
l∑
i=1

bisi.

If x⊥y, then all variables sj for which ajbj 6= 0 are Gaussian
distribution.

Theorem 1. It is assumed that the data-generating pro-
cedure follows linear Non-Gaussian additive noise models.
In case of two variables xi and xj (xi, xj ∈ V ) being nei-
ther adjacent nor marginally independent, there must be x −
f (Z )⊥y−g (Z )+

∑
H (Z ) or x−f (Z )+

∑
H (Z )⊥y−g (Z )

caused by a set of variables Z and two functions f and g .
Proof. Generally, there is an assumption that xj become

the ancestor to xi, and paxi denotes the parents of xi. Based
on the mechanism of ANM, we have xi = f

(
paxi

)
+ εi and

εi⊥paxi . Thereby, xi−f
(
paxi

)
⊥paxi can be concluded. Since

εi is an exogenous additive noise independent of xi and all
non-descendant nodes, then we have εi⊥

(
xj, paxi

)
. So it is

certain that any function g can result in xi − f
(
paxi

)
⊥xj −

g
(
paxi

)
. According to DST, we can deduce xi−f

(
paxi

)
⊥xj−

g
(
paxi

)
+
∑
paxi , and let

∑
paxi denotes

∑
H (Z ), then x−

f (Z )⊥y − g (Z ) +
∑
H (Z ) is obtained. Similarly, on the

condition that xi is an ancestor (not parent) of xj, it will be
proved that x− f (Z )+

∑
H (Z )⊥y−g (Z ). Meanwhile, if in

the other case that a common ancestor (including parent) of xi
and xj, then we have x−f (Z1)⊥y−g (Z1)+

∑
H (Z1) or x−

f (Z2)+
∑
H (Z2)⊥y− g (Z2), where Z1 and Z2 are denoted

as different Z sets. The proof is completed.
In the next section, we will prove that, in the case of

conditions x − f (Z )⊥y − g (Z ) +
∑
H (Z ) or x − f (Z ) +∑

H (Z )⊥y− g (Z ), two variables xi and xj are independent
to Z , i.e., xi⊥xj|Z under given condition set Z .
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Theorem 2. It is assumed that the data-generating proce-
dure of the dataset V and an arbitrary linear function H (∗)
follow linear Non-Gaussian additive noise models. If there
exist xi, xj

(
xi, xj ∈ V

)
, Z

(
Z ∪ V\xixj

)
and f and g such that

xi−f (Z )⊥xj−g (Z )+
∑
H (Z ) or xi−f (Z )+

∑
H (Z )⊥xj−

g (Z ), then xi⊥xj|Z holds.
Proof.We first consider the conditional mutual information

[31]xi,xj of condition set Z , as

I
(
xi, xj|Z

)
= I (xi − f (Z ) ; y− g (Z ) |Z )

= I
(
xi − f (Z ) ;

(
xj − g (Z ) ,Z

))
− I (xi − f (Z ) ;Z )

= I
(
xj − g (Z ) ; (xi − f (Z ) ,Z )

)
− I

(
xj − g (Z ) ;Z

)
.

(1)

In linear Non-Gaussian additive noise case, there exists xi−
f (Z )⊥xj − g (Z ) +

∑
H (Z ), as H (∗) is an arbitrary linear

function, then there must be one H (∗) such that −g (Z ) +∑
H (Z ) cannot eliminate any additive noise variables of Z .

The reason is listed as follows:
xi, xj and Z are generated by following a lin-

ear Non-Gaussian additive noise model, that is xi =
l∑

t=1
atst , y =

l∑
t=1

btst , z1 =
l∑

t=1
ctst , · · · , zw =

l∑
t=1

wtst

where si (i = 1, 2, · · · , l) is the i.i.d. Non-Gaussian additive
noises and Z = {z1, · · · , zw}. Then, for two arbitrary vari-
ables z1 and zw, there must exist two functions h1 and hw
such that

h1 (z1)+ hw (zw) =
l∑

t=1

dtst . (2)

z1 =
l∑

t=1
ctst and zw =

l∑
t=1

wtst meet the condition, if cl orwl

is not 0, then dl is not 0. From the perspective of the function
model of causal graph, if two arbitrary functions h1 and hw
such that h1(z1) plus hw(zw) are able to eliminate the common
additive noise of z1 and zw, then the model is not faithfulness,
because it is bound that any of their common child must
lose at least one additive noise term about its ancestors. This
means that h1(z1) plus hw(zw) will not eliminate any additive
noise term of z1 and zw . Such a result can be extended to:∑
H (Z ) ,−g (Z )+

∑
H (Z ) , · · · , y− g (Z )+

∑
H (Z ).

Therefore we have xi − f (Z )⊥xj − g (Z ) and xi −
f (Z )⊥

∑
H (Z ) according to DST. Similarly, given xi −

f (Z )⊥
∑
H (Z ), since H (∗) is an arbitrary linear function,

we can deduce that xi − f (Z )⊥Z according to DST. There
are two conditions xi − f (Z )⊥xj − g (Z ) and xi − f (Z )⊥Z ,
such that {

I
(
xi − f (Z ) ;

(
xj − g (Z ) ,Z

))
= 0

I (xi − f (Z ) ;Z ) = 0
(3)

thus I
(
xi; xj,Z

)
= 0 is obtained, i.e., xi⊥xj|Z . On the other

side, we can also obtain I
(
xj − g (Z ) ; (xi − f (Z ) ,Z )

)
−

I
(
xj − g (Z ) ;Z

)
= 0 on the similar conditions. This com-

pletes the proof.

Theorem 2 means that xi − f (Z )⊥xj − g (Z ) +∑
H (Z ) or xi − f (Z ) +

∑
H (Z )⊥xj − g (Z ) are sufficient

to support xi⊥xj|Z . It can be found out from the combi-
nation of Theorem 1 and Theorem 2 that the CI test of
xi⊥xj|Z can be replaced by two unconditionally independent
tests xi − f (Z )⊥xj − g (Z ) +

∑
H (Z ) or xi − f (Z ) +∑

H (Z )⊥xj − g (Z ) . Hence, we can simplify the CI test
into a set of marginal independent tests according to the
above two theorems. When the method is applied to causal

discovery, in the worst case, we need at most 2 ∗ k ∗
|S|∑
i=1

C i
|S|

( S denotes the maximum conditional set, Z ∈ S, k is the
times of choosing H (∗) ) unconditionally independent tests
to determine whether xi and xj are conditionally independent.

The existing CI test methods, by contrast, need
|S|∑
i=1

C i
|S| times

in CI test.
From the perspective of LNANM, it is assumed that we

randomly choose two variables, if they are not adjacent; it
is easy to find the two linear functions f and g and choose
k times to meet the condition xi − f (Z )⊥xj − g (Z ) +∑
H (Z ) or xi − f (Z ) +

∑
H (Z )⊥xj − g (Z ) according to

Theorem 1.On the other side, xi−f (Z )⊥xj−g (Z )+
∑
H (Z )

( or xi − f (Z ) +
∑
H (Z )⊥xj − g (Z ) ) leads to xi⊥xj|Z

according to Theorem 2. So there is only need to check
whether these three variables ( functions f , g and k times
H (∗) ) can be found to achieve xi − f (Z )⊥xj − g (Z ) +∑
H (Z ) or xi − f (Z )+

∑
H (Z )⊥xj − g (Z ).

In causal discovery, we often use V -structure learn-
ing and consistent propagation [4] to learn causal direc-
tions. Recall that xi − f (Z )⊥xj − g (Z ) +

∑
H (Z )

( or xi − f (Z ) +
∑
H (Z )⊥xj − g (Z ) ) ⇒ xi −

f (Z )⊥Z ( or xj − g (Z )⊥Z ) according to Theorem 2.
Compared with a series of Markov equivalence classes
alone, RIT can capture more information about the causal
direction, not just the deterministic V -structure. This is
because in LNANM, if x − f (Z )⊥Z , then Z cannot con-
tain a child of x. Compared with concretizing-based and
kernel-based tests, RIT can detect more causal directions
even without V -structure. Here is a simple example, given
a causal structure of x1 ← x2 → x3, it is easy to find
two linear functions f and g such that xi − f (Z )⊥xj −
g (Z ) +

∑
H (Z ), eventually x1 ← x2 and x2 → x3 can be

inferred. However, it is difficult for concretizing-based and
kernel-based tests to distinguish the three structures x1 ←
x2 → x3, x1 ← x2 ← x3, and x1 → x2 → x3,
because they have the same conditional and unconditional
independence.

IV. CAUSAL INFERENCE BASED ON RIT
In this section, we will introduce a new causal inference
method based on the combination of PC algorithm and RIT,
this method is denoted by PCRIT for simplicity. Concretely,
PCRIT is based on the standard PC algorithm [3], where RIT
is used for testing CI, and any existingmethods like KCIT can
be used for testing marginal independence. RIT is performed
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simply by estimating f̃ of f and g̃ of g by using least square
regression. Therefore it is easy to test whether x− f̃ (Z )⊥y−
g̃ (Z ) +

∑
H (Z ) or x − f̃ (Z ) +

∑
H (Z )⊥y − g̃ (Z ) holds

with k times H (∗). The corresponding pseudo-code of our
proposedmethod is listed inAlgorithm 1. The first step (Lines
1-7) aims to reconstruct the causal skeleton based on RIT. The
procedure is the same to that of PC algorithm. Concretely,
we first construct a fully connected undirected graph G over
the given variables set X , then we check whether every two
variables xi and xj can be conditional independent given a
variable set Z . We delete the edge xi − xj from G if the CI
holds. After obtained the causal skeleton, the edges can be
oriented according to xi−f̃ (Z )⊥

∑
H (Z ) ( or xi−f̃ (Z )⊥Z )

and xj − g̃ (Z )⊥
∑
H (Z ) ( or xj − g̃ (Z )⊥Z ) (Lines 8-12).

Finally, the remaining undirected edges will be checked and
direction-deduced by V -structures learning and consistent
propagation, this process is the same as that in the PC algo-
rithm (Line 17). For example, to check whether xi − xj − xk
forms V -structure. If it does, then xi → xj ← xk will be
accepted.

Algorithm 1 PC algorithm based on RIT (PCRIT )
1: Input: variables set X = {x1, . . . , xn}, k .
2: Output: partial DAG G.
3: Form the complete undirected graph G on the variables

set X .
4: for ∀xi, xj ∈ X and adjacent in G do
5: for ∀Z ∈ X \ {xi, xj} do
6: do linear regression to measure f̃ of f and g̃ of g
7: randomly generate k times H (∗) as H1, . . . ,Hk .
8: if xi − f̃ (Z ) ⊥ xj − g̃(Z )+

∑
Ht (Z ) or xi − f̃ (Z )+∑

Ht (Z ) ⊥ xj − g̃(Z ) for ∀Hi ∈ H holds then
9: delete edge xi − xj from G
10: if xi − f̃ (Z ) ⊥

∑
H (Z ) (or xi − f̃ (Z ) ⊥ Z ) then

11: orient Z to xi.
12: end if
13: if xj − g̃(Z ) ⊥

∑
H (Z ) (or xj − g̃(Z ) ⊥ Z ) then

14: orient Z to xj.
15: end if
16: break
17: end if
18: end for
19: end for
20: orient the remaining un-oriented edges based on V -

structure and do consistent propagation.

V. PERFORMANCE EVALUATIONS
In this section, we first conduct experiments to evaluate RIT,
and make comparison of the RIT and KCIT [16] integrated
with the PC algorithm framework [3], i.e., PCRIT vs. PCKCIT .
There are many results on the comparisons between KCIT
and the other CI testing methods in the previous works [16],
[17], [25], [32]. In this implementation of RIT, the least
square regression method is used to measure the linear

functions f and g. In order to obtain the best perfor-
mance or result of KCIT, the inner bootstrap step and
Gaussian process are active. In all the following procedure of
RIT, the parameter k is fixed at 10, whichmeans we randomly
choose 10 times H (∗) to measure CIs. In practice, because
the coefficients in generating simulated model are randomly
chosen, k can be as small as 10 according to the proof in
Theorem 2.

A. PERFORMANCE IN SIMULATED MODEL
In this group of experiments, we evaluate the proposed
method by the simulated datasets generated by following
a set of simulated causal network structures under a linear
Non-Gaussian additive noise model. In fact, it is hard to
find a large group of datasets with respect to causal infer-
ence problems with ground truth. At present, simulated data
on given structures are popularly used in many causality
inference methods [33]. Here we make an assumption that
the actual causal network structure for n random variables
x1, · · · , xn can be denoted as a graph (DAG)G. An additional
hypothesis of faithfulness is widely used in the constraint-
based methods (such as PC algorithm); faithfulness means
that the joint distribution cannot access by any CI information
not contained in Markov conditions. We thus can recover the
graph structure by checking the CIs and independence in the
data. Evidently, it is only possible for one to restore a set
of Markov equivalence classes. Therefore, if PC algorithm
use the existing CI test methods to detect causal directions
like KCIT based on V -structures learning and CI test method
for consistent propagations [4], then PC algorithm can find
only a set of Markov equivalence classes. In the follow-
ing experiments, we will show that PCRIT , proposed in the
paper, can deduce much more causal directions than those
of PCKCIT .
The simulated dataset is generated by following a ran-

dom DAG G. Specifically, we random chooses four vari-
ables x1, · · · , x4 and makes the arrows among them by
following xi to xj only for i < j. And the arrow is either
present or absent with probability 0.5. We generate the
root variables by following U (0, 1) and the leaf variables
xi came from

∑
i ai ∗ paxi + ε where ai ∼ U (0.2, 1) and

ε ∼ U (−0.2, 0.2) are independent from paxi . In addition,
1000 sample data are simulated and generated in a sample
data set whose size is controlled in 25, 50, 75, 100, 200, 400
and the ability of PCRIT and PCKCIT to infer causal skeleton
and PDAGs (including identifiable causal direction) respec-
tively is evaluated. the ability of PCRIT to infer causal skele-
ton is evaluated, and which of PCKCIT (including identifiable
causal direction) is also evaluated.

We can see that from Fig.2(a), when the sample is less (e.g.
less than 100), PCRIT performs much better than PCKCIT on
causal skeleton learning. On the one hand we increase the
sample, the performance of PCKCIT is close to that of PCRIT ,
on the other hand the sample size is up to 400, the PCRIT and
PCKCIT tend to overlap in term of the F1 curves. In practice,
we have collected many other simulation datasets generated
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FIGURE 2. The performance with respect to PCRIT and PCKCIT in term of
(a) causal skeleton learning and (b) PDAG learning.

by following a similar procedure to test PCRIT by inputting
different parameters, and we finally obtained the results sim-
ilar to those shown in Fig.2(a).

On the other side, the two methods are also evaluated
in term of PDAG learning. We presented the corresponding
results in Fig.2(b). It can be seen that PCRIT can obtain
better results in these cases. With enough samples, PCKCIT ’s
performance in causal skeleton learning is similar to that of
PCRIT . The reason is that PCKCIT detect the causal directions
only by V -structure and the corresponding consistent propa-
gation [4] that is PCKCIT outputs only Markov equivalence
classes, while PCRIT can learn more information over the
causal directions.

B. PERFORMANCE ON REAL-WORLD STRUCTURES
In the above experiments, we compared our method to
PCKCIT in causal skeleton learning and causal direction
learning, and the experimental results have shown that RIT
is able to break Markov equivalence classes. Therefore

PCRIT can recover more information about the causal direc-
tions. In this subsection, further comparisons were made
between PCRIT and three other causal inference methods,
including LiNGAM [20], DLiNGAM [27] and Spase-ICA
LiNGAM [34]. Since all these methods can distinguish
Markov equivalence classes, we can further evaluate our
causal inference methods, including causal direction learn-
ing. The implementations of LiNGAM and DLiNGAM
strictly follow the original papers [20], [27]. Sparse-ICA and
LiNGAM use [34] Spase-ICA algorithm and [20] pruning
algorithm. In the next step, we will collect eight real-world
causal network structures to evaluate PCRIT , LiNGAM,
DLiNGAMand Sparse-ICALiNGAM. These causal network
structures cover a variety of applications in causality dis-
covery, including medicine system (Alarm and Pathfinder),
insurance system evaluation (Insurance), agricultural indus-
try (Barley), weather forecasting (Hailfinder), the pedigree
of breeding pigs (Pigs dataset) and system troubleshoot-
ing (Win95pts and Andes). The structural statistics of these
causal network structures are summarized in Table 1. It is
noted that the three baselines (Nodes, Avg.degree, Max
degree) are highly impacted by the the sample size and the
number of nodes, and LiNGAM cannot work if the sam-
ples size is smaller than |V |. Consequently, in what follows,
we fix the sample size at 2 |V | to compare PCRIT with
the other three existing methods, LiNGAM, DLiNGAM and
Sparse-ICA LiNGAM.

TABLE 1. The statistics of causal network structures

The experiment results are presented in Table 2, in which
the three methods DLiNGAM, LiNGAM and Sparse-ICA
LiNGAM are respectively denoted by LiGM, DLiGM and
SICA due to space limit. We can see that PCRIT almost
achieves the top performance in all datasets and only
LiNGAM outperforms PCRIT in term of Recall in the case
of Insurance. One of the reasons is that Insurance has only
27 nodes (see Table 1) that is the simplest one among the
eight structures. In the other seven cases, PCRIT outperforms
LiNGAM, DLiNGAM and Sparse-ICA LiNGAM, especially
in larger causal networks ( with |V | > 100). The recall rates
of the three methods (LiNGAM, DLiNGAM and Sparse-ICA
LiNGAM) can distinguish the actual graph from the corre-
sponding Markova equivalence classes, but they are not reli-
able in some cases. The sample size needs to be enlarged if in
need of improvement for their learning accuracy. Due to high
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TABLE 2. Results on four causal structure learning methods.

TABLE 3. Results on four causal structure learning methods with 200 samples.

time-complexity of DLiNGAM and Sparse-ICA LiNGAM,
in the case of Pigs network, their results are not presented.

It is clearly that the PCRIT curves (Recall, Precision and
F1 score) increased with the sample size instead of the ratio
of the sample size to the number of nodes ( 2 |V |), and the
other three methods DLiNGAM, LiNGAM and Sparse-ICA
LiNGAM are relatively stable. Simultaneously, it can be seen
that in the case of larger network, like Pathfinder , Andes and
Pigs, the F1 value of PCRIT is 2 to 3 times higher than those
of the other three methods. The reasons can be concluded in
two perspectives,: 1) RIT is used to detect the CIs in PCRIT ,
while causal skeleton inference of DLiNGAM, LiNGAM and
Spase-ICALiNGAMwas based on functional modeling only.
Given reliable CI tests methods, CI tests in skeleton learning
has higher robustness than functional modeling, hence the
causal skeleton recovered by PCRIT is theoretically more
accurate. 2) Breaking Markov equivalence classes by RIT
means that our method can capture more information about
causal directions than other three methods.

As a conclusion, there are twomain reasons for why PCRIT
can work better than the state-of-the-art methods DLiNGAM,
LiNGAM and Sparse-ICA LiNGAM, especially in large-
scale cases, 1) RIT relaxes the CI test to two simple marginal
independence test which can achieve a better performance on

detecting CI. 2) PCRIT can infer the corresponding causal
directions during CI testing by using RIT, which enable
PCRIT to distinguish Markov equivalence classes.

In order to test how the sample sizes affect the performance
of these methods, we conduct another group of experiment
that the sample size is fixed at 200 with different dimension-
alities of networks. The results are presented in Table 3.

We can see that the performance ofPCRIT under two lower-
dimensional datasets Asia and Cancer with 6 and 8 nodes
respectively, are not as good as other these algorithms.
Because the performance of our method is heavily impacted
by the sample size rather than the rate of Sample size/The
number of nodes. So given only 200 sample sizes, it is not
enough to show the best performance of our method. But
one thing that should be noted, our method becomes much
more competitive with the growing dimensionalities, while
the other methods require more and more sample. If we fixed
the sample size, the accuracy of those methods tends to be
unreliable. On the other side, as we knows there are a lot
of methods can deal with low-dimensional cases, thus out
methodmainly aims to deal with high-dimensional cases with
limit samples.

But the three data sets Insurance, Alarm and Barley in the
table abovewith 27, 37 and 48 nodes, respectively, present the
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TABLE 4. Results on four causal structure learning methods with Win95 data set.

result that they are better than the other three algorithms in the
evaluation criteria of Recall, Precision and F1. In these three
cases, SICA worked better than the other three algorithms
in term of Recall criterion, while the proposed algorithm is
better than the other three algorithms in term of Precision and
F1 criterion.

When the dimensionality of the structures becomes higher,
such as in the cases of Hailfinder, Win95pts, Pathfinder and
Andes with 56, 76, 109, 223 nodes, our method can get
significantly better Recall, Precision and F1 that the other
methods. In these cases, the rates of Sample size/The number
of nodes became low enough, the other three methods are not
able to get a competitive performance. It can be seen that
the performance of PCRIT is much stable than those of the
counterparts when the sample size is fixed. Because the coun-
terparts are heavily impacted by the rate of Sample size/The
number of node. As the samples are generally limited, these
methods are not easily to handle high-dimensional cases, and
then we can choose PCRIT to achieve the goal.
We further select one of the datasets to do a exper-

iments with different sample sizes, and the experimen-
tal results are shown in table 4. We can see that the
F1 score of the proposed algorithm is 0.45 with 100 sam-
ples, and is up to 0.55 when samples reaching 300, the gap
is (0.55-0.45)/0.55=0.18. We can see that our method is much
easier to obtain a better score when the sample size is very
small under a higher-dimensional network, while other meth-
ods, especially SICA, one has to dramatically increase the
sample size to get a better score.

VI. CONCLUSION
In this work, a novel residual-based conditional independence
characterization testingmethod based on linear non-Gaussian
additive noise model was proposed to solve the problem of
distinguishing Markov equivalent classes. We showed that
the CIs can be tested by some weaker conditions if the
causal process is known as linear Non-Gaussian. Concretely,
test of x⊥y|Z can be reduced to a set of unconditional
independence tests of x − f (Z )⊥y − g (Z ) +

∑
H (Z )

( or x − f (Z )+
∑
H (Z )⊥y− g (Z ) ) under the assumption

that the data-generating process follows linear Non-Gaussian

additive noise model. We further use x − f (Z )⊥y− g (Z )+∑
H (Z ) ( or x − f (Z ) +

∑
H (Z )⊥y − g (Z ) ) to infer

causal directions. In contrast to the state-of-the-art kernel-
based method KCIT, the proposal is less sensitive to the
dimensionality of Z in causal skeleton and direction learn-
ing. Experiments on both simulated and real-world causal
network structures verify that the new method outperforms
KCIT in linear non-Gaussian cases.
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