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ABSTRACT Although coastal classification has been attended in recent years, it is still a complicated
problem in quantitative geomorphological and hydrological sciences. Nowadays, the integration of deep
learning in remote sensing and GIS analysis can quickly classify and detect different characteristics on
both land and sea. Therefore, the authors proposed the use of a convolutional neural network (ConvNet)
for coastal classification based on these technologies and geomorphic profile graphs. The primary input
data is digital elevation/depth models obtained from ALOS and NOAA satellite. Eight hundred coastal
samples representing eight types of coasts taken along the coastline in Vietnam were used for training and
testing various ConvNets. As a result, three ConvNet models using three different optimizer functions were
developed with the accuracies of about 98% and low values of the loss function. These models were used
to classify 1029 in 1150 coasts (equal to 89%) in Vietnam. Nearly 11% of Vietnamese coasts could not be
defined by three ConvNet models due to their complex geomorphic profile graphs, and require assessments of
other natural components. The trained ConvNet models can potentially update new coastal types in different
tropical countries towards coastal classification on national and global scales.

INDEX TERMS Geomorphology, coastline, digital elevation model, profile graphs, loss function,

optimization.

I. INTRODUCTION

Since the early 1800s, coastal classification has been a
complicated problem in geomorphological and hydrolog-
ical sciences [1]-[3]. In modern scientific investigations,
the analysis of land-sea boundary types is still discrete for
decision-makers in the coastal classification and nomencla-
ture [4], [5]. Coasts have been commonly classified based
on one of the following sectors: (1) processes, (2) materials,
(3) forms, (4) age or stage of development, and (5) envi-
ronments [4], [6]-[8]. Depending on research scales, coast
types can vary from global (worldwide coverage), continen-
tal, regional to local scales [9]-[11]. Therefore, it is neces-
sary to have a better quantitative classification method that
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consists of assessments of terrain, wave energy, tidal range,
sea-level stability, and material.

U.S. Geological Survey in the Coastal Classification Map-
ping Project! emphasized the essential roles of physical
processes for coastal classification in the development of
coastal landforms, especially with water and wind ero-
sion, generation of sandy beaches, and barrier islands, and
extreme climatic hazards. The natural coastal attributes can
be observed, such as dune height (elevation) and continuity,
beach width, and presence or absence of emergent sand-
bars [12]. Therefore, interpretation based on geomorphic
features can be principle information for coastal classifi-
cation [13], [14]. However, the former coastal classifica-
tion systems based on geomorphic features were commonly
developed based on local observation instead of quantitative

1 https://archive.usgs.gov/archive/sites/coastal.er.usgs.gov/coastal-
classification/class.html
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measurements [15]-[17]. It makes difficulties for upscaling
these classifications for larger scales such as national or
global scales. Most of the coast types were described on
horizontal sides that cannot help to classify quantitatively
these coast types in detail [11]. If the coasts are observed from
vertical sides, it can provide quantitative information such as
elevation, slope, and flow length for the coastal classification.
Geomorphic profile graphs are commonly used to represent
this information. The question raised here is how to classify
coasts from various geomorphic profile graphs?

Nowadays, satellite and airborne remote sensors are used
effectively to modelized coastal terrains, coastal land uses,
and surface covers, such as National Oceanic and Atmo-
spheric Administration (NOAA), Advanced Land Obser-
vation Satellite (ALOS), RADARSAT-1 and TerraSAR-X
data [18]-[21]. Different advantages of satellite imagery to
classify coasts were mentioned by Finkl (2014), such as
timeliness, synoptic, and reduced costs. Especially, terrain
observation from remote sensing images makes land-sea sep-
aration clearer [20], [22].

The integration of remote sensing, GIS into deep learning
has become a potential method to quickly classify and detect
different objects on both land and sea, especially with the
use of convolutional neural networks (ConvNets) [23]-[25].
The ConvNets have been known as a unique structure of
convolutional neural networks [26]. Although these networks
were proposed by LeCun et al. (1998), they have been used
more frequently since the 2010s [28]-[32]. The ConvNets
analyze visual features, and one of the most popular applica-
tions of these networks is image classification [26], [33]. The
main task of image classification is to interpret objects in an
input image based on their spectral bands or attribute profiles.
For ConvNet development, the model requires big data that
consist of base images for training and testing processes.
Once the model is completed, it can be used to classify new
images [34], [35]. For coastal classification, the trained Con-
vNet model compares specific characteristics of the original
input with the base coasts and quickly determine its type. For
a computer, these characteristics can be shapes, boundaries,
and curvatures [36]—[38]. With the use of these models, coast
types can be potentially distinguished based on geomorphic
profile graphs. The most crucial issue for training a ConvNet
model is image data preparation. A large number of input
image data for the training and testing process can make the
ConvNet models more accurate, especially in the case with
multi-class classification [33], [39].

Vietnam has about a 3260 km coastline with different coast
types [40]. It helps to select various samples for training and
testing a ConvNet model. The coasts in Vietnam has only
been classified from expert experiences in some particular
regions [6], [7], [16]. Therefore, coastal classification has not
been mapped in Vietnam. Once the Vietnamese coasts are
classified, the outcomes can become a useful tool for scien-
tists in geomorphic zoning and managers in land-use plan-
ning. The following research questions - relevant to coastal
classification — will make this study clearer:
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« How many types of coasts can be identified in Vietnam?

« Is it feasible and effective to apply convolutional neural
networks for coastal classification based on geomorphic
features?

o How do coast types distribute in Vietnam?

In this study, four types of geomorphic profiles, including
absolute elevation, relative elevation, slope, and flow length,
were used as input variables for coastal classification. The
geomorphic profiles of 800 coast samples were used to
develop a ConvNet model for coastal classification. After-
ward, the trained model was used to classify 1150 other
coasts along the coastline in Vietnam. Before coming to the
explanation of model development (from section 2.B to 2.E),
the authors provided an overview of coastal classification
systems and related characteristics of some coast types in
Vietnam (section 2.A). Results related to coastal classifica-
tion and model development will be compared with former
studies in section 4.

Il. MATERIAL AND METHODS
A. FORMER COASTAL CLASSIFICATION
SYSTEMS IN VIETNAM
With a long coastline, natural and socio-economic charac-
teristics of Vietnamese coasts are varied from Mong Cai
city, Quang Ninh province (bordering China) in the North to
Ha Tien, Kien Giang province (bordering Cambodia) in the
South (Figure 1). The coastal zone in Vietnam is located in the
tropical monsoon region with the northeast monsoon season
from November to March and the southwest monsoon from
May to September [40], [41]. Vietnam’s coasts are divided by
more than 380 rivers [42]. An estuary develops every 20 km
along the coastline. One hundred twenty-five coastal districts
with many natural ports, industrial centers, heritage sites,
urban areas, and developed industries belong to 28 provinces,
and cities annually suffer from 12-14 hurricanes [7], [43].
Based on the difference of the natural characteristics in
the continental strip and the shallow coastal wetlands, Viet-
namese scientists divided the Vietnamese coast into ten main
types [6], [44]. These sub-types can be checked in Table 1.
These coast types can be grouped into some primary cate-
gories as following:

o Tectonic and karst coasts: distribute from Mong Cai
city, Quang Ninh province to Do Son city, Hai Phong
province in Vietnam. The dalmatian coasts as a primary
type of shoreline were formed from the tectonic divi-
sion of young mountainous ranges that are parallel with
local geological faults. These coasts were submerged by
the seawater during the last glacier periods. Whereas
the karst coasts were generated from limestone sedi-
ments [45]. The karst coasts have hierarchical character-
istics in Bai Tu Long and Ha Long bays [40]. Both coast
types are sharply divided, generating about 3,000 islands
and 5000 km? area of Northern bays in Vietnam [44].

« Delta and alluvial coasts: include the two largest estu-
aries are the Red River and Mekong River systems and
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FIGURE 1. Geomorphic features (DEM, relative elevation, slope and flow length) in Vietnamese coasts.

various small rivers in the Middle part of Vietnam. Espe-
cially, mangrove ecosystems that are well grown in the
delta coasts make suitable conditions for the accumu-
lation process, resulting in seaward expansion. These
coasts are commonly low (about 5-7m inland high)
and slightly divided (every 20 km) by rivers [46], [47].
Notably, the coastal area of the Red River Delta has an
average elevation of 0.5 - 1.3 m, whereas its levels can
reach to 4-6m high. The offshore sector is the shallow
seabed with 10m deep and 15-20km width. The terrain
from a depth of 20-22m, the seabed is more distorted
because of the development of ancient river valleys on
the sea bottom [48]. The slight slope of coasts due to the
effects of inflow water from the river causes significant
obstacles for maritime transport [49].

o Accumulative coasts: were observed by Vietnamese
scientists in coasts of Dai Lanh, Khanh Hoa province,
and coasts from Ca Na, Ninh Thuan province to Vung
Tau city, Ba Ria — Vung Tau province. This coast type
has been slightly divided. The sediment is deposited
from inflow and wave, generating stable terrains and
long dunes. Wind erosion from the dunes is the main
reason for the degradation in agricultural development.
These dunes are commonly narrow with different levels
of elevation, from 1.5-2m, 4-6m, 10-15m to 20-25m,
sometimes up to 70-80m depending on the age of
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dunes [44]. The appearance of these dunes can make
different sub-types of coasts that were explained in detail
by [44], [50]

« Abrasive coasts due to wave erosion: were identified
as steep and complicated coasts from Dai Lanh, Khanh
Hoa province to Ca Na, Ninh Thuan province. The
elevation of these coasts changes rapidly from more
than 300-400m high in the mainland to zero-high in
coastline [44]. The seabed on these coasts is the nar-
rowest part of Vietnam. The average depth of the bay
is 20-25m, sometimes down to 40-50m. The oldest red
dunes observed on the elevation of 200m in Phan Thiet
city are also assessed as abrasive coasts due to the effects
of sea waves during the last century [6].

Four main categories were mentioned by Vietnamese scien-
tists were separated based on expert understandings about
local geomorphic, geological, and hydrological characteris-
tics. In this study, the authors only focused on the application
of the geomorphic features for coastal classification. Other
natural features were not added to ConvNet development.
This issue will be discussed more in section 4.

B. DATA AND SAMPLE COLLECTION

To reclassify the coast types based on geomorphic fea-
tures, digital elevation models (DEM) are the most crucial
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TABLE 1. Coastal classification in Vietnam and the distribution of these
coast types adapted from Le and Le (2007) and Nguyen et al. (2010).

Coast type Distribution Length

1. Tectonic and karst coasts
Coast of tectonic From Vinh Thuc island (Quang Ninh 120km
dissection province) to Ha Mai island (Quang Ninh

province)

Islands of Hoang Sa archipelago,

Truong Sa archipelago (Khanh Hoa
Coral reef coast province), small islands of Trung Bo

Coast region
Tropical bio- Cat Ba, Lan Ha, Ha Long and Bai Tu 100km
chemical corrosive . .

. Long islands areas (Quang Ninh
coast (Tropical >
karst coast)) province)
. Bach Long Vi islands (Quang Ninh

g;;gt of abrasive province) and C;on Dao islands (Ba Ria -

Vung Tau province)
2. Delta and aluvial coasts

From Do Son district (Hai Phong city),

to Lach Truong estuary (Thanh Hoa 150km

province)
From Tieu estuary (Tien Giang
province) to Rach Gia City (Kien Giang  670km

Deltaic coast

province)

Coast of alluvial From Lach Truqng estuary (Thanh Hoa

Slats pTOVFnce) to Hoi estuary (Nghe An 170 km
province)

Coast of alluvial- From Hoi estuary (Nghe An province)

marine flats to Ron cape (Ha Tinh province) 130 km

From Do Son district (Hai Phong city),
to Lach Truong estuary (Thanh Hoa 150km
province)
3. Accumulative and abrasive coasts

From Mong Cai City (Quang Ninh
Coast of clayey Province) to Do Son (Hai Phong city)
and sandy tidal From Vung Tau city (Ba Ria - Vung
Sflats Tau province) to Tieu estuary (Tien 120 km
Giang province)
From Quy Nhon city (Binh Dinh
province) to Vung Tau city (Ba Ria - 850 km
Vung Tau province)
From Hon Dat district (Kien Giang
Province) to Mui Nai cape (Kien Giang 250 km
Province)

Deltaic coast

350 km

Coast of abrasive-
accumulative bays

Smoothed
abrasive-
accumulative coast

From Ron cape (Ha Tinh province) to

Quy Nhon city (Binh Dinh province) 730k

input data. Inland DEM were downloaded from the Google
Earth Engine” with resolution of 30 meters obtained by the
Panchromatic Remote-sensing Instrument for Stereo Map-
ping (PRISM) onboard the Advanced Land Observing Satel-
lite (so-called as ALOS) [51]. Due to the DEM obtained from
ALOS satellite can only show the height above sea level. The
lowest value of the ALOS DEM is zero; therefore, the bound-
ary between sea and land were clearly identified at the inland
border of the value ‘0’. The DEM under the sea were down-
loaded from Global Relief Data obtained by NOAA National
Centers for Environmental Information (NCEI), with the res-
olution of one arc-minute [52]. The DEM data needs to cover
both inland and offshore areas in Vietnam (or 3260km of the
coast). Therefore, both data were converted to the horizontal
datum of WGS84/UTM - 48N and downscaled to raster
of 30m resolution. Authors merged inland elevation ALOS

2https://ea.lrthengine. google.com
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FIGURE 2. Image preparation for coastal classification based on
perpendicular lines to coastlines (so-called as “cut line”), example with
cut line No.474. The “code” column shows the range of points valued
from [1,101] corresponding to 101 points in the cut line No.474. “n” is the
number of input cut lines to the ConvNets. In total, 800 cut-lines were
generated for ConvNet development and 1150 cut-lines were created for
Vietnamese coastal classification.

data with the NOAA DEM through the sea-land boundary
(or coastline) to generate a complete DEM from inland to
offshore areas with the use of ArcGIS software.

In this study, four potential geomorphic features that will
be used for coastal classification include absolute elevation,
relative elevation, slope, and flow length. Whereas the abso-
lute elevation of coasts was collected satellite data, the next
three geomorphic features can be directly calculated from the
DEM. While the relative elevation represents the differences
between the highest and lowest elevation in a particular area,
the slope represents the steepness or the degree of inclina-
tion of terrain surface relative to the horizontal surface [53].
The unit of the relative elevation in Vietnam fluctuate from
0 to 500m, and the slope fluctuates from 0 to 90 degrees
(Figure 1 and 2). The feature “‘flow length” represents the
most extended downslope length along the flow path, or the
time of water concentration from each cell to a sink or
outlet [54], [55]. All three geomorphic features were cal-
culated based on the “‘spatial analysis” tool integrated into
ArcGIS 10.5.

C. IMAGE PREPARATION BASED ON

GEOMORPHIC PROFILE GRAPHS

In this study, coast types will be identified based on image
classification. Therefore, four geomorphic features in coasts
will be essential inputs for image preparation. In detail, to pre-
pare input images for ConvNet development, three types of
data need to be made, including (geomorphic) profile graphs,
cut lines, and profile points. An input image contains four
sub-graphs presenting four geomorphic profiles on a partic-
ular coast. To draw the profile graphs (Figure 2), the authors
made cut lines perpendicular to coastlines with about 400m
equally apart and 10km in length (Skm inland and S5km
offshore). These cut lines were converted to 101 points with
50 inland points, 50 offshore points, and one point located on
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the coastline. Geomorphic values from corresponding raster
maps were assigned to the points; therefore, four types of
geomorphic profile graphs were generated from each cut
line. The connection between points in a cut line containing
geomorphic features from land to sea will make geomorphic
profile graphs.

Related to the design of the profile graphs, the scale of
the x- and y-axis was fixed. In all profile graphs, the x-axis
represents the distance from the land (left side) to the sea
(right side). It starts at Skm inland points and ends at Skm
offshore points from the coastline. The reference of the y-axis
is different between geomorphic features. For the elevation
profile graph, the range of values was fixed from *-20’ to ‘80’
to fully observe the fluctuation between inland and offshore
elevation. The ranges of flow-length, relative elevation, and
slope values were fixed from ‘0’ to ‘0.02°, ‘0’ to ‘100’, and
‘0’ to ‘5’, respectively. To make the profile graphs simplest
as possible for the model development explained in section
2.D, all labels on the graphs were eliminated. The final graphs
inputted for the model development only contain the shapes
of the geomorphic features (Figure 2).

Based on field trips in 2017, 2018, and 2019 along the
coastline in Vietnam, authors identified eight coast types
that can be separated based on local geomorphic features.
The characteristics of these coast types will be mentioned in
the result section. Additionally, coastline parts specified for
eight coast types were selected. Among these parts, 100 cut
line samples are built for each coast type with about 400m
equally apart and 10km in length. The location and distance
of cut-line samples are explained in Table 2. Terrains fully
affected by the inland runoffs (or estuaries) were elimi-
nated in the analysis and sampling. Accordingly, 2400 pro-
file sub-graphs were generated from 800 cut line samples.
To optimize input data for ConvNet development, all pro-
file sub-graphs were simplified to grey-scale images, instead
of using Red-Green-Blue (RGB) images. Four geomorphic
profile graphs in a cut line were stacked together as four
bands of one image. Therefore, we call the combination of
four profile graphs in one cut line as an image from here.
Lastly, the number of the input images for training and testing
models is 800 (‘n’ in Figure 2). The dimension of the images
is fixed at 700x700 pixels. It is the perfect size to observe
the fluctuation of four geomorphic features in the images.
During the training and testing processes, the smaller sizes
made the image blurrier, whereas the larger sizes reduce the
performance of trained ConvNet models.

D. CONVOLUTIONAL NEURAL NETWORKS
ARCHITECTURE FOR COASTAL CLASSIFICATION
Convolutional Neural Networks (ConvNet) exploit the infor-
mation containing in pictures [56]. Unlike a regular Neural
Network, the layers of a ConvNet as a sequence of layers
contain neurons organized in 3 dimensions: width, length
and depth. The depth dimension of a picture can be the
number of bands or number of input variables. For instance,
the depth dimension of input images in this study is an
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TABLE 2. Coastal classification in Vietnham and the distribution of these
coast types adapted from Le and Le (2007) and Nguyen et al. (2010).

Length of
Distribution Ro-ut pIo\Ii?{ts coastline
(km)

Mong Cgl - Cam Ha district, 76 7676 35
Quang Ninh province

1 Van Don district, Quang Ninh 24 2424 10
province
Total 100 10100 45

2 Van Don district, Quang Ninh 59 5059 25
provice
Ha Long patural herltage area, 31 3131 122
Quang Ninh province
Cat Hal district, Quang Ninh 10 1010 4
province
Total 100 10100 41.2
Hai Hau district, Nam Dinh 40 4040 156
province
th Chau district, Soc Trang 20 2020 82
province

3 Ngog Hien district, Ca Mau 20 2020 76
province
U Mmh district, Ca Mau 20 2020 78
province
Total 100 10100 39.2
Quyl?h Luu district, Nghe An 20 2020 76
province
Dlen‘ Chau district, Nghe An 10 1010 36
province
Cua Lo district, Nghe An 10 1010 36
province

4 Nghl‘ Xuan district, Ha Tinh 10 1010 36
province
Thagh Ha district, Ha Tinh 25 2525 96
province
Cam‘Xuyen district, Ha Tinh 25 2525 96
province
Total 100 10100 37,6
Gio Linh district, Quang Tri
province - Phong Dien district, 90 9090 36
Thua Thien Hue province

5 . . -
DlenlBlen district, Quang Nam 10 1010 36
province
Total 100 10100 39.6

Duy Xuyen - Nui Thanh
¢  district, Quang Nam province

Total 100 10100 39.7

100 10100 39.7

Quang Dien district, Thua

Thien Hue province 24 2424 12

Phu Vang district, Thua Thien 19 1919 72

Hue province

Phu Loc 41strlct, Thua Thien 12 1212 4.4

Hue province

Phu My district, Binh Dinh 10 1010 36
7 province

Phu My — Phu Cat district,

Binh Dinh province 12 1212 44

Tuy An district, Phu Yen 7 707 24

province

Cam(Lam district, Khanh Hoa 16 1616 6

province

Total 100 10100 39.2

Thuan Nam' district, Ninh 20 2020 90

Thuan province

Bgc Binh — Phan _Thlet district, 60 6060 273
g Binh Thl'1an province

Phag Thiet district, Binh Thuan 20 2020 76

province

Total 100 10100 439

input volume of activations or the number of geomorphic
features; therefore, the volume has dimensions 700x700x4
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347 x 347 x 64

173x 173 x 64
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Flatten

Convolution 1
(k=3; F=32; s=1, p=0)

Max Pooling 1
(k=2; s=2)

Convolution 2
(k=3; F=64; s=1, p=0)

Max Pooling 2
(k=2; s=2)

Convolution 3
(k=3; F=64; s=1, p=0)

Full Connection

FIGURE 3. The architecture of a convolutional neural network for coastal classification, where ‘k’ is size of a kernel in a convolutional layer; ‘F’ is number
of kernels in a convolutional layer; ‘s’ is stride or the distance between two continuous kernel; and ‘p’ is padding amount or width of padded border.

(width, height, depth respectively). The neurons in a layer
will work with small parts of pictures, instead of working with
entire pictures at once [34], [36]. At last, the size of the full
images has to be reduced to a single vector that is represented
in the last layer with the dimension of 1x1x8 (Figure 3).

In Figure 3, every layer of the ConvNet converts one vol-
ume of activations to new states through a chosen function.
During the ConvNet architecture development for coastal
classification, 800 profile images built-in section 2.C were
separated into two groups with 75% of data (or 600 images)
for the training process and 25% of data (or 200 images)
for the testing process. The ratio of coast types in the train-
ing and testing data is equal. Three main types of lay-
ers commonly used to build ConvNet architectures include
Convolutional Layer (CONV), Pooling Layer (POOL), and
Fully-Connected (FC) Layer. These layer types were stacked
to form a full ConvNet architecture as following:

o INPUT Ilayer keeps the raw pixel values of all images
(700x700x4); in this case the dimension of an image
has a width of 700-pixel, the height of 700-pixel, and
four geomorphic feature channels (DEM, RDEM, slope,
and flow-length).

o CONV layers compute the output of neurons through
a set of filters. Dong et al. (2019) suggested that the
weight and length of the filters are smaller than those
of the input images. The filter is slid across the input
width and length, connect to small local regions of input
images. New pixel values will be calculated from the
input based on activation functions chosen for the filters
(explained more in section 2.E). In this study, the authors
chose three CONYV layers for the ConvNet development,
as suggested by Feng et al. (2019). To reduce the training
and validation time, 32 filters for the first CONV layer
and 64 filters for the next two CONV layers were chosen
with the size of 3x3, respectively as width and length.

« POOL layer downscales operation to the spatial matrices
of 2x 2, respectively as width and height. This layer also
uses specific activation functions for the downscaling
process that will be explained in section 2.E.

o FC layer transforms simplified outputs from the POOL
layer to the class scores as the volume of size [1x 1x8].
Each of the eight numbers is represented as a class score
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TABLE 3. Mathematical structure of the developed ConvNet for coastal

classification.

Layers Output Shape No. parameters
Conv2D - 1 (None, 698, 698, 32) 1,184
MaxPooling2D - 1 (None, 349, 349,32) 0
Conv2D - 2 (None, 347,347, 64) 18,496
MaxPooling2D - 2 (None, 173, 173,64) 0
Conv2D - 3 (None, 171, 171, 64) 36,928
Flatten (None, 1,871,424) 0
Dense — 1 (None, 64) 119,771,200
Dense - 2 (None, 8) 520
Total parameters 119,828,328
Trainable parameters 119,828,328

in eight coast types. In this layer, some spatial matrices
calculated in the POOL layer will as assigned to a class
score based on training output data. The assignment
process will be recorded in the trained ConvNets.

Table 3 shows the image processing procedure with eight
layers according to the ConvNet architecture. The out-
put of the previous layer is the input data of the subse-
quent layer. Five layers Conv2D-1, Conv2D-2, Conv2D-3,
MaxPooling2D-1 and MaxPooling2D-2 consist of the
matrixing and normalizing functions of the Pooling matrix,
expressed as a 3-dimensional matrix. The size of the output
shape in the Conv2D layer is calculated as follow:

H —H)4+2xP Wi —Wy4+2xP
(H* W % F)gyer = ! Chils - — s * F
S+1 S+1
ey

where HI * W1 * D correspond to height, width and depth
of inputs and H2 * W2 * D correspond to height, width and
depth of filters. Filters always has the depth equal to the depth
of inputs; ‘S’ is the value of stride; ‘P’ is the number of
padding and ‘F’ is the number of filters. The Figure 3 shows
the particular values of stride and padding for each layer.
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The number of parameters of the Conv2D layers is calcu-
lated as following:

Npammeter =H+«WxD+1)xF 2)

where ‘H’ is height, ‘W’ is width, ‘D’ is depth and
‘F* is number of filters. Each filter has one parameter
to store the bias value. For example, the Conv2D-1 has
(3 x 3 x 4+ 1) * 32 = 1184 parameter.

Three layers Flatten, Dense 1 and Dense 2 transform out-
puts from the first five layers to a vector form. Similar with
the Conv2D layers, each node in a vector of the Dense layers
also has one parameter that holds the bias value. The number
of parameters in the Dense layer is calculated as following:

Nparameter = Noutput * (Ninput +1 3)

where Nipput is the number of nodes in the input vector, Noutput
is the number of nodes in the output vector. For example,
the Dense-2 has 8 * (64 4+ 1) = 520 parameter. The outcome
of the final layer is a vector with eight values, corresponding
to 8 coast types. Based on nine layers (1xXINPUT, 3xCONYV,
2xPOOL, and 3xFC layers), the trained ConvNets trans-
formed the original pixel values in 800 geomorphic profile
images to the final class scores. Only three CONV and two
POOL layers contain parameters due to they used respective
activation and optimizer functions for the training process.
The detail of these functions will be presented in section 2.E.
Based on alternative options to choose activation and opti-
mizer functions, the parameters in the CONYV, POOL and FC
layers will be trained. During the ConvNets development,
the accuracy of both training and testing data was checked
to avoid overfitting and underfitting errors [57]. The best
ConvNet requires the output class scores from the trained
ConvNet consistent with the labels assigned in the training
and testing image data.

E. ALTERNATIVE OPTIONS TO DEVELOP THE CONVNETS
According to the architecture of the ConvNets for coastal
classification, three types of functions can be chosen to
develop the ConvNets. They include activation function, loss
function, and optimizer method. These types of functions
will help to identify optimal parameters for filters contained
in hidden layers. The selection of function and method
depends on the type of input data and output labels, and
the accuracy/loss of trained models. This information will be
explained in this section.

1) ACTIVATION FUNCTIONS

In the CONYV layer, an activation function needs to be chosen
to optimize the convergence speed of the ConvNets. Due
to the differentiation of four geomorphic features between
eight coastal types, Binary Step Function or Linear Activation
Function were not chosen. The best option will be one in five
non-linear activation functions that include TanH/Hyperbolic
Tangent, ReLLU (or Rectified Linear Unit), leaky ReLLU, Para-
metric ReLU and Swish types [58], [59]. The ReLLU function
using max (0, x) - thresholding at zero - can keep the size
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of the images (64x3x3) and allows the ConvNet models
to converge very quickly. These advantages are not opti-
mized in other functions. Especially, this function also allows
backpropagation in the training process [60]. Additionally,
in five trained ConvNet models using five non-linear activa-
tion functions, the authors realized that the performance of the
ConvNet using the ReLU function provides better results than
those using other functions. Therefore, the ReLU function
was chosen for four ConvNet layers.

Two activation functions that can be chosen for the
POOL layer include Sigmoid/Logistic and Softmax [61]. The
Sigmoid/Logistic function provide uncertainties related to
vanishing gradient problems if the maximum and minimum
values of input data are too high. Whereas, the Softmax
function is commonly used to normalize the outputs to classes
between 0 and 1 and provide prediction probability in a spe-
cific type [62]. Additionally, the performance of the Softmax
function seems to be faster than those of the Sigmoid/Logistic
function. Therefore, the Softmax function was chosen for the
POOL layer.

2) LOSS FUNCTIONS

To reduce the gap between the predicted and actual outputs,
the trained ConvNet need to have a minimized Cost func-
tion(C) or Loss function as convex functions based on identi-
fying optimized value for weights [57]. Once the weights of
the trained networks can minimize the loss function, they can
make a better prediction for new input data. It was explained
in detail by [63]. The loss function is dependent on weights,
input images, and output labels. The average loss value is
computed with the use of entire training image data and
represented by the following function:

1 n
_ (x)
J = Y.L @)

with ‘n’ is the training data size set, and L% is the loss of a
single training image for the training process.

The loss function (e.g. regression, binary classification and
Multi-Class Classification Loss Functions) will be chosen
depending on the type of training ConvNets [64]. In this
study, eight types of coasts need to be classified; therefore,
authors chose one in three kinds of Multi-Class Classification
Loss Functions that include:

o Multi-Class Cross-Entropy Loss: is the standard method
to calculate the loss function in the case of the target
values in the set [0, 1, 2, ..., n] [65], [66]. Each unique
integer value in this study is represented for a coast
type. Mathematically, this method uses the framework of
maximum likelihood to calculate the loss. This method
calculates a score representing the average probabil-
ity gaps between the actual and predicted outputs for
all coast types. The last score has to be minimized
till O as the perfect cross-entropy value. This method
can be specified in the Keras coded in python with
a “‘categorical_crossentropy” function when compiling
the model [67]. The performance of the Multi-Class
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Cross-Entropy Loss seems to be reduced, especially in
the encoding process, if the network works with a large
number of labels and requires a significant memory.

o Sparse Multi-class Cross-Entropy Loss: has been devel-
oped to improve the performance of Multi-class Cross-
Entropy Loss function to classify a large number of
labels during the training process. It performs the same
cross-entropy calculation of error as the Multi-Class
Cross-Entropy Loss function, but this method does not
require the encoded target variables during the train-
ing process. This method was developed in the Keras
by using ‘“‘sparse_categorical_crossentropy”’ function
when compiling the model 67].

o Kullback Leibler Divergence Loss: has been designed
to measure the differences between the probability dis-
tribution of the outcomes and a baseline distribution.
If the difference of 0 shows that the distributions are
fitted. Although this method seems to be very similar
to the cross-entropy methods, it calculates the amount
of lost information in the case of the predicted proba-
bility distribution approximating with the desired target
probability distribution. [68], [69] suggested the Kull-
back Leibler Divergence Loss function is more useful
for complex tasks than simple multi-class classification.
This method has been developed in the Keras in python
by using ‘“‘kullback_leibler_divergence” function when
compiling the model [67].

3) OPTIMIZER FUNCTIONS

Deep learning neural network optimization based on a
stochastic gradient descent algorithm is commonly used
to reduce the cost functions. In other words, this method
increases the accuracy of trained neural networks by updat-
ing weights in the negative gradient direction to mini-
mize the loss. During the optimization process, the error
of the trained models (or the loss function) must be cal-
culated repeatedly. When all data is passed forward and
backward through the ConvNet model only once, it com-
pletes one epoch [70]. After one epoch, the weights were
updated to decrease the loss value for the next evalu-
ation. In this process, six optimization algorithms were
sequent changed during the ConvNet development, includ-
ing Nesterov accelerated gradient (NAG), Adagrad (Adap-
tive Gradient Algorithm), Adadelta, RMSProp (Root Mean
Square Propagation), Adam (Adaptive Moment Estimation)
and Nadam (Nesterov-accelerated Adaptive Moment Estima-
tion). The description of these optimization algorithms was
explained in detail in Table 4. The best optimizer method will
provide the highest accuracy and lowest loss function values.

F. CONVOLUTIONAL NEURAL NETWORKS

FOR COAST RECOGNITION

Once the best ConvNet for the coastal classification was
developed, its most important function is to classify new
coasts. In this study, the authors focused on coast types along
the Vietnamese coastline. Therefore, 4600 profile sub-graphs
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TABLE 4. The optimization algorithms to calculate parameters in the
ConvNets in coastal classification, adapted from [67], [70]-[73].

For-  Optimizer

Algorithms
mula method
5 Adagrad 041 = 6, — ﬁgt
RMS[A]—
6 Adadelta A6 = — nglgt and 0,,, = 0, + AB,

E[g%]; = 0.9E[g*];-1 + 0.1g7

7 RMSpro 0
PP and Opr1 = 0, — R
E[g]?+€
8 Adam Opy1 =0, — mmt
9 Adamax 95.},1 = Ht - u_tmt

(1-B1)ge

10 Nadam 041 =6, — m(ﬁﬂﬁt + 1_—31:)

where 0 is parameter value; ? is the learning rates; t is time step; € =

10-s; g, is the gradient; E[g] — moving average of squared gradients;

m, v are estimates of first and second moments; u, - the max operation;
8 - moving average parameter (good default value — 0.9).

corresponding to 1150 new cut lines along 3260 km in
length of the coastline in Vietnam were made. The new
cut lines were spaced at 2km intervals and 10km in length.
Therefore, these cut-lines are different with 800 cut-lines
made in the particular regions. The images were also pre-
pared as explained in section 2C. Once these new images
were inputted to the trained ConvNet, the model accessed
the parameters trained for eight layers to transform original
images to specific spatial matrices, and then interpret the final
class scores for each image. In the FC layer, the name of coast
types will be assigned to class scores. The outcomes of the
trained ConvNet will be assessed and compared with former
coastal classification systems in Vietnam that were explained
in section B.

Ill. RESULTS

A. GEOMORPHIC PROFILES OF COAST TYPES IN VIETNAM
Figure 4 depicts the top surfaces of 8x100x101 elevation
profile points from the continent to the sea (from left to right),
perpendicular to the coastline in Vietnam. The profile point
graphs of relative elevation, slope, and flow length charac-
teristics were shown in Figure 7, 8, and 9. According to the
geomorphic profiles of coastal surfaces, eight types of coasts
in Vietnam can be separated into four groups. The first group
includes tectonic and karst coasts. These strongly fragmented
coasts distribute along rocky coastlines, resulting in compli-
cated bays and offshore islands. Primarily, the tectonic coasts
consist of one or a few abrasive mountains parallel to the
coastlines. Both coast types in this group have a steep slope
of more than 25 degrees and are strongly partitioned by rivers
and streams along the coastlines. The difference between the
two types of coasts in group 1 relates to the distribution of
mountains along the coastlines and the difference in height
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FIGURE 4. Surfaces of elevation points from the continent to the sea (from left to right), perpendicular to the coastline in
Vietnam. Each sub-figure contains 10100 points of a respective coast type (linked to Table 2). The red lines show boundary of
elevation point surfaces, whereas the red dot-lines show the average fluctuation of elevation surfaces.

per one hectare. The difference in height per hectare in the
karst coasts reaches from 50 to 300m, whereas the difference
in the tectonic coasts only reaches from 25 to 170m. Addi-
tionally, the karst coasts contain offshore limestone islands
with the elevation of from 50 to 100m.

The second group includes delta coasts and coasts of allu-
vial flats. These coasts are often formed in a transitional zone
between river and maritime environments. According to the
geomorphic profile graphs (Figure 4), the inland elevation
fluctuates from 0-15m, whereas the offshore elevation grad-
ually declined from the coastline to the sea. The slope of
the offshore part of alluvial coasts seems to be steeper than
the delta coasts. Notably, the foredunes formed along the
coastline at the elevation from 5 to 7m is a difference between
coasts of alluvial flats and delta coasts.

The third group includes sandy coasts, accumulative
coasts, and coastal lagoon formed by wave and tide activities.
In general, the coasts in this group consist of lagoons, rivers,
and dunes parallel the coastlines, in which the average eleva-
tion of dunes is from 7 to 15m. The inland part of the sandy
coasts contains flat and stable dunes, whereas the inland part
of the accumulative coasts and coastal lagoon contain rivers
and lakes. The fourth group only has an abrasive coast type
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due to wave activities. The erosion process caused by waves
prevails and makes cliffs along the coastlines. The inland
elevation fluctuates from 100 to over 300m with the slope of
more than 30 degrees.

B. CONVNET MODEL PERFORMANCE

Six ConvNet methods used for model optimization include
Adadelta, RMSprop, Nadam, Adamax, Adagrad, and Adam
functions to calculate the optimal values for filter parame-
ters. According to Figure 5, the efficiency in 10 epochs of
six trained models was explained through two indicators:
loss function and accuracy. Each indicator is measured by
both testing and training data. Whereas the loss function
values are focused from O to 5, the efficiency is measured
in the range from 0 to 1 (corresponding for accuracy from
0% to 100%). Six models can be divided into two groups.
The first group includes trained ConvNet models using the
Adadelta, RMSprop, and Nadam optimizer methods. The
trained model using the Adadelta method is underfitted with
poor accuracy over ten epochs. The trained model using the
RMSprop method has fluctuated significantly in 10 epochs.
Although the accuracy of this model reaches the highest
value in the 9th loop, it was reduced in the 10th epoch,
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FIGURE 5. The loss function and accuracy values of six models using six optimization methods.

resulting in overfitting. In three trained models of the first
group, the trained model using the Nadam method has a
linear trend during the optimization process. The accuracy of
this model gradually increases from the 1st to 10th loop for
both training and testing data. However, the highest efficiency
achieved from this model is only about 0.8 (or 80%). There-
fore, this model was not chosen as the most optimal model.

The second group consists of three trained models using
the Adamax, Adagrad, and Adam methods. They are highly
accurate models. The accuracy of these models reached more
than 0.9 from 4th to 6th epochs, which is equivalent to about
98% accuracy. The loss function values reduced to near zero
since the sixth epoch. It is easy to assess that all three trained
models in group 2 can be used for coastal classification in six
models.

C. COAST INTERPRETATION IN VIETNAM

Figure 6 shows the analysis of 1150 coastal cut-lines in
Vietnam. As a result, 888 lines (accounting for 77% in
total) were interpreted similarly from three models using
Adam, Adamax, and Adagrad optimizer methods. In the
rest, 124 lines (corresponding to 11%) were classified dif-
ferently from only two models; and 53 lines (correspond-
ing to 5%) were classified separately between three models.
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After checking results in 262 lines, the coasts in Vietnam were
divided into 20 parts, as shown in Figure 6. Eight coast parts
are homogeneous, with the similarity of coast types higher
than 90%.

Additionally, the results show that the ConvNet models
using Adam and Adamax optimizer methods can classify
well about 89% of Vietnamese coasts. The model using
the Adagrad method can classify about 87% of Vietnamese
coasts. About 11% of the coasts provide complicated geo-
morphic profile graphs, leading to difficulties to interpreting
the best coast types for them. This issue will be discussed in
section 4.B.

IV. DISCUSSION

A. COMPARISON WITH FORMAL COASTAL
CLASSIFICATION SYSTEMS

The results are mostly in harmony with Vietnamese coastal
classification systems of Dang (2019), Le et al. (2007) and
Nguyen et al. (2010), especially in coasts from Mong Cai,
Quang Ninh province to Do Son, Hai Phong province; and
coasts in Red and Me Kong river deltas. The new coastal
classification from this study is more precise in abrasive
coasts in bed-rock edges, compared to the former coastal
classification systems of Le (2007) and Nguyen et al. (2010).
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FIGURE 6. A coastal classification system in Vietnam based on the trained ConvNet models.

Meanwhile, it shows similar results with the coastal classifi-
cation systems of [71]. Whereas the former systems were only
classified through expert experience without specific quanti-
tative indicators, the new classification system was generated
through the analysis of four geomorphic features in detail.
It proved the high potential of the ConvNet models for coastal
classification based on geomorphological characteristics. The
shape of the geomorphic profile can represent different causes
of coasts such as tidal, marine, and alluvial effects.
However, due to the former systems were based on expert
analysis related to different geological, geomorphological,
hydrological and socio-economic characteristics of coasts,
these studies distinguished additional coasts such as coral reef
coasts and tropical bio-chemical corrosive coasts in islands.
These coast types can be identified as tectonic and karst
coasts if their coast cut-lines are inputted to the ConvNet
models. However, this study does not detect coasts in these
islands because of two reasons, including missing data and
the requirement of geological material analysis. For further
studies using elevation and additional data in islands, coasts
can be classified in detail through material characteristics
after the coastal classification by the ConvNet models.
Other differences between the new coastal classification
system with the previous ones can be found firstly in the
coasts from Vung Tau to Cua Tieu/Cua Dai, Tien Giang
province. All former systems classified them as the coasts of

11834

alluvial flats, whereas the new ones classified them as delta
coasts. According to their geomorphic profiles, the coasts in
this region has a slight slope and a stable elevation shape.
Additionally, the number of alluvial materials in these coasts
was provided at about 5 — 7 tons per year from the both
Dong Nai and Sai Gon rivers, much higher than those from
0,75 and 2.8 tons per year from the Chu and Ma rivers,
respectively [72], [73]. Therefore, the authors identified these
coasts as the delta coasts and combined them with the coasts
along the Me Kong river delta.

Due to the heterogeneous distribution of the abrasive coasts
along the coastline, especially in bed-rock cape, seven parts
containing these coasts were separated from the coast parts
from Lach Truong, Thanh Hoa province to Sa Huynh, Quang
Ngai province (Table 1) (e.g., Mui Rong, Mui Lai, Hai Van,
and Nam Cham capes). Meanwhile, Le et al. (2007) and
Nguyen et al. (2010) mixed these coast parts and called
the abrasive-accumulative coasts (Table 1). Additionally,
the coasts from Sa Huynh, Quang Ngai province to Vung Tau,
Ba Ria-Vung Tau province that were combined in the former
classification systems, whereas it was separated to three parts
from Sa Huynh cape, Quang Ngai province to Sop cape,
Cam (containing 45% of abrasive coasts and about 45% of
accumulative coasts and lagoons); from Sop cape, Khanh Hoa
province to Ke Ga cape, Binh Thuan province (containing
72% of abrasive coasts and 14% of alluvial coasts;) and from
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FIGURE 7. Surfaces of slope points from the continent to the sea (from left to right), perpendicular to the coastline in Vietnam. Each sub-figure contains

10100 points of a respective coast type (linked to Table 2).

Ke Ga cape to Ky Van cape, Vung Tau province (containing
30% of abrasive coasts and 45% of alluvial coasts).

Although eight coast types can be separated based on the
trained ConvNet, some coast types have not been assessed,
such as reef and island coasts. The area of these coast types
in Vietnam is too small, resulting in difficulties in collecting
samples at the national scale. More samples need to collect
at local scales or in other countries to improve data for these
coasts. The development of the trained ConvNet for coastal
classification is not only useful for coasts in Vietnam but
also coasts in different countries and on global scales. Based
on the use of DEM data from ALOS and NOAA satellite,
scientists only need to (1) calculate geomorphic features in
coasts, (2) make cut-lines, (3) prepare input images based on
geomorphic profile graphs and (4) run the ConvNet model.
The result comparison between three models using three
optimizer methods can be a useful method to validate the
interpretation before using natural factors.

B. IMPROVEMENT OF COASTAL CLASSIFICATION

BASED ON OTHER NATURAL FACTORS

About 10 percent of coasts with complex geomorphic profile
graphs are not well classified by the trained ConvNet models.
It shows the critical roles of natural factors (e.g., materials,
tide, and anthropogenic factors) for the coastal classification.
Therefore, some indicators can be used such as material
composition, river, wave, tide, and land covers to classify
correctly these coasts [13]. Depending on the similar char-
acteristics between the profile graphs, one or a few indicators
can be selected in different cases.
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Firstly, the geological structure and petrography compo-
sition should be chosen to distinguish the tectonic and karst
coasts. The karst coasts are mainly generated from limestone
in Vietnam during Cambrian, Permian, and Devonian periods.
Whereas, materials in the tectonic coasts contains mainly of
gritstone, sandstone, and siltstone. The distribution of the
karst mountains is more heterogeneous than the tectonic ones
(Figure 4). The coastline of the tectonic coasts has a general
direction consistent with the direction of the geological struc-
ture [6]. Solution (or corrosion) processes were intensified by
wave activities, resulting in steep slope surfaces and water
levels outside karst mountains. It does not happen in tectonic
mountains. According to these characteristics, the tectonic
and karst coasts can be completely reclassified.

Secondly, the uncertainty was found in the separation pro-
cess between delta coasts and coasts of alluvial flats. In this
case, the indicator should be the amount of alluvium provided
from local rivers. In the delta coasts of Vietnam, the Red
and Mekong rivers have produced annual average alluvium
materials of 64.34 and 65.94 times more than the rivers in the
coasts of alluvial flats. It has resulted in the convex-shaped
coasts towards the sea (Figure 4). The moderate amount
of alluvium materials in alluvial flats is not large enough
to generate a delta. Small dunes are generated along the
coastline of alluvial flats due to wave and tide activities.
Therefore, the alluvial flats have slight concave surfaces from
the coastline to the sea. Regarding the material composition
of these two coasts, the delta coasts are covered by silt and
clay, whereas the coasts of alluvial flats are covered by mud
and fine-grained sand.
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The third error was found due to similarities between
the sandy and accumulative coasts (Figure 4). Sediment
materials are accumulated in both coasts, leading to the
movement of coastline towards the sea. The sandy coasts
contain long young dunes that have been generated since
the Holocene period. Whereas the accumulative coasts have
created since the Pleistocene period. The accumulative coasts
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also have young sandy dunes, but they are narrower than
dunes in the sandy coasts. In the accumulative coasts, rivers
(or dune slacks) have been generated in the transitional
zone between young and old dunes. Therefore, accumula-
tive banks contain both marine and river materials, whereas
material composition in the sandy coasts is only coastal
sediments.
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Lastly, some cut-lines cannot be defined as a lagoon
or accumulative coasts. These undefined cut-lines mainly
located in the transitional zones between clear lagoon or
accumulative coasts. In both coast types, dunes along the
coastline have an average elevation of 20-30m (Figure 4).
Additionally, these cut-lines have rivers and lakes behind
coastal dunes. It is challenging to select a suitable type for
these coasts. It is similar when cut-lines locate in transitional
zones affected by waves and river runoffs. Therefore, a new
coast type named ‘‘transitional coasts” should be added in
this study. However, the geomorphic profile graphs of these
coasts are very complicated, and the number of these cut-lines
is not enough to make a new type. It can be a new issue for
studies in the future.

V. CONCLUSION

Based on the use of a Convolutional Neural Network to
classify coasts in Vietnam, the individual research questions
raised in the introduction section are answered as follows:

« How many types of the coast can be identified in Viet-
nam? According to the former coastal classification sys-
tems, ten main coast types were identified in Vietnam.
However, these coast types can be grouped into eight
types based on the differences between their geomor-
phic characteristics. They include delta, alluvial, accu-
mulative, abrasive, sandy, lagoon, tectonic, and karst
coasts.

« Isit feasible and effective to apply convolutional neu-
ral networks for coastal classification based on geo-
morphic features? Yes, the geomorphic characteristics
of eight coast types were recorded from the trained Con-
vNet model for coastal classification with high accuracy
and low loss function. Three trained models were used to
classify coasts in Vietnam, and it can be used to classify
global coasts in the future.

o How do coast types distribute in Vietnam? FEight
coast types spread heterogeneously along the coastline
of Vietnam, especially in the middle part. The coasts in
the northern and southern parts contain mainly tectonic,
karst, alluvial, and delta coasts. However, 10% of Viet-
namese coasts have not been defined in this study. It is
necessary to have further studies to analyze geomorphic
profile graphs in the transitional areas between defined
coasts.

APPENDIX
See Figs.7, 8, and 9.
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