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ABSTRACT A shortage of soil property parameters is preventing the automatic excavation system from
being used in a digging operation adaptively like an operator. This study proposes a new method of soil
parameter identification and digging resistance prediction that classifies the entire excavation process into
three parts: penetration, cutting, and loading. A fuzzy estimation strategy is introduced into penetration
to estimate the property parameters of the soil depending on the peak value and the average value of
soil resistance. Furthermore, an improved FEE model was used to describe the soil–tool interaction and
predict the soil resistive forces. The traditional way of predicting after identifying, which needs at least two
excavations, can hardly equal this method in flexibility and real-time functionality. The proposed method
can identify soil parameters and predict digging forces on one excavation, which is more adapt to soil
parameter variation. The experimental results show that the proposed method can identify precisely and
predict effectively.

INDEX TERMS Excavation, soil parameter identification, force prediction.

I. INTRODUCTION
The hydraulic excavator, a multi-functional machine that has
been extensively used in earth-moving industries such as
infrastructure construction, mining, and agriculture, is a type
of multi-axis system that depends on operator experience to
realize improved coordinate motion. Efficiency and quality of
excavation processing suffer and equipment aging accelerates
when no skilled operators are present or fatigued driving
occurs, which is a safety problem. However, the training of
a professional operator is time-consuming and costly. Thus,
to address these problems, researchers have proposed the
concept of hydraulic excavator automation [1]–[4].

Most of the literature focuses on the planning and control
of excavator systems [5], [6]. The influence of soil resistance
on excavation work is not considered, which causes difficulty
for the automatic excavation system but is favorable for an
operator in planning the operation trajectory and completing
the excavation according to the soil properties. Modeling the
soil–tool interaction and predicting resistive forces can make
up for this deficiency [7]. The predicted forces can be used
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in digging strategy and excavator simulation systems with
better performance because the former avoids overloading
that may damage the machine [8], while the latter improves
the accuracy of the excavation process model [9]. Depending
on the predicted resistance, we can improve the excavation
strategy, plan the excavation trajectory [10], and design a suit-
able controller for trajectory tracking control [11]. In other
words, the key to promote excavator automation quality lies
in the efficiency of soil property identification and resistance
prediction of the bucket [12].

Two challenges remain in the prediction of soil–tool inter-
action force: one is obtaining the soil parameters and the
other is establishing the soil resistance prediction model.
For the first challenge, Luengo et al. [13] used a combi-
nation of exhaustive search and gradient descent search to
extract soil parameters based on fundamental earthmoving
equation (FEE). Won used the parameter space intersection
method (PSIM) to estimate soil parameters, but improving
the accuracy is difficult [14]. Using the CLUB and Mohr-
Coulomb models, Althoefer et al. used the Newton–Raphson
method to identify soil properties but identified only two
parameters [15]. In the study by Kim, the identification of
soil parameters is expressed as an optimization problem [10].
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This approach often requires a large amount of calculation
and time, which is not conducive to real-time applications.
On the other hand, to accurately predict the excavation resis-
tance, many researchers are working on the improvement
of the soil–tool interaction model. Using the fundamental
earthmoving equation proposed by Reece [16], Mckey estab-
lished a relatively complete model of soil–tool interaction,
which includes soil cohesion, friction, additional force, and
inertial force [17]. Similarly, Zeng et al. established a soil
resistance model based on the principle of soil mechanics and
applied it to predict the resistive force of lunar soil collec-
tion [18]. Furthermore, Zou added the soil inertial force to
Park’s model [19] and used it to predict excavation resistance
and trajectory planning [20]. Among these models, the FEE
model proposed by Reece is considered as a classic model
for soil–tool mechanical analysis and is widely used in soil
resistance prediction [9], [14].

When the bucket penetrates the soil at the beginning of
excavation work, the skilled operator can judge the hard-
ness of the soil depending on the force feedback and adjust
the dig trajectory to avoid excessive resistance and improve
the excavation efficiency. In this study, we imitate manual
operation and propose a novel method for predicting the
excavation resistance. Unlike the traditional prediction-after-
identification method that needs at least two excavations,
the new methods can complete parameter identification and
resistance prediction in a one-time excavation. First, soil
property parameters are identified based on the character-
istics of the force when the bucket penetrates the soil; we
use a fuzzy-rule-based identification method. To the best
of our knowledge, this study represents the first time that
fuzzy methods are applied to soil parameter identification.
Furthermore, an improved FEE model was used to describe
the soil–tool interaction and predict the soil resistive forces.
Compared with the existing methods, the proposed parameter
identification method does not depend on the accurate math-
ematical models and is simple and time-saving to implement,
which is beneficial for practical applications. This method
is also more adaptable for changing soil parameters because
we can perform dynamic soil parameter identification and
prediction of excavation resistance during each excavation
process.

FIGURE 1. Three stages of the excavation process.

II. PROBLEM DESCRIPTION
As shown in Fig. 1, the entire excavation process can be
divided into three stages according to the movement states

of the bucket: penetration, cutting, and loading [21]. During
the penetration phase, the bucket begins to cut into the soil
with a set angle until the end of the bucket drops to a certain
depth. Then, the soil is cut and loaded into the bucket at the
cutting stage. For simplicity, this study only considers that
the bucket moves linearly in the horizontal direction during
cutting. Finally, the joints cooperate to lift the bucket and the
soil in the loading phase.

FIGURE 2. Soil parameter identification and resistance prediction
framework.

The framework of our proposed automatic excavation sys-
tem is shown in Fig. 2. The system consists of four parts: sig-
nal acquisition, fuzzy estimation, resistance prediction, and
control. During penetration, the pressure data are collected
by the oil pressure sensors installed on the cylinders, and
then the soil resistive forces are calculated through dynamics,
which are the inputs of the fuzzy estimation module. Then,
according to the established fuzzy database and fuzzy rules,
the hardness of the soil is judged by the fuzzy method, and
the soil property parameters are estimated. Moreover, the soil
parameters and bucket posture are used as inputs of the
force prediction module. We use the improved FEE model
proposed by Singh [22] to calculate soil resistance during
cutting. Furthermore, the predicted force can be utilized for
trajectory optimization and controller design.

III. FUZZY IDENTIFICATION OF SOIL PARAMETERS
(PENETRATION STAGE)
A. ANALYSIS OF RESISTANCE CHARACTERISTICS
Although penetration and cutting during the excavation are
two different actions, the forces observed during cutting have
the same properties as those in penetration [23]. In addition,
in practice, some scholars have used penetrating devices as
a measure of cutting resistance [21]. As the soil resistance
during penetration is related to the soil properties, those
force characteristics are used to identify soil parameters in
this study. For penetration, many researchers have estab-
lished empirical models based on experimental results with
no versatility [24]. Furthermore, using the cavity expansion
theory, Park established a resistance prediction model when
the bucket penetrated the soil [19]. This model was used for
soil resistance prediction in the study by Bennett et al. [9]
and Zou et al. [20]. However, due to the complexity of this
model and the inability to reverse the soil parameters from
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the force, directly using this model to identify soil parameters
is difficult. As the mechanism model for the penetration is
difficult to establish and the model is complex, the model-
based identification method normally requires a large amount
of calculation and time and is not conducive to practical
application in engineering, which is also the motivation for
us to identify the soil parameters using fuzzy methods. These
fuzzy rules do not depend on the mathematical model or any
complex calculation [25], and the soil property parameters
can be identified quickly.

To verify the relationship between forces during penetra-
tion and the hardness of the soil, as shown in Fig. 3, five
types of soil were loaded into large containers and normalized
penetration actions were completed. These five types of soil
are sand, Clayey sand, Loam, Silt loam, and Heavy clay,
the parameters of which were tested by professional instru-
ments. As shown in Table 1, the hardness and soil property
parameters are positively correlated with each other.

FIGURE 3. Experiment site of soil penetration test.

TABLE 1. Soil parameters.

As the movement postures of the bucket have a great
influence on the soil resistive forces during excavation, this
study ensures that the postures and speed of the bucket are
the same when digging different soil types. The bucket tip
trajectory during the penetration test is shown in Fig. 4, where
depth H = 0.3 (m) and dig angle α = 40◦. During these
experiments, the pressures of the hydraulic cylinder collected
by the pressure sensors are shown in Fig. 5. We only show
the sand digging test data similar to the pressure values of
other experiments. Furthermore, the dynamics of the exca-
vator were used to calculate soil-bucket interaction forces.

The forces of the five groups of the penetration test are
shown in Fig. 6. The experimental results show that the harder
the soil is, the greater the soil resistance becomes. That is,
the penetration resistance can reflect the nature of the soil,
which is why an experienced excavator operator can roughly
judge the hardness of the soil through force feedback at the
beginning of each excavation. Imitating the manual opera-
tion, we propose a novel method for obtaining soil hardness
and estimating soil parameters based on the resistive forces
during the penetration stage. The entire process is shown
in Fig. 7.

B. FUZZY ESTIMATION
The fuzzy estimation model of soil parameters proposed in
this paper is based on a resistance database that consists of
a large number of soil resistance experimental data in the
penetration stage. The specific process is shown in Fig. 8,
where the resistance characteristic is the input of the fuzzy
estimation model, and the soil parameter values are obtained
by defuzzification and transformation.

As shown in Fig. 6, the peak values of the five resistance
curves are positively related to the soil hardness, specifically,
contact force increases as the soil become harder. Therefore,
the fuzzy system takes the maximum value of resistance Fmax
and the average value of resistance Favg as inputs, and the
expressions are as follows:

Favg =
1
N

N∑
n=1

Fs (1)

where Fs is the interaction force between the bucket and the
soil of every sample time, and N is the number of samplings.
According to the experimental database, the peak resistance
varies from 0 to 6kN, and the range of the average forces is
confined to [0,3.2kN] in approximately 3 s.

For convenience,Fmax andFavg are normalized to the range
between zero and one by the linear transformation. The fuzzy
inputs E and R of the system are obtained by multiplying the
quantization factors k1 and k2, respectively, and the physical
domains are changed into the fuzzy sets. Input and output
membership functions use triangular membership functions.
As shown in Fig. 9 (a), (b), input information Fmax and Favg
are defined as five fuzzy sets: very small (VS), small (SL),
medium (ME), relatively large (RL), large (LE). The output
of the fuzzy estimation is soil hardness kd , which indicates the
magnitude of resistance to excavation. As shown in Fig. 9 (c),
it is also defined as five fuzzy sets: very soft (VS), medium
soft (MS), medium (ME), penetration (MH), and very
hard (VH). E is Ai and R is Bj, then f̃ is Gi+j, where E
and R, Ai and Bj denote input variables and input fuzzy sets,
respectively; f̃ and Gi+j denote the estimating force and out-
put fuzzy set, respectively. The details of the rules are shown
in Table 2.

The inference adopts a standardMandani inference engine.
The center of sets method is used to obtain a crisp output [26],
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FIGURE 4. Cylinder length and bucket tip trajectory during penetration a) Cylinder length. b) Bucket tip
trajectory.

FIGURE 5. Cylinder pressures during sand penetration test a) Boom. b) Stick. c) Bucket.

FIGURE 6. Soil resistive forces during penetration.

TABLE 2. Fuzzy reasoning rules.

which is

kd =

∑M
m=1 g

m
[
µAm1 (

Fmax)
∗ µBT

(
Fαg

)]
∑M

m=1

[
µAn1 (

Fmax)
∗ µB2j

(
FαZ

)] (2)

FIGURE 7. Online soil parameter identification process.

where gm is the centroid of the consequent set of themth fired
rule, M denotes the number of fired rules, µAli (Fmax) and
µBlj

(
Favg

)
respectively denote the membership functions of

input Favg and Fmax , and ∗ denotes the t-norm operator.

C. SOIL PARAMETER ACQUISITION
The output of the fuzzymodel, kd , can be obtained in each soil
penetration test. After the five sets of experiments, the ranges
and average values of kd are shown in Table 3. The range of kd
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FIGURE 8. Fuzzy estimation model.

TABLE 3. Hardness of soil.

values approaches 0.2, while kd of the Heavy clay is close to
the maximum value. The values of kd , which are positively
correlated with the soil parameters, can be used to indicate
the soil hardness. To obtain the soil parameters, kd was used
as the independent variable, the known soil parameters (soil
parameter values are shown in Table 1) are regarded as the
dependent variables, and the least-squares method [27] was
used to fit equations (3)-(6).

γ = 4201.9× K 4
d -7540× K

3
d + 4910× K 2

d

− 963.7× Kd + 1652.3 (3)

c = 584.7× K 4
d -1303.7× K

3
d + 997× K 2

d

− 272.4× Kd + 25.1 (4)

δ = 972.8× K 4
d -2152× K

3
d + 1629× K 2

d

− 479.6× Kd + 68.2 (5)

φ = 637.7× K 4
d -1539× K

3
d + 1281× K 2

d

− 408.72× Kd + 67 (6)

IV. MODELING OF SOIL-BUCKET INTERACTION
FORCE CUTTING
A. IMPROVED FEE MODEL
During the cutting phase, the bucket can be simplified into a
baffle that pushes the soil and accumulates it in the bucket.
This process is subject to large soil forces that affect the effi-
ciency and energy consumption of earthmoving. Therefore,
we mainly analyze the soil–tool interaction during the cutting
stage and establish a force prediction model in this study.
In general, the calculation of soil excavation forces becomes
complicated due to the difficulty in obtaining accurate

characteristics of the soil. The selection of soil–tool inter-
action models can seriously affect the accuracy and per-
formance of dig force prediction [28]. For this study, the
improved FEE model proposed by Singh [22] is selected.

The FEE model assumes that the cutting plate moves for-
ward under external force, and the soil is cut along the failure
surface by the cutting plate to form a soil wedge. This process
is similar to the process of cutting the soil by an excavator.
According to the literature [10], the static force analysis of the
soil wedge model under inclined terrain is shown in Fig. 10.
Where α is terrain slope. Lt is the length of the tool, Lf is the
length of the surface along which the wedge slides, Q is the
surcharge (or the displaced soil that rests on the wedge), ϕ is
the soil–soil friction angle, c is the cohesiveness of the soil,
ca is the adhesion between the soil and blade, δ is the soil–tool
friction angle, R is the force of the soil resisting themovement
of the wedge, and F is the force exerted by the tool to cause
failure. The material in the shaded region constitutes all of the
material that has passed over the top of the bucket tip during
the motion of the bucket, and Vs is referred to as the swept
volume.

The model calculates the soil–tool interaction force based
on the following soil parameters:
δ: the angle between the bucket blade and soil force F,
φ: the angle between the failure plane and resistive force R,
β: the angle between the terrain surface and failure plane,
γ : mass density of the soil,
c: soil cohesion parameter.
The soil resistance to the bucket Fsoil can be calculated by

Fsoil = wγ gd2Nγ + wcdNc + Vsγ gNq (7)

6 F =
π

2
− ρ − δ (8)

where

Nγ =
(cotβ − tanα)[cosα + sinα cot(β + φ)]
2[cos(ρ + δ)+ sin(ρ + δ) cot(β + φ)]

Nc =
1+ cotβ cot(β + φ)

cos(ρ + δ)+ sin(ρ + δ) cot(β + φ)

Nq =
cosα + sinα cot(β + φ)

cos(ρ + δ)+ sin(ρ + δ) cot(β + φ)

We note that 0 = (d,w,α, ρ,Vs) is the geometrical parame-
ter of the bucket during the excavation process, corresponding
to the depth of the top of the bucket, the width of the bucket,
slope of the terrain, cutting angle, and swept volume. Once
we know the attitude, shape, and topography of the bucket,
we can calculate 0 = (d,w,α, ρ,Vs), which can be considered
a known parameter in this study.

B. EXCAVATOR DYNAMICS INCLUDING SOIL RESISTANCE
As the soil–tool interaction force cannot be directly mea-
sured, we installed the oil pressure sensors on the hydraulic
cylinder to collect the pressure data during excavation. Then,
the soil resistance could be calculated through the excavator
dynamics; thus, we have to establish a dynamic model of
the excavator robot arm. Without the rotation of the upper
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FIGURE 9. Membership functions of fuzzy methods (a) Fmax (b) Favg (c) kd .

FIGURE 10. Improved FEE model.

FIGURE 11. D-H coordinates of excavator.

platform, the D-H coordinates of the 3-DOF manipulator are
shown in Fig. 11, and the dynamic equation is expressed as

τ =M(θ )θ̈ + C(θ , θ̇ )θ̇ +G(θ )+ JTF (9)

where θ , θ̇ , θ̈ are the 3× 1 vectors of joint position, velocity,
and acceleration; M(θ ) is the 3× 3 inertia matrix; C(θ , θ̇ ) is
the 3 × 1 Coriolis and centripetal matrix; G(θ ) is the 3 × 3
vector of gravity terms; τ = [τ1, τ2, τ3]T is the vector speci-
fying the torques acting on the joint shafts (for the excavation
robot studied in this paper, it can be obtained bymeasuring the
driving force of the hydraulic cylinder); J is a 3× 3 Jacobian

TABLE 4. Soil parameters for model verification test.

FIGURE 12. Cylinder length and bucket tip trajectory during the
verification test (a) cylinder length (b) bucket tip trajectory.

matrix, and F is external load force. Thus, we obtain:

F =

 Fsoil ·cos 6 F
Fsoil ·sin 6 F

Fsoil ·cos 6 F ·L4·sinψ + Fsoil · sin 6 F ·L4·cosψ


As the speed and acceleration of themanipulator during the

excavation process are small, their influences on the dynam-
ics can be neglected, so the soil resistance can be calculated
by the following formula:

JTF = τ −G(θ ) (10)

C. MODEL VERIFICATION
A field test of the digging process has been conducted to ver-
ify the fidelity of the improved FEE model. Soil parameters
for the digging test are presented in Table 4. The experiment
was tested according to a typical excavation trajectory as
mentioned, and the bucket tip trajectory generated in the
experiment is shown in Fig. 12. The dig angle α = 40◦,
the vertical depth H = 0.3 (m), and the horizontal moving
distance L = 0.5(m).

The pressure of each chamber of the hydraulic cylinders
obtained in the experiment is shown in Fig. 13, and the
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FIGURE 13. Cylinder pressures during the verification test (a) Boom. (b) Stick. (c)Bucket.

FIGURE 14. Simulated forces and measured soil forces during the verification test (a) Comparison.
(b) Error.

driving force of the hydraulic cylinder can be calculated by
the following formula:

Fi = P1i · A1i− P2i · A2i, i = boom, stick, bucket (11)

where P1i,P2i is the pressure of the rodless and rod cham-
bers, and A1i,A2i is the effective working area.

The actual soil resistance during the cutting stage is
obtained through the dynamics of the excavator. Furthermore,
the improved FEE model is used to predict the soil–bucket
interaction force during 3cutting. The prediction forces and
measured forces are compared in Fig.14 (a), and Fig.14 (b)
shows the prediction error. Although the comparison results
show discrepancies, using the improved FEE model to sim-
ulate the cutting process of an excavator is still promising
because the simulated soil forces show relatively good agree-
ment with measured forces in the overall trends.

V. EXPERIMENTS
A. EXPERIMENT PLATFORM
The experimental platform is based on the SUNWARD-
SWE17 hydraulic excavator, as shown in Fig. 15. To complete
the experiment conveniently, we place the soil into a box for
the test.

Fig. 8 shows the architecture of the entire experimental
platform where the entire system is divided into a slave part
and a master part, which are connected through the CAN bus

(CANpro II, China). The slave part is based on a 1.7-ton
hydraulic excavator (SUNWARD-SWE17, China). In addi-
tion, sensors and a DSP controller are installed to collect data
during the excavation test.

Draw-wire displacement transducers (WXY33-1212,
China) are installed on the hydraulic cylinders to measure
the piston displacements of boom, stick, and bucket, and
then kinematics are used to obtain the position of the bucket
tip. Besides, six-cylinder pressure sensors (IFM-PT5500,
Germany) are mounted on the joints of the correspond-
ing cylinders to measure the oil pressure of the rod and
rodless chambers. The slave part uses the DSP controller
(SUNWARD-SWMC3, China) for data acquisition, data
transmission, and trajectory tracking control. The controller
can convert the analog signal of the sensors into digital
signals, which are sent to the master part through the CAN
bus. For themaster part, based on theMATLABGUI environ-
ment, the host computer realized data reception, data storage,
display, soil parameter identification, and force prediction.

In order to satisfy the real-time application, a fuzzy con-
trol table is established. Using the table lookup method to
realize fuzzy estimation can save CPU operation time and
improve efficiency. In the experiments, the sampling time of
the system is about 20ms, and the fuzzy estimation method
can complete the identification of soil parameters within
1 or 2 sampling intervals.
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FIGURE 15. Experimental platform.

FIGURE 16. Cylinder pressures during Test 1 (a) boom (b) stick, (c)bucket.

B. TEST 1 (SOIL WITH KNOWN PARAMETERS)
Having established the proposed framework for soil param-
eter identification and soil-bucket interaction forces predic-
tion, we now examine its capabilities in the actual excavation
process. In the third section, five types of soil are used to
establish the fuzzy rule library, which is the basis for identi-
fying the soil parameters. We select sand as the experimental
soil to verify the effectiveness of the proposed methods. The
parameters of the sand are listed in Table 1. The test is
still performed using the typical excavation trajectory shown
in Fig. 4(b) and Fig. 12(b), the dig angle α = 40◦, the vertical
depth H = 0.25 (m), and the horizontal moving distance
L = 0.8(m).
The cylinder pressures measured by the sensors during

the excavation process are shown in Fig. 16. The soil resis-
tive forces are presented in Fig. 17 (a). A clear separation
exists between the different excavation stages in the picture
because the bucket movement has paused between different
stages during the experiment. The force data during pene-
tration is used to identify the soil parameters. Furthermore,
the improved FEE model is used to predict the soil–bucket
interaction force during cutting. The soil parameters obtained

TABLE 5. Real value and an estimation value of soil parameters.

by fuzzy identification are presented in Table 5. The simu-
lated soil forces compared with the measured forces during
cutting are shown in Fig. 17 (b), and the errors are reported
in Fig. 17 (c). The maximum error is 344 N (12.8%), and the
root mean square error (RMSE) is 153N.As the sand is one of
the typical soils in the fuzzy rule library, the parameter iden-
tification results are very close to the actual soil parameters,
and the predicted forces are also in good agreement with the
measured forces during cutting.

C. TEST 2 (SOIL WITH UNKNOWN PARAMETERS)
Aside from testing the soil with known parameters in the soil
box, field experiments were conducted to further verify the
effectiveness of the proposed framework. The experimental
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FIGURE 17. Simulated and measured soil forces during Test 1 (a) Measured force. (b) Comparison. (c) Error.

FIGURE 18. Field experiment site.

site is shown in Fig. 18, where the soil properties are the same.
This condition is different from the soil box experiment in
Test 1, where it is convenient to use instruments to obtain
accurate parameters of the test soil. As the soil properties
suffer after excavation, and obtaining the entire soil bulk for
parameter testing is difficult, the field experiment can only
estimate the parameters according to the soil conditions on
the site [20], which are inaccurate.

TABLE 6. Estimation parameters of tested soil.

The average values of cylinder pressures measured by
sensors in multiple experiments are shown in Fig. 19, and the
average digging forces are shown in Fig. 20(a). The results
of fuzzy identification are reported in Table 6. Although
obtaining the specific parameters of the excavated soil to ana-
lyze the accuracy of the fuzzy identification method during
field experiments is difficult, the comparison between the

predicted forces and measured forces can prove the effec-
tiveness of the entire framework. We are more concerned
about the accuracy of the force prediction during the cut-
ting process rather than the specific parameters of the soil.
The comparison of the simulated soil forces and measured
forces is presented in Fig. 20(b), and the errors are shown
in Fig. 20(c). The maximum error is 313N (22%), and the
RMSE is 166 N.

The results of Tests 1 and 2 show that the fuzzy identifica-
tion and force prediction methods proposed in this paper can
accurately predict the soil-bucket interaction forces during
the cutting stage. Whether the tested soil is in a soil box or a
field site, the predicted forces andmeasured forces had a good
consistency. Compared with the traditional way [13]–[16] of
predicting after identifying which needs at least two exca-
vations, the proposed method has better usability, flexibility,
and real-time performance. In the research of Kim et al. [10],
before predicting resistance, a test excavation was required
to identify soil parameters, while a complete digging process
usually cost more than 10 seconds. Furthermore, at least
two excavations are needed to establish the equations of
soil parameter identification in [8], and only two parameters
can be identified. However, at least four soil parameters are
needed to predict resistance by using the FEE model. It will
undoubtedly take more time to obtain other soil parameters.
Besides, the proposed method can continuously update soil
parameters during each excavation. Therefore, the proposed
method can perform soil parameter identification and predic-
tion of excavation resistance during one excavation, which
brings the advantage that we can predict soil resistive forces
and plan the optimal excavation trajectory according to the
soil properties. In general, under the premise of meeting the
requirements of engineering application accuracy, the pro-
posed method can identify soil parameters in a dynamic
and timely manner, which is beneficial to the application in
engineering.

The accuracy of the resistance prediction result of Test 1 is
significantly better than that of Test 2 because the soil tested
in Experiment 1 is one of the types in the fuzzy rule database,
and the soil parameters of Test 2 are unknown and not in the
database. The proposed methods are limited by the amount
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FIGURE 19. Cylinder pressures during Test 2 (a) Boom. (b) Stick. (c) Bucket.

FIGURE 20. Simulated and measured soil forces during Test 2 (a) Measured force. (b) Comparison. (c) Error.

of soil in the fuzzy rule database. The more categories of
soil we test, the more abundant the soil database, and the
more accurate the results of the force prediction, which points
the way to our next work: finding more categories of soil
for testing and enriching our soil databases. However, due
to the limitations of experimental conditions, obtaining many
different types of soil in a short time is difficult. The finite
element simulation methods [29], [30] for obtaining the soil-
bucket interaction force will be used in our next study.

VI. CONCLUSION
The problem of identifying soil parameters efficiently and
rapidly on earth-moving tasks is located and settled by the
new method established in this study. Real-time estimation
of soil parameters on penetration is built for excavation
resistance prediction and operation trajectory regulation. Five
typical soil types were first prepared after softness, and then a
large number of experiments on penetration were conducted.
The resistance databases were built to take advantage of the
dynamic model, which is to obtain the action between the soil
and bucket. Furthermore, to predict the resistance on pene-
tration, a fuzzy estimation strategy was presented to obtain
soil parameters according to the characteristics of penetrat-
ing resistances. The refined FEE model was also introduced
to describe soil-bucket interaction forces and thus predict
the penetration resistance. The soil box and field experi-
ments are conducted to manifest the validity of the proposed
method.

The main contribution of this paper is to complete parame-
ter identification and resistance prediction in a one-time exca-
vation. Unlike the traditional prediction-after-identification
method that needs at least two excavations, the proposed the-
ory segments one process into three parts. Soil parameters can
be identified through soil force characteristic analysis during
the penetration stage while predicting the soil-bucket inter-
action forces during the cutting stage. The newly designed
fast soil parameter identification and resistance prediction
method will dynamically identify soil parameters and pre-
dict excavation resistance with greater accuracy if the soil
databases are larger. The method is also more applicable to
soil variety and practical application.

High accuracy of parameter identification and the compar-
atively exact value of prediction resistance are achieved when
properties of soil are acquired. For the experiments without
these properties, the error occurs between the prediction resis-
tance and actual resistance because of the limitation of the
soil sample amount. Only five types of typical soil samples
were collected, which was not large enough to predict digging
resistance. Thus, expansion is needed on soil databases to
ensure higher accuracy in resistance prediction. In addition,
a dynamic trajectory plan scheme based on it will be dis-
cussed in our next study.
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