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ABSTRACT Delineating the crucial waves in electrocardiogram records is a paramount work for the
automatic diagnosis system of heart diseases. In this paper, a novel method is described to determine the
boundaries and the peaks of P waves, QRS complexes and T waves by utilizing twelve-lead electrocardio-
gram signals. It avoids the difficulty of setting the thresholds when determining the boundaries of crucial
waves and also the trouble of selection of wavelet basis as the wavelet-based method does. The signals are
first preprocessed by a bandpass filter. After that, the locations of QRS complexes are identified. And based
on the QRS locations, adaptive search windows are set to detect the locations of P waves and T waves. Then,
a method called local distance transform decides the wave boundary in each lead. Finally, the final boundary
determination rule is applied to obtain reliable boundaries. We justify the performance of our algorithm
on LUDB database. When the tolerance window interval is 40ms, the peak accuracies of P wave, QRS
complex and T wave are all beyond 98% and their boundary accuracies are all above 96%. Compared with
the derivative thresholdmethod and the wavelet-basedmethodwhere the tolerancewindow interval is 150ms,
the algorithm shows a sensitivity and a positive predictive value of peaks and boundaries greater than or equal
to 98.43% and 96.44% for the P wave, 99.89% and 99.86% for the QRS complex and 99.21% and 99.85% for
the T wave. For the critera of average error and standard deviation, our method has the performance similar
to those methods. In addition, our algorithm can also handle such several situations where the boundary
determination of crucial waves is tough as high T wave, high noise and baseline wandering well.

INDEX TERMS ECG, twelve-lead signals, local distance transform, detection, delineation.

I. INTRODUCTION
Early detection of cardiac abnormalities becomes extremely
important with the increasing number of people who die of
heart diseases every year. Electrocardiogram (ECG) as an
effective non-invasive tool to record the health state of the
heart presents heart electrical activities in a graphic form.
In the clinical environment, physicians analyze the ECG
records of patients to judge whether they have a benign or
unkind heart state. Yet the analysis process is pretty much
laborious and repetitive. In the past several decades, many
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researchers focused on the automatic diagnosis of cardiovas-
cular diseases to reduce the labor cost of analyzing ECG.

Usually, an automatic ECG diagnosis system includes such
several procedures as preprocessing, feature extraction, fea-
ture selection, feature transform, and disease classification.
In reality, ECG signal is easily contaminated by different
kinds of noises, namely electrode contact noise, powerline
interference, baseline wander, electrode motion artifact, elec-
trocardiography artifact, muscle artifacts, equipment noise
and quantization noise [1]. A preprocessing step must be
practiced to exclude them. Next, the automatic diagnosis
system needs to delineate ECG signal, that is, to identify
the peak and boundary of P wave, QRS complex, and T
wave in each beat of ECG signal, as shown in Fig. 1. As a

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 10707

https://orcid.org/0000-0003-4381-7988
https://orcid.org/0000-0001-8114-269X
https://orcid.org/0000-0003-2903-9411
https://orcid.org/0000-0002-2886-3639
https://orcid.org/0000-0001-7038-3789
https://orcid.org/0000-0002-6959-0569


G. Chen et al.: Crucial Wave Detection and Delineation Method for Twelve-Lead ECG Signals

FIGURE 1. The feature points of normal ECG.

fundamental work, it provides abundant morphological, inter-
val and amplitude features for the following cardiovascular
disease classification and even enhances the interpretabil-
ity of the automatic diagnosis system. Thus this step is
paramount in these procedures.

In literature, many researchers have worked on the delin-
eation of ECG signal. Pan and Tompkins [2] proposed a
distinguished algorithm for real-time QRS complex detection
based on differentiating, squaring and integrating operation,
which can effectively detect the QRS complex locations
and delineate QRS complex boundaries. Laguna et al. [3]
utilized the first derivative and wave morphology to detect
the QRS complex and T wave. Laguna et al. [4] pre-
sented a twelve-lead automatically delineating algorithm,
using derivative threshold and taking all leads into account
for deciding the characteristic wave boundaries. The authors
[5]–[8] detected the characteristic points in ECG signal by
wavelet transform and obtained an acceptable performance.
Afonso et al. [9] designed a multi-rate digital signal pro-
cessing algorithm by using filter banks to detect the QRS
complex. Sun et al. [10] proposed a multiscale morpholog-
ical derivative (MMD) transform-based singularity detector
to detect the fiducial points of P wave, QRS complex, and T
wave. Andreao et al. [11] showed an original hidden Markov
model approach for the purpose of online beat segmentation
and classification of electrocardiograms, which addressed
a series of problems like waveform modeling, multichan-
nel beat segmentation and classification. The authors [12]
used adaptive piecewise constant approximation (APCA) and
piecewise derivative dynamic time warping (PDDTW) to
segment a single lead ECG signal.

In other papers, researchers also employed machine
learning methods on the delineation of ECG signal. The
authors [13], [14] trained a support vector machine (SVM)
classifier for the detection and delineation of P wave and T
wave. Saini et al. [15] used the k-nearest neighbors (KNN)
model for locating P wave and T wave and deciding their
boundaries.

Besides these, researchers also applied a totally adaptive
signal processing technique called empirical mode decompo-
sition (EMD) which is often used for nonlinear, nonstationary
time series signals to extract the fiducial point information
of ECG signal. The method decomposes time series signal
into multiple intrinsic mode functions (IMFs), which meet
the sum of those functions is equal to the original signal. The
authors [16] suppressed baseline wander and high-frequency
noise by removing selective high order IMFs and low order
IMFs and then detected QRS complex following a nonlinear
transformation. It validly increased the detection accuracy of
QRS complex. The authors [17] combined adaptive thresh-
olding technique and EMD algorithm to delineate the QRS
complex. Rezgui and Lachiri [18] verified the effectiveness of
ensemble empirical mode decomposition, a variant of EMD,
in the detection of wave peaks.

Recently, Ning and Selesnick [19] detected QRS complex
after ECG enhancement based on sparse derivatives and
obtained a promising result. Bayasi et al. [20] developed
a novel robust and adaptive P wave and T wave delin-
eation method depending on ECG signal filtering, backward
and forward search windows and adaptive thresholds. The
authors [21] introduced a sequential Bayesian method to
simultaneously detect and delineate P wave and T wave as
well as estimate their waveform on a beat-to-beat basis. The
authors [22] combined particle swarm optimization (PSO)
and extended Kalman filter (EKF) to delineate P wave and
T wave in an ECG signal. Shaik et al. [23] identified
and delineated QRS complex, using chirplet transform. The
authors [24] segmented the ECG signal to extract P wave,
QRS complex and T wave features and track subtle vari-
ations of those waves using adaptive Hermite functions.
Lee et al. [25] utilized polygonal approximation to represent
ECG signal as few vertices with a curvature-based vertex
selection technique and consequently boosted the accuracy
of fiducial point detection.

Most algorithms mentioned above can achieve a desirable
result when low noise exist but once the noise becomes too
loud, their performance, especially the performance of wave
boundary delineation will drop. Meanwhile, most of them
were developed in standard databases including MIT-BIH
Arrhythmia Database [26], European ST-T Database [27],
QT Database [28] and CSE Database [29] which hold few
lead ECG signals and lack exhaustive annotations except
CSE database. Therefore, it is necessary to develop a robust
delineation algorithm that can tolerate some certain noise in a
database with twelve-lead signals and thorough annotations.
LUDB [30] is such a database. It contains 200 records from
200 individuals and all those records are twelve-lead signals
whose duration is 10 seconds. The signals are digitized at
500 samples per second and have intensive annotation about
the boundaries and peaks of P wave, QRS complex, and T
wave decided by cardiologists.

In this paper, we propose a new algorithm based the
LUDB database for delineating characteristic points of ECG
waves by considering twelve-lead ECG signals. It avoids

10708 VOLUME 8, 2020



G. Chen et al.: Crucial Wave Detection and Delineation Method for Twelve-Lead ECG Signals

FIGURE 2. The process of the characteristic points detection of
twelve-lead ECG signals.

the difficulty of setting the thresholds when determining
the boundaries of crucial waves as the derivative threshold
method does and also eliminates the trouble of selection of
wavelet basis as the wavelet-based method does. This paper
is organized as follows. In section II, the algorithm overview
first is described and then the details of each procedures are
introduced. In section III, the algorithm is evaluated on the
LUDB database and is compared with other works. Finally,
section IV summarizes our work.

II. METHOD
The overall process about how to detect characteristic points
of twelve-lead ECG signals is presented as Fig. 2. First,
we down-sample these signals to 200 samples per second and
then filter them by a bandpass filter to improve the quality of
the signals. Then, we locate the QRS range and recognize the
feature points of QRS complex that include the peaks of Q
wave, R wave and S wave. Among them, R wave is the most
important and stable wave. Its peak is considered as the peak
of QRS complex. P wave is detected in an adaptive search
window signal before QRS and T wave is recognized by an
adaptive window signal behind QRS. Finally, the boundaries
of these crucial waves are determined.

In the method, four modules (the shaded areas) are used
to improve its robustness. Among them, the filtering sig-
nal module and the preprocessing module improve the sig-
nal quality. The rejecting atrial fibrillation module discards
the atrial fibrillation signals. Additionally, to ensure the
reliability of the method further, the twelve-lead boundary
annotations are considered to eliminate the false boundary
annotations in the final boundary determinationmodule. Ulti-
mately, this proposed method can avoid the difficulty of
setting the thresholds when deciding the wave boundaries as
the derivative threshold method does and also eliminate the
inconvenience of selection of wavelet basis as the wavelet-
based method does. The algorithm is described in detail
below.

FIGURE 3. Down-sampling and filtering signal. Signal in (a) has high
noise and signal in (b) has low noise. Subplots below them display the
signals which are down-sampled and filtered.

A. PREPROCESSING
Signal preprocessing is an essential step due to the existence
of noise in ECG signal. In LUDB database, the sampling
frequency of ECG signal is 500 Hz per second. In this paper,
the signal was first down-sampled to 200 samples per second
to reduce the processing time and suppress noise to a certain
degree. Further, the down-sampled signal passed through the
Butterworth bandpass filter which has a frequency response
as flat as possible in the given passband. QRS complex has
a primary spectrum bandwidth of 0Hz to 38Hz and P wave
and T wave have a primary spectrum bandwidth less than
20Hz [31].We set the bandwidth of our Butterworth bandpass
filter to [0.05, 30] Hz. Fig. 3 shows the result of the two
procedures. We can find that for the high noisy signal, most
of the noise is eliminated and for low noisy ECG signal,
the waveform of each primary wave still remains undistorted.

B. QRS LOCATION
1) LOCATING QRS RANGE
In locating QRS complexes, PAN’s QRS detection algo-
rithm [2] was chosen which differentiates ECG signal with
formula 1, squares the differentiated signal with formula 2
and then integrates the squared signal with formula 3 by a
moving window to decide the ranges of QRS complexes in
ECG signal. There Diff (x) means the differentiation value
of location x in the ECG signal, Square(x) means the square
value of location x in the differentiated signal and Inter means
the integral value of location x in the squared signal. T is the
sampling period and K means the number of signal points
during the moving window of the point x. The x−i and xi
presents the value of the next i point in x left side and right
side respectively.

Diff (x) =
2 ∗ x1 − 2 ∗ x−1 + x2 − x−2

8T
(1)

Square(x) = x ∗ x (2)

Inter(x) =
x−(k−1) + . . .+ x−1 + x

k
(3)

In the method, we set the moving window size to 90ms.
According to the QRS detection algorithm, the rising segment
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of integrated signal marks the ranges of QRS complexes in
ECG signal. Thus, the integrated signals are differentiated
again to get the rising segment ranges for twelve-lead signals
by differentiation formula 1.

To improve the reliability of detected QRS complexes,
instead of using search back method to preclude false QRS
complex ranges which actually are T waves as described
in PAN’s algorithm, an alternative algorithm is proposed to
ensure the reliability of twelve-lead QRS ranges. We agree
that qrsi,j represents the jth QRS range in lead i and qrsk
represents the all QRS ranges in lead k . The whole algo-
rithm can be described as Algorithm 1. It first takes QRS
ranges of other leads into account and judges whether a given
QRS range qrsi,j intersects a certain number of other ranges
intersection_number in other leads. There, ‘‘intersect’’ means
that two QRS ranges overlapped with each other in the time
region. If the intersection_number is less than the minimal
intersection number threshold min_intersection_number ,
the qrsi,j is considered as a wrong range and it is excluded.
As a rule, the lager the value of min_intersection_number is,
the more reliable the detected QRS ranges are. In this paper,
the value ofmin_intersection_number is set to eight. In clini-
cal environment, because the distance between adjacent QRS
waves has amiminal valuemin_distance (usually greater than
300ms), the algorithm also calculates the distance between
qrsi,j and its immediate prior QRS range qrsi,j−1 in the same
lead to further eliminate false QRS complex ranges. In this
paper, if the distance between them is less than 300ms,
the range is ignored. Finally, a reliable qrs range should meet
these two conditions at the same time.

An example of QRS detection in the LUDB database is
showed as Fig. 4. In the figure, consecutive two bold lines
represent a preliminary QRS range. The intersection_number
of the third QRS range in III is four which intersects with the
third QRS ranges in aVL, aVF, V2, and V3. It is an error QRS
range. Besides this, the distance between the third range in III
and its prior QRS range is less than 300ms. According to this,
it also should be disregarded. So do the third range in aVL,
aVF, V2, and V3.

2) LOCATING R, Q, AND S WAVE
In the following sections, ECGDer stands for the derivative
signal of a wave, a beat, a lead or even twelve-lead signals.
Its calculation formula is the same as formula 1, and the
specific meaning depends on the context. The normal QRS
complex consists of Q wave, R wave and S wave. R wave is
the most stable wave among them. In the physic field, R wave
is defined as the first upward wave in QRS complex except
for aVR lead in which QRS is inverted. Thus we detect it
first. In ECGDer , the peak which has the maximal absolute
derivative valueMADer of QRS usually identifies one of the
branches of R wave, as the Fig. 5 shows. If the peak value is
positive, it locates the left branch and if it is negative, it locates
the right branch.

An abnormal situation, as the Fig. 6 shows, is that when S
wave is deep and large, and R wave is small due to the impact

Algorithm 1 Locating Reliable QRS Ranges
1: condi1_flag = false
2: condi2_flag = false
3: intersection_number = 0

4: for each k ∈ [1, 12] do
5: if (k 6= i) and (Intersect(qrsi,j, qrsk ) == true) then
6: intersection_number++
7: end if
8: end for

9: if intersection_number ≥ min_intersection_number
then

10: condi1_flag = true
11: end if

12: if (qrsi,j − qrsi,j−1) ≥ min_distance then
13: condi2_flag = true
14: end if

15: if (condi1_flag == true) and (condi2_flag == true)
then

16: qrsi,j is accepted.
17: else
18: qrsi,j is removed.
19: end if

FIGURE 4. An example of QRS detection in the LUDB database.

of heart disease, MADer might mark the right branch of S.
If this case happens, usingMADer to identify the location of
Rwavewill mistakenlymark the right branch of Swave as the
right branch of R wave. However, a fact is that though in this
situationMADer marks the location of S, the left branch and
right branch of R still has an absolute derivative value close
to MADer . Taking these factors into account, we adopted a
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FIGURE 5. The filtered raw signal and its differentiated signal of a heat
beat. MADer represents the peak where the absolute value is maximum.

FIGURE 6. Deep and large S wave and small R wave. MADer represents
the peak where the absolute value is maximum.

two-threshold technique to find the correct branch location
of R wave as follows.

The two-threshold technique searches for the first peak
FPeak forward in ECGDer where its absolute value is larger
than a threshold Hhigh. If not finding, it uses a lower thresh-
old Hlow to search again. If found, FPeak is considered as
identifying one of the branches of R. The formulas of the two
thresholds are as follows. The larger the values of ε1 and ε2 is,
the more likely the detected peak FPeak marks R wave. Thus,
we set the values of ε1 and ε2 to 0.8 and 0.8 respectively.

Hhigh = ε1 ∗MADer (4)

Hlow = ε2 ∗ Hhigh (5)

FIGURE 7. The flow chart of searching R peak.

In the following part of this section, Pb and Pa respec-
tively denote the nearest peak before FPeak and the nearest
peak after FPeak in ECGDer signal. Considering QRS is
inverted in aVR and FPeak might recognize the right or left
branch of R, we detect the position of R peak in four cases:
first, if lead is aVR and the value of FPeak is greater than
zero, we search zero-crossing point between Pb and FPeak;
second, if lead is aVR and the value of FPeak is less than
zero, we search zero-crossing point between FPeak and Pa;
third, if lead is not aVR and the value of FPeak is greater
than zero, we search zero-crossing point between FPeak and
Pa; fourth, if lead is not aVR and the value of FPeak is less
than zero, we search peak between Pb and FPeak . Finally,
the location of the zero-crossing point in ECGDer signal
is the location of R peak in raw signal. The whole process
is described in the Fig. 7. In addition, to further ensure the
correct recognition of R peaks, the locations of R peaks in the
same beat in other leads were referred. Since the twelve-lead
signals are recorded simultaneously, there should not be too
much difference in the locations of the R peaks in the same
beat. The most centralized peak locations were regarded as
the correct locations. The selection process is described in
detail in section II-D.2.

In QRS complex, Q wave is in front of R wave and S wave
is behind R wave. Therefore, to detect the location of Q wave
and S wave, we searched for the nearest peak forward and
backward from the locations of R peaks in an interval of 80ms
in the filtered signal. If not finding a peak in the time interval,
we considered they are nonexistent.

C. P WAVE AND T WAVE LOCATION
The beat locations are determined by the mean value of R
peak locations of the same beat in twelve-lead signals. Based
on the beat locations, the wave signal window (Pwave and
Twave) and the adaptive search window (Psearch and Tsearch)
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are set for each P wave and T wave in each beat. Because
the signal among wave window is used to decide the wave
boundary and the signal among search window is used to
decide the wave location, the range of wave window is larger
than the range of search window.

When the distance between two beats is greater than
700ms, the corresponding Pwave and T do not locate far from
the QRS complex with the increase of the distance. So the
range of wave window and the range of search window are
determined by constant empirical values. When the distance
between two beats is less than 700ms, it means that the
distance between P wave and QRS complex and the distance
between T wave and QRS complex will be flexible. So the
range of wave window and the range of search window are
determined by adaptive empirical values.

If bn denotes the location at the n beat and RRT denotes the
time interval between two neighbouring beats, the two win-
dow ranges of each wave are described as follows. It should
be noted that Psearch and Tsearch represent the offset range
relative to bn.

Pwave =

{
(bn − 400ms, bn) RRT > 700ms
(bn − 0.45 ∗ RRT , bn) otherwise

(6)

Psearch =

{
(−350ms,−80ms) RRT > 700ms
(−0.5 ∗ RRT ,−60ms) otherwise

(7)

Twave =

{
(bn, bn + 550ms) RRT > 700ms
(bn, bn + 0.75 ∗ RRT ) otherwise

(8)

Tsearch =

{
(130ms, 490ms) RRT > 700ms
(100ms, 0.7 ∗ RRT ) otherwise

(9)

1) PREPROCESSING AND REJECTING
ATRIAL FIBRILLATION
P wave and T wave have lower primary spectrum than
QRS complex and are easily contaminated by high-frequency
noise. We filtered them again by the low-pass Butterworth
filter with a cutoff frequency of 20 Hz and four order to
further smooth them.

When atrial fibrillation occurs, it makes no sense to recog-
nize P wave and T wave. To refuse atrial fibrillation signal,
the search window signals of P wave and T wave first were
normalized to the zero-one range. It is understandable that
when awave exists a rising signal segment and a falling signal
segment are bound to occur in the normalized signal and
their amplitude ranges is enough large. Thus, the normalized
signals were divided into a few monotone signal segments.
Our algorithm then judged whether these signal segments
satisfy the following two conditions: first, two contiguous sig-
nal segments—one is ascending and another is descending—
exist; second, the range sizes of the amplitude of the two
signal segments are greater than a threshold λ. If the nor-
malized signal violated the two conditions, it was rejected.
Tuning is the prevailing technique in machine learning which
chooses a set of optimal hyperparameters for a learning algo-
rithm. The value of λ is set to 0.4 after applying it.

FIGURE 8. The location of P wave and T wave.

2) LOCATING WAVE
In the ECGDer signal of search window signal, the zero-
crossing point was regarded as the location of the crucial
wave.When noise is too loud, the number of the zero-crossing
point may be more than one: one represents the crucial wave
location and the rest represents the noise wave location.
For different zero-crossing point, the nearest front peak and
nearest back peak are different. InECGDer , the zero-crossing
point which represents the location of the crucial wave has
the maximal sum of absolute value of nearest front peak and
nearest back peak, as the Fig. 8 shows. Thus, we regarded
such zero-crossing point as the correct wave location. Like
the R wave, to further ensure correct recognition of the wave
locations, among the twelve wave locations of the same beat
for a given P wave or T wave, the most centralized wave
locations were regarded as the correct locations. The selection
process is described in detail in section II-D.2.

D. WAVE BOUNARY
1) SINGLE LEAD WAVEFORM BOUNDARY LOCATION
Local distance transform [32] refers to select an auxiliary
segment containing the feature point extracted on the signal
curve, then to calculate the distance between each point on the
auxiliary segment and the segment line which is decided by
linking the start and the end point of the auxiliary segment,
and finally to identify the point of maximal distance as the
signal curve feature point, namely the onset and the end of
signal curve. It is acceptable to consider this point as the
boundary of a wave as the point is the maximum curvature
point. In this method, the quality of the auxiliary segment
selection is directly related to the quality of the waveform
boundary recognition. We deemed that an effective auxil-
iary segment should hold two conditions: first, at most one
peak exists in the signal curve of auxiliary segment; second,
the auxiliary segment should be long enough to hold the
feature point needed.
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FIGURE 9. An example of using local distance transform to find the onset
and end boundaries of a wave.

Fig. 9 shows an example of local distance transform for
the onset and the end of a wave. Other wave boundaries, like
QRS boundaries, are the same with this. For the onset of the
wave, the auxiliary segment between the start point and the
end point is effective because it not only contains the onset
of the wave but also no more than one peak exists. The start
point is the nearest derivative peak location to the wave peak
location. And the end point is selected by the endpoint finding
algorithm described in the later part of this subsection.We can
see that B1 is the farthest point on the auxiliary segment
from the segment line. Visually, it is reasonable to regard
it as the onset boundary of the wave. For the end of the
wave, the signal curve of the auxiliary segment has a peak.
Similarly, B2 has also the farthest distance from the auxiliary
segment line and is the reasonable end boundary of this wave.
In this paper, different start points were chosen for different
boundary types in different waves as follows.
• QRS onset: if Q wave exists, we search for the nearest
peak backward from the location of Q wave in ECGDer
signal and consider the peak location as the start point
of the auxiliary segment in filtered signal; if Q wave is
absent, we replace it with the location of R wave and do
the same procedure.

• QRS end: if S wave exists, we search for the nearest peak
forward from the location of S wave in ECGDer signal
and consider its location as the start point of the auxiliary
segment in filtered signal; if S wave is lost, we replace
it with the location R wave and do the same procedure.

• T onset and end: we search for nearest peaks forward and
backward respectively from the location of T wave in
ECGDer signal and consider them as the start points of
the auxiliary segment of onset and end in second-filtered
wave signal.

• P onset and end: it is same with T wave.

A key idea to determine the endpoint of an effective aux-
iliary segment is to choose the next point to the endpoint
of a monotonic interval which has the same monotony with
start and it starts at start as the first candidate endpoint
c_end and then assess whether the corresponding segment
line intersects with the signal curve. If so, c_end should be
updated to the nearest intersection point to start . Otherwise,

c_end recurrently is updated to the next point—for the onset
wave, searching backward and for the end of wave, searching
forward—and the new segment line is assessed until the
distance between c_end and start is greater than the search
limit. The final candidate endpoint c_end is the reasonable
endpoint. The process is described in the Algorithm 2.

Algorithm 2 Finding Reasonable Endpoint of Auxiliary
Segment
1: c_end = the next point to the endpoint of the monotonic

interval.

2: intersect_flag = Intersect(start, c_end, signal) {The
function of Intersect is to determine whether the line
determined by start and c_end intersects with signal
curve.}

3: if intersect_flag == true then
4: c_end = the nearest intersection point to the start

point.
5: end if

6: while the distance between c_end and start is less than
the search limit do

7: intersect_flag = Intersect(start, c_end, signal)
8: if intersect_flag == false then
9: c_end = the next point to the prior c_end point.
10: else
11: break
12: end if
13: end while

14: the final c_end is the reasonable endpoint

In ECG, the duration of a normal P wave is less than
110ms; the duration of a normal QRS complex is among
60ms to 100ms; the duration of a normal T wave is between
100ms and 250ms. Taking these into account, we set different
search limits of endpoints for different wave boundaries:
for QRS complex boundary, when Q wave or S wave exist,
the maximal time interval between start and c_end is 50ms,
and when they are absent, the maximal time interval between
start and c_end is 90ms; for P wave and T wave boundary,
the maximal time interval between start and c_end is 100ms.
After an effective auxiliary segment is chosen, the point on
the auxiliary segment with the longest distance from the
auxiliary segment line is recognized as the boundary point.

2) FINAL BOUNDARY DETERMINATION
Multiple annotations for the same type of wave boundary
(p onset, p end, QRS onset, QRS end, T onset or T end)
in a beat are obtained as each lead has its own anno-
tation. To eliminate false wave boundaries, we select the
most centralized annotations in a given window size as
the correct annotation set. For the final onset of a type of
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FIGURE 10. The final boundary determination rule for multi-leads.

wave in a beat, we choose the minimal annotation location
value in the correct annotation set as the final onset. For
the final end, reversely, we choose the maximal annotation
location value.

Fig. 10 shows the decision process of final annotation of
twelve-lead signals in a beat. We sort the twelve annotations
in descending location order to determine the final onset and
in ascending location order to determine the final end. Then
a moving window divide the annotation array into several
groups. As subplot (a) describes, the centralized window
first includes the annotations of aVR and V6, because of
the distance between the leftmost annotation, aVR, and the
nearest unincluded annotation, V3, exceeding the window
size. Then, it includes the annotations of V3, aVF, II, III, V1,
I, V2, due to the distance between V3 and V5 exceeding the
window size. The final group is V5, V4 and aVL.

We choose the group with the largest number of anno-
tations as the correct group. In this figure, it is group 2.
For onset, the annotation with the minimal location value in
the correct group is the final onset of a beat, namely V3.
For end, we choose the maximal time location, namely V2.
To decide the final boundaries, we set the window size to
50ms for all kinds of wave boundaries. In section II-B.2 and
section II-C, we detect the locations of R wave, P wave and T
wave. To enhance the reliability of wave locations, we sort the
multiple locations in a beat in ascending location order and
also set the centralized window size to 50ms. The locations
in the correct annotation set are then used to decide the waven
boundaries in each lead.

III. RESULTS
We verified the availability of our algorithm on the LUDB
database which records twelve-lead signals and has thorough
annotations (including the peaks and boundaries of P waves
in 1406 beats, QRS complexes in 1832 beats, and T waves
in 1644 beat) of 200 individuals with various different heart
diseases. The signal is digitized at 500 samples per second
and the duration is 10 seconds. Considering twelve annota-
tions exist for a type of wave boundary in a beat, for the
purpose of the convenience of comparison, we calculated the

FIGURE 11. The accuracy of feature points of crucial waves. The dark
gray, black and light gray bars indicate the performance result of onset,
peak and end of waves respectively.

final boundary annotations for each detected beat of each
record by the final boundary determination rule mentioned in
section II-D.2. For the wave peak annotations (P peak, QRS
complex peak and T peak), we chose the mean value of the
multi detected wave peaks of the same wave type in a beat as
the final peak annotations.

A. WAVE BOUNDARY AND PEAK PERFORMANCE
EVALUATION
We set 40ms as a tolerance window interval for the correction
detection of feature points since the accuracy of physicians
analyzing ECG signal is 40ms. If the time difference between
the algorithm annotation and its corresponding manual anno-
tation is not beyond the tolerance, we deemed the algorithm
annotation is correct. Otherwise, the algorithm annotation
is wrong. Thus, the accuracy metrics can be formulated as
Accuracy = correct_anns/total_anns where correct_anns
represents the correct annotations determined by the algo-
rithm and total_anns represents the total annotations that
has been marked manually in the database. Fig. 11 show the
accuracy result of feature points of crucial waves.

From Fig. 11, our algorithm can reliably distinguish the
peaks of P wave, T wave and especially QRS complex which
can determine the R-R interval and thus indicate arrhythmia
in the heart. The boundary accuracy of waves are also accept-
able for physicians. Good detection of T wave end can help
physicians determine whether Q-T interval changes, which
is important for predicting malignant ventricular arrhythmia
and sudden cardiac death.

B. ROBUSTNESS VERIFICATION FOR WAVE
BOUNDARY DETERMINATION
To verify the Robustness of the method, in Fig. 12, we show
the delineation performance for high T signal, high noise
signal, and baseline drift signal in which the boundary deter-
mination of crucial waves is tough. In subplot (a), although
the amplitudes of T waves are greater than QRS complexes,
our algorithm can still distinguish them very well for the suc-
cessful elimination of false QRS locations in section II-B.1.
Subplot (b) is a noisy signal, but it has an insignificant impact
on the correct identification of wave boundaries. In subplot
(c), baseline drift noise affects the quality of the signal, which
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TABLE 1. The comparison of delineation quality between our work and other algorithms in LUDB.Short horizontal lines denote missing metrics values.

FIGURE 12. Three cases where wave boundaries are difficult to
determine. (a) High T wave occurs; (b) High noise exists; (c) Baseline
drift appears. The horizontal line below signal curve in each subgraph
represents the waveform area manually labeled. In the signal curve,
a good detection result—QRS complex (dark gray signal curve), P and T
wave (pale gray signal curve)—can be observed.

makes it difficult to decide the boundaries of ECG waves by
the method of derivative threshold. However, our algorithm
can also handle it.

C. PERFORMANCE COMPARISON WITH OTHER WORKS
Kalyakulina et al. [33] proposed a delineation algorithm
based on wavelet transform and evaluated its performance
with a tolerance window interval of 150ms. If a feature point
is detected correctly, the result is counted as true positive TP
and the mismatch between automated and manual annotation
is calculated as an error. If only automated annotation exists,

a false positive result FP is counted. Reversely, when only
manual annotation exists, a false negative FN result occurs.
The authors identified the quality of the algorithm by four
metrics: average error m, standard deviation σ , sensitivity
Se (%) = TP/ (TP+ FN ) and positive predictive value
PPV (%) = TP/ (TP+ FP). We adopted the same metrics
to compare our work with it.

In addition, a classical method to determine the waveform
boundary is to use the derivative threshold [2]–[4]. This
method determines a suitable wave boundary by judging
whether the wave signal curve intersects with a derivative
threshold. If so, the corresponding intersection point is con-
sidered as the appropriate wave boundary. But in this method,
how to choose a suitable derivative threshold is a intractable
problem. Traditionally, the derivative threshold can be adap-
tively determined by dividing the derivative extremum on the
left and right sides of the wave by a given constant value.
To compare our method with it, we keep the other exper-
imental conditions unchanged and only use the derivative
threshold method to determine the boundary. When Q wave
or S wave does not exist, we divide the derivative extremum
of the left and right branch of R wave by a given constant
value to determine the boundary of QRS complex. We set this
constant value to 6. When Q wave and S wave exist, we use
them to determine the boundary of QRS complex and set this
value to 4. The boundary of P wave and T wave is determined
in the same way and the constant value is also 4.

It should be noted that we calculate the error by the
minimal difference between the final annotation and its
corresponding twelve manual annotations in a beat for a
given wave annotation type. The comparison result is shown
in Table 1. The experimental data for wavelet-based method
are derived from the work of Kalyakulina et al. [32].

We can find that the feature point recognition of P wave,
QRS complex, and T wave has a sensitivity value greater than
98% and has a positive predictive value greater than 96%. The
standard values for P wave boundary and T wave end do not
exceed the limits set by CSE party [34] and the standard value
of QRS end is close to its limit. In addition, our algorithm
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has a better performance than derivative threshold method
and does not need to set parameters when determining the
boundaries of crucial waves. At the same time, our algorithm
almost has the same performance as the wavelet-based algo-
rithm when decide the locations of crucial waves and a better
result when determine the onset of P wave and the end of T
wave. These indicate the availability of our method.

IV. CONCLUSION
In this paper, an algorithm for delineating P wave, QRS
complex, and T wave is developed by utilizing twelve-lead
signals. QRS detector identifies the locations of QRS com-
plexes in each lead, and then false QRS locations are removed
by taking other leads into account. Based on this, the range
of wave search window is decided to detect the location of P
wave and T wave. In each lead, the local distance transform
method finds the reasonable boundaries of the crucial waves.
Considering that the annotations of a specific boundary types
in one lead should not differ significantly from the same
annotations in other leads, a final boundary decision rule is
applied to reject the erroneous annotations caused by noise.
Its performance has been verified with the LUDB database.

The results suggest that the peak accuracies of P wave,
QRS complex and T wave all are above 98%, and the bound-
ary accuracy of these waves is also above 96%. Our algo-
rithm also is tested on several particular situations where the
boundary recognition of crucial waves are tough such as high
Twave, high noisy signal and baseline wandering. The results
prove that our algorithm can handle these situations verywell.
In comparing with other works, our method does not need
to set thresholds when determining the boundaries of crucial
waves as the derivative threshold method does, which reduces
the parameters of the algorithm and eliminates the selection
of wavelet basis to determinewave boundaries as the wavelet-
based method does, but it can still achieve the performance
similar to those methods.

Accordingly, it was concluded that the developed algo-
rithm has a desirable capability in delineating the peaks and
boundaries of the crucial wave. The result can further be uti-
lized to get the morphological information and time interval
information of crucial waves which will improve the perfor-
mance of the automatic diagnosis system of cardiovascular
diseases.
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