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ABSTRACT Phenology has become a field of growing importance due to the increasingly apparent
impacts of climate change. However, the time-consuming, subjective and tedious nature of traditional human
field observations have hindered the development of large-scale phenology networks. Such networks are
rare and rely on time-lapse cameras and simplistic color indexes to monitor phenology. To automatize
rapid, detailed and repeatable analyzes, we propose an Artificial Intelligence (AI) framework based on
machine learning and computer vision techniques. Our approach extracts multiple ecologically-relevant
indicators from time-lapse digital photography datasets. The proposed framework consists of three main
components: (i) a random forest model to automatically select relevant images based on color information;
(ii) a convolutional neural network (CNN) to identify and localize open tree buds; and (iii) a density-based
spatial clustering algorithm to cluster open bud detections across the time-series. We tested this framework
on a dataset including thousands of black spruce and balsam fir tree images captured using our phenolog-
ical camera network. The performed experiments showed the efficiency of the proposed approach under
challenging perturbation factors, such as significant image noise. Our framework is exceedingly faster and
more accurate than human analysts, reducing the time-series processing time from multiple days to under
an hour. The proposed methodology is particularly appropriate for large-scale and long-term analyzes of
ecological imagery datasets. Our work demonstrates that the use of computer vision and machine learning
methods represents a promising direction for the implementation of national, continental, or even global
plant phenology networks.

INDEX TERMS Balsam fir, black spruce, computer vision, convolutional neural network, deep learning,
forest ecology, object detection, tree budburst.

I. INTRODUCTION
Recent impacts of climate change on plant and animal life
cycle events (i.e. phenology), along with their potential cas-
cading effects on ecosystem functioning, have cemented this
field of study as a crucial component of global change sci-
ence [1]. Plant phenological shifts have recently been found
to influence the water cycle through impacts on evapotran-
spiration [2], whereas the observed alteration of the timing of
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phenological events is likely to lead to the desynchronization
of plant-animal interactions [3]. This decoupling of trophic
interactions through changes in species phenology has the
potential to induce long-lasting effects on biodiversity.

Phenological studies have been traditionally undertaken
with ground-based measurements. These measurements are
very useful, but conventional sampling methodologies are
exceedingly slow. For instance, in [4], the timing of budburst
was monitored by returning to the same sites every 2-3 days
and manually examining the buds on up to 50 branches
per tree. Such traditional approaches render large-scale
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studies prohibitively time-consuming and expensive. An alter-
native is the development of large-scale phenology networks
using inexpensive time-lapse cameras (e.g. PhenoCam in the
US [5], Phenological Eyes Network in Japan [6]).

The implementation of such large-scale phenology net-
works results in an interesting paradigm shift: viability no
longer depends on data acquisition, which is relatively cheap.
Instead, project feasibility is greatly dependent on the devel-
opment of tools capable of efficiently analyzing thousands
of images and terabytes of data. These analytical tools are
generally based on color analysis of red, green and blue bands
(e.g. [5], [7]). They are thus capable of measuring indices
such as landscape greening but are currently unable to extract
more sophisticated phenological data, such as the number
of buds open in a given tree, which are directly linked to
individual tree growth and herbivore food availability. Recent
advances in computer vision and the democratization of neu-
ral networkmodels have given researchers the tools necessary
to exploit the analytical potential of these large-scale phenol-
ogy datasets.

Convolutional neural networks (CNNs) have revolution-
ized the field of computer vision. CNNs now perform nearly
as well as humans in object classification tasks (i.e. iden-
tifying and classifying objects in an image [8]) and are
performing remarkably well in spatially assigning objects
(i.e. where are objects located in an image [9]). However, they
remain vastly underutilized in ecological studies. In animal
ecology, a few researchers have recently started using deep
learning methods to process camera-trap data [10], while [11]
proposed a methodology to automatically detect turtles in
drone imagery using CNNs. In plant ecology, existing neural
network applications are scarce and include the identification
of multiple plant species from images of collected leaves in
white backgrounds [12], the mapping of forest cover type
and structure from aerial and satellite imagery [13], and the
development of a CNN-based decision support system to help
forest managers estimate the number of planting microsites
on planting blocks [14].

In phenology, studies leveraging the power of CNNs and
digital repeat photography are even rarer. In a literature
review on this subject, only two studies were found: [15],
which fine-tuned a CNN to classify phenological states of
agricultural plants, and [16], which employed a CNN to
identify the occurrence of snow in thousands of near-surface
images from the PhenoCam network. Both of these studies
relied only on fine-tuning CNNs capable of identifying the
presence of a particular object in an image. Considering that
the great potential of object detectors remains unexplored
in phenology studies, there is a compelling need to develop
methodologies capable of automating the analysis of large
datasets for large-scale longitudinal studies.

In this work, we developed a 3-step artificial intel-
ligence framework capable of exploiting the synergies
between cutting-edge, CNN-based object detectors, tra-
ditional machine learning algorithms and longitudinally
repeated digital photography to extract more detailed data

from past and future ground and near-surface phenology
imagery datasets. First, our framework automatizes image
selectionwith amachine learning algorithm in order to reduce
the amount of noise inherently present in time-lapse datasets.
Second, it identifies the presence and location of multiple
open buds in each image with a CNN. Finally, our data
processing pipeline uses a clustering algorithm to summarize
individual open bud detections into meaningful phenological
measurements, namely an estimate of the total number of
open buds, the proportion of open buds per day, the date of
budburst onset, and the rate of budburst. To our knowledge,
our work is the first to propose an AI approach capable of
identifying and localizing structures of phenological interest.
The obtained measurements are significantly more compre-
hensive than the color indices traditionally used. The pro-
posed framework was implemented in a coniferous forest site
in the North Shore of Quebec, Canada,1 and is shown to be
applicable to numerous plant communities worldwide.

II. MATERIALS AND METHODS
A. STUDY AREA
Time-lapse digital cameras were installed in 2014 in three
sites of the North Shore region of Quebec, Canada (Fig. 1).
These sites follow a latitudinal gradient of black spruce
(Picea mariana) and balsam fir (Abies balsamifera) mixed
stands. In this region, tree budburst typically occurs between
the end of May and the beginning of June, with balsam fir
usually undergoing budburst a week or two before black
spruce [17].

FIGURE 1. Map of the study area.

B. TIME-LAPSE IMAGERY AND COLLECTION
SpyPoint TinyHD 8megapixel cameras (www.spypoint.com)
were installed every year before the end of April and were
removed in August (Fig. 2). Hence, all cameras were installed
well before tree budburst and were removed weeks after

1BudCam project: https://apps-scf-cfs.rncan.gc.ca/budcam/en
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FIGURE 2. Example of an installed SpyPoint TinyHD camera.

budburst onset took place. All cameras were set up to take
RGB (Red, Green and Blue) images every 30 minutes from
5.00 AM to 20.00 PM, local time. To ensure that most buds
were recorded, trees that were 2 to 4 meters tall were targeted.
Since all cameras were strapped onto nearby trees, the dis-
tance to the target tree was not fixed, but was usually around
5 meters.

C. AUTOMATIC IMAGE SELECTION
A considerable proportion of the images available in each
time-series were inadequate for bud detection because they
were either too bright due to direct sunlight, too dark due to
a lack of sunlight, or too misty.

Hence, a random forest model [19] was trained to auto-
matically remove such unusable images from the analysis
based on color features (Fig. 3). The random forest model was
trained on 4102 high-quality images where trees were clearly
visible and on 3701 low-quality images where they were
not. This dataset was manually collated from the available
time-lapse images. Each image was decomposed into RGB
(Red, Green, Blue) and HSV (Hue, Saturation, Value) color
histograms with 32 bins per channel (except hue, which had
16 bins). The random forest model was trained with the scikit-
learn python module (version 0.20.3; [20]). The model had
250 trees, a minimum number of one sample per leaf, used
13 features per split (i.e., the square root of all available
features) and was grown via entropy. To improve prediction
of budburst phenology, we only used up to 10 images per day.
If more than 10 high-quality images were available, we used
the ones that had the best random forest prediction probability
scores.

D. CONVOLUTIONAL NEURAL NETWORK
1) IMAGE ANNOTATION
For training CNN models, we started by manually deter-
mining budburst onset for all train and test trees (33 black
spruce and 29 balsam fir) Open buds were manually anno-
tated (VIA annotation tool; [18]) for 15 black spruce and
13 balsam fir trees, whereas closed buds were annotated for
13 black spruce and 10 balsam fir trees. Usually, there were

30 images available per tree per bud type (open and closed).
The open bud images were chosen at the beginning of the
manually determined budburst onset period. Evergreen buds
stay dormant throughout winter, at which time they are small,
brown, rounded structures. Buds usually start opening in late
spring, which results in a gradual increase in size and shift in
color towards a bright green, until the new leaves are com-
pletely unfolded. Buds were only classified as ‘‘open’’ at the
beginning of the phenophase shift, when their color started
shifting from light brown to light green (Fig. 4). As buds were
approximately 10 to 30 pixels long, bounding boxes were
38 × 38-pixel squares centered on the corresponding bud.
Closed buds were annotated and passed onto the CNN as hard
backgrounds because they are visually quite similar to the
initial stages of open buds and could be easily misclassified
by the CNN. Since balsam fir and black spruce are evergreen,
buds were hard to locate among the previous year’s foliage.
The relatively low image quality and the large potential num-
ber of buds per image made it impossible to annotate all buds
in each image. Additionally, a marginal number of annotated
open buds is unlikely to correspond to true open buds.

Due to the small size of the objects of interest and the large
size of the images (3264 × 2448 pixels), each image was
split into multiple tiles of 200 pixels, which overlapped by
40 pixels to ensure that buds located close to tile edges were
also identified by the CNN (Fig. 3). In total, 21 172 black
spruce open bud annotations in 10 374 tiles of 447 tree
images were used to train and validate the CNN, along
with 11 188 hard background tiles (including 6743 tiles with
closed buds) of 1217 images of hard backgrounds. For the
balsam fir CNN, 26 435 open bud annotations in 14 341 tiles
of 638 tree images were used during training and validation,
in addition to 15 971 tiles (including 9832 closed bud tiles)
of 1093 images of hard backgrounds. The validation datasets
included open bud annotation data from 3 out of 15 black
spruces and 2 out of 13 balsam firs, as well as additional hard
background data from 3 black spruces and 2 balsam firs. The
validation datasets consisted of 22.5% of the black spruce
tiles and 17.5% of the balsam fir tiles available. Each time an
image was passed to the CNN, it was rescaled to 500 × 500
pixels and submitted to multiple random data augmentation
techniques, namely horizontal and vertical flipping, rotation,
translation, shearing and rescaling (Fig. 3).

2) ARCHITECTURE AND TRAINING
The CNN we used was RetinaNet, a state-of-the-art
object detector developed by the Facebook AI Research
group [9]. This one-stage detector was chosen for three
main reasons: it is precise, fast, and it is readily avail-
able (https://github.com/fizyr/keras-retinanet). RetinaNet
was trained with the Keras neural network library (version
2.2.4; [21]) and Tensorflow (version 1.12; [22]) on a NVIDIA
GeForce RTX 2070 graphics processing unit. RetinaNet
incorporates two major improvements over other one-stage
detectors: (i) a focal loss function; and (ii) feature pyramid
networks (FPNs). The focal loss function is an adaptation
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FIGURE 3. Detailed overview of the application of the 3-step framework that estimates phenological measures from time-lapse
images. White polygons in the bottom left and middle right figures define the regions of interest analyzed. Red squares in the
bottom left figure are bud detections. Open bud clusters in the middle right figure are randomly colored. The blue band in the
bottom right figure corresponds to the manually determined period of budburst.

of the commonly used cross entropy loss that addresses
the extreme class imbalance between background and fore-
ground classes faced by predictors. This loss function greatly

down-weights the importance of easily classified examples
and focuses learning on hard misclassified examples [9].
The second improvement, FPNs, takes advantage of the
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FIGURE 4. Example of 200 × 200 pixel tiles with closed (left) and
open (right) balsam fir (top) and black spruce (bottom) buds. Buds are
identified by red circles.

hierarchical structure of CNNs to generate multiple feature
maps at different scales. FPNs are thus capable of augment-
ing the number of feature maps available and improving
multi-scale predictions [23].

RetinaNet is composed of one backbone network and
two task-specific subnetworks. We used a ResNet152 back-
bone [24], whereas we kept the same subnetworks described
in the original paper [9]. Other backbones were tested,
namely ResNet50, ResNet101, VGG16, VGG19 and
Densenet121, but ResNet152 was the one that performed best
(comparison results are not shown). The two subnetworks
previously mentioned use the convolutional feature maps
generated by the backbone neural network and the FPN to
perform object classification and bounding box regression.

We started training our black spruce RetinaNet model with
pre-trained COCO weights (Common Objects in Context;
http://cocodataset.org), which provided amuch better starting
point than randomized weight initialization. We trained our
model for up to 20 epochs with an ADAM optimizer [25]
with an initial learning rate of 1e−5. The balsam fir RetinaNet
was initialized with the black spruce model weights. These
weights provided a better starting point than the pre-trained
COCOweights, probably because the black spruce RetinaNet
had already learned to identify similar buds amongst tree
foliage. The balsam fir CNN was trained with an initial
learning rate of 1e−5 and anADAMoptimizer for amaximum
of 60 epochs. Only the CNNs that had the highest average
precision rate were kept.

E. BUD DETECTION POST-PROCESSING AND CLUSTERING
For each time-series, a polygonal region of interest (ROI)
was manually defined around the tree of interest (Fig. 3).

Buds were only considered if they were inside the ROI, which
reduced the proportion of false positives and ensured that all
detected buds belonged to the same tree. Since the cameras
were fixed throughout each season, a single ROI mask could
be used for the whole time-series, as long as the ROIwas large
enough to account for daily tree branch movements (e.g. due
to wind).

Overlapping detections were trimmed via non-maximum
suppression using an intersection over union (IOU) value
of 0.2. Hence, if the area of the bounding box defined
by two detections overlapped by more than 20%, we dis-
carded the detection with the lowest RetinaNet prediction
probability.

Depending on image quality, the number of buds detected
per image could vary considerably between images taken
within the same day. Additionally, the CNN was incapable
of estimating the proportion of open buds at a given date
because it was unable to re-identify the same bud in differ-
ent images. In order to overcome this limitation, we used
DBSCAN (density-based spatial clustering of applications
with noise; [26]) to cluster bud detections. This algorithm
groups together points that are closely packed and classifies
points in low-density regions as outliers. DBSCAN is suitable
for this clustering problem because it allows the user to define
a maximum distance between points in the same cluster and a
minimum number of points per group. DBSCANwas initially
used to cluster day-level bud predictions using a maximum
distance radius of 25 pixels and a minimum number of
3 detections per group. Then, DBSCAN was used again to
regroup all daily bud detection clusters using a maximum
distance radius of 10 pixels and a minimum number of 4 ele-
ments per group. Clustering parameters were fine-tuned to
reduce the number of false positives on the day-level cluster-
ing phase and prevent the formation of large clusters on the
site-level clustering phase.

III. RESULTS
All analyzes were performed with Python (version 3.6.8;
www.python.org). Data processing and handling was done
with the Pandas (version 0.24.2; [27]) and Numpy (ver-
sion 1.16.2; [28]) libraries. Images were processed with
the OpenCV library (version 4.0.; [29]) and figures
were plotted with the Plotnine library (version 0.5.1;
http://plotnine.readthedocs.io).

A. AUTOMATIC IMAGE SELECTION
The random forest developed to automatize selection of high-
quality images was evaluated according to validation preci-
sion and recall. Precision, which is calculated as the number
of true positives divided by the sum of true positives and false
positives, describes the ability of the model to identify only
images of interest (i.e. annotated positives). Recall, defined
as the number of true positives divided by the sum of true
positives and false negatives, represents the capacity of the
model to detect all points of interest. These two metrics can
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be formulated as follows:

Precision =
True Positives

True Positives+ False Positives
;

Recall =
True Positives

True Positives+ False Negatives
;

Our random forest model was very effective, as it achieved
a precision of 96.74% for high-quality images and 89.9%
for low-quality images, and a recall rate of 89.64% for high-
quality images and 96.82% for low-quality images (Table 1).
Manual revision of the images selected by the model con-
firmed the efficiency of this random forest model.

TABLE 1. Confusion matrix of color histogram-based random forest
model.

B. HYPERPARAMETER FINE-TUNING
We tested several hyperparameters during convolutional neu-
ral network (CNN) training other than multiple backbones.
We cumulatively froze all ResNet152 convolutional layer
blocks (e.g. the first block, the first and second block, etc. . . ),
but concluded that not freezing layers yielded the best results.
This is likely because the objects we were trying to detect
were very different from the objects present in the original
COCO dataset used to initialize model training. We tested
multiple bounding box sizes, from 30 × 30 pixels to 50 ×
50 pixels and found that 38 × 38 pixels boxes resulted in
models with higher precision and recall. This is likely because
38× 38-pixel boxes are large enough to include a small mar-
gin around the target bud for context, without letting the noise
present in the margin overwhelm the neural network. We also
tested several tile resizing sizes (300 to 800 pixels) and found
that a 500-pixel resizing parameter resulted in more precise
models, presumably because of a trade-off between greater
bud size and lower image resolution. Finally, we evaluated
several class imbalance ratios and kept a 1 to 1 tile ratio
between open bud and hard background tiles, which resulted
in the best compromise between too much noise and not
enough data.

C. RETINANET MODEL PERFORMANCE
RetinaNet model performance was evaluated using valida-
tion precision and recall. After training, the models were
tuned to favor recall over precision because a consider-
able proportion of open buds were not annotated, meaning
that a large number of false positives actually corresponded
to true, non-annotated positives. The annotation process in
itself is extremely time consuming and visually strenuous
for observers because the annotated objects are numerous,
but the objects themselves are very small (10 to 30 pixels

long). With a detection probability threshold of 0.2, the black
spruce model achieved 82.53% recall and 14.97% precision
on the corresponding validation dataset, whereas the balsam
fir model achieved 52.12% validation recall and 21.83%
validation precision (Fig. 5).

FIGURE 5. Balsam fir (top) and black spruce (bottom) RetinaNet model
validation precision (left) and recall (right) scores. These scores are
presented according to increasing detection probability thresholds. The
vertical dashed line represents the chosen probability detection
threshold.

D. BUDBURST ONSET PREDICTION
Besides using the traditional validation metrics mentioned in
the previous section, we validated our models by comparing
neural network predicted budburst onset dates with manually
estimated dates from test sites not used in model training
(Fig. 6). The number of open buds detected was calculated for
a maximum of 10 images per day, depending on the number
of images selected by the color histogram-based random
forest model. The neural network open bud cluster detection
increase coincided with the budburst onset dates that had
been manually identified for both black spruce and balsam
fir (Fig. 6).

IV. DISCUSSION
In this study, we present the first example of an AI frame-
work capable of identifying phenological activity in plants.
Manually extracting this type of data from large digital repeat
photography datasets is prohibitively time-consuming. How-
ever, our AI framework represents an exceptionally efficient
alternative: it takes only a few seconds to identify and localize
open buds in each image, while manual analysis takes several
minutes per image. Furthermore, neural networks are capable
of indefatigably analyzing data nonstop, 24 hours per day,
whereas human analysts need to take frequent stops and are
more prone to counting errors as weariness accumulates.
The time it takes to extract phenological measures from an
individual time-series is thus reduced from multiple days to
less than an hour. Replicability of results is also better with
convolutional neural networks than with human observers.
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FIGURE 6. Predicted cumulative proportion of open bud clusters per day of balsam fir (top) and black spruce (bottom) testing sites. The blue band
represents the budburst onset period that was identified manually.

Manually identifying open buds in time-lapse phenology
images can actually be an onerous and challenging task. The
trees examined in this study can easily have over a hundred
buds, whereas older trees can have thousands to tens of
thousands of buds. These structures are very small and are
often similar to other features present in the same images,
such as open sky patches and lichen spots. Additionally,
the differences between closed buds and the initial stages of
open buds can be somewhat subjective and can vary accord-
ing to light conditions when the image was taken (Fig. 4).
Due to these issues, our annotated training and validation
datasets were quite noisy: many open buds were not anno-
tated as such (Appendix S1), whereas some annotated open
buds actually corresponded to closed buds or other alterna-
tive features. Nevertheless, our results reveal that RetinaNet
model training is quite robust to noisy training data, in part
because researchers can choose to prioritize either recall or
precision.

Following initial analyzes, we chose to favor validation
recall over validation precision. The former represents the
ability of the model to detect all annotated objects in the
dataset, while the latter quantifies the capacity of the model
to identify only annotated objects. The choice of valida-
tion recall was made because a large number of open buds
in the training and validation datasets were not annotated:
this choice allowed us to identify most annotated buds,
as well as multiple non-annotated buds within the validation
dataset (Appendix S1). More importantly, our model cor-
rectly predicted the onset of budburst in the testing dataset
(Fig. 6), which had not been used in model training and
validation.

It is also relevant to point out that, as long as our object
detector was able to identify enough buds to estimate bud-
burst onset periods and rates, it did not need to achieve
the extremely demanding precision and recall rates required
in other fields (e.g. automated driving). Even though eco-
logical datasets are often very noisy, we show that these
novel deep learning approaches are capable of handling
such data and we encourage researchers to experiment with
them.

Ground-based phenological observations can have a con-
siderable level of user-induced bias [30]. For instance,
the phenophase shift assessed in our study can be subject
to inter and intra-observer bias because it corresponds to
a relatively slow, continuous change in bud color and size.
Machine learning and deep learning algorithms offer us the
opportunity to greatly reduce these biases: using a single
model that always follows the same rules reduces inter and
intra-observer bias. Such a reduction in observer bias rep-
resents an extraordinary opportunity for phenology citizen
science-based projects, like the US National Phenology Net-
work [31], to produce more complex and higher quality
data. In these types of projects, citizen scientists are usually
asked to describe phenological features, such as emerging
leaves and flowering. While very useful, these measures are
known to have a considerable level of observer bias due to
their subjectivity, particularly during phenophase shifts [32].
If citizen scientists are tasked with uploading images instead
of describing phenological features, the obvious synergies
between the large amounts of data generated by citizen sci-
ence projects and the data-hungry analytical power of artifi-
cial intelligence could be effectively exploited.
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Crowdsourcing projects like CrowdCurio, which recruits
citizen scientists to tag phenological structures in digitized
herbarium specimen images [33], could also explore these
synergies quite easily: citizen scientists annotate the data that
allows researchers to train more efficient machine learning
models, such as CNNs. CNNs also have the potential to
revolutionize the type of analyzes done with large-scale phe-
nology imagery datasets, such as PhenoCam [34]. Usually,
these types of analyzes rely on RGB color indices, namely
the green chromatic coordinate (e.g. [5], [35]). This index
is easy to estimate and is correlated with important pheno-
logical events, such as canopy greening [36] and seasonal
canopy-level photosynthesis [37]. However, the green chro-
matic coordinate is simultaneously affected by leaf color
and canopy structure [35], is insensitive to significant levels
of defoliation [38], and in coniferous-dominated forests is
mostly associated with changes in pigmentation of exist-
ing leaves instead of leaf emergence and senescence [37].
By detecting the structures that these indexes represent, con-
volutional neural networks are capable of extracting new,
and more complex data from existing datasets (e.g. rate of
budburst instead of budburst onset; [39]) and greatly improve
our understanding of plant phenology.

The 3-step framework presented in this study has deliv-
ered promising results, but represents only one of multiple
possible ways artificial intelligence can be used to analyze
digital repeat photography datasets. First, the samemodel can
probably be applied to closely related species with similar
bud structures (e.g. black and white spruce; Picea glauca).
Alternatively, CNNs for new species can be fine-tuned with
little data via transfer learning, where a model trained for
a specific task is used as a starting point for a different
model trained for a new task [40]. Second, CNNs could
be trained to target distinct budding stages. Hence, instead
of seeing a peak in the number of detected buds followed
by a sharp decrease as buds develop, we would be able to
follow new buds throughout their developmental process.
Finally, other deep learning methods could be explored. The
implementation of alternative RetinaNet backbones, such as
ResNext [41] and Inception-Resnet v2 [42] could be assessed,
or the performance of different models, such as light-head
R-CNN [43], could be examined.

Computer vision is a rapidly expanding field of
research and multiple computer scientists actively develop
open-source implementations of cutting-edge algorithms
(e.g. the RetinaNet algorithm implemented in this study:
https://github.com/fizyr/keras-retinanet; Mask-RCNN: https:
//github.com/matterport/Mask_RCNN). These implementa-
tions are capable of efficiently extracting vast quantities of
data and offer new and exciting opportunities across a wide
range of fields, from camera trapping [10] to phenologi-
cal analyzes, airborne tree species classification [44] and
land cover classification [45]. Ecological sciences need to
harness the potential of deep learning in order to develop
novel ways of analyzing existing datasets, design innova-
tive projects capable of producing more complex data and

ultimately improve our understanding of ecosystem functions
and processes.

V. CONCLUSION
The methodology proposed in this study shows what can be
accomplished when artificial intelligence is used to process
ecological data. Our framework is capable of quickly con-
verting a time-lapse digital photography dataset into multiple
ecologically-relevant indicators in three steps: (i) automatic
selection of the most adequate images available in the time-
series; (ii) identification and localization of multiple open
buds per image; and (iii) clustering of bud detections for
the estimation of various indicators of ecological impor-
tance. Our future work will focus both on the technological
improvement of this framework and on the extension of our
phenology networks to produce the larger amounts of data
that we are now able to process.
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