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ABSTRACT Bus arrival prediction has important implications for public travel, urban dispatch, and
mitigation of traffic congestion. The factors affecting urban traffic conditions are complex and changeable.
As the predicted distance increases, the difficulty of traffic prediction becomes more difficult. Forecast
based on historical data responds quite slowly for changes under the short-term conditions, and vehicle
prediction based on real-time speed is not sufficient to predict under long-term conditions. Therefore,
an arrival prediction method based on temporal vector and another arrival prediction method based on spatial
vector is proposed to solve the problems of remote dependence of bus arrival and road incidents, respectively.
In this paper, combining the advantages of the two prediction models, this paper proposes a long short-term
memory (LSTM) and Acrtificial neural networks (ANN) comprehensive prediction model based on spatial-
temporal features vectors. The long-distance arrival-to-station prediction is realized from the dimension of
time feature, and the short-distance arrival-to-station prediction is realized from the dimension of spatial
feature, thereby realizing the bus-to-station prediction. Besides, experiments were conducted and tested
based on the entity dataset, and the result shows that the proposed method has high accuracy among bus
arrival prediction problems.

INDEX TERMS Artificial neural networks, bus arrival prediction, LSTM, spatial-temporal feature vector.

I. INTRODUCTION

As it is difficult for road supply capacity to meet the rapid
growth of traffic demand, traffic congestion has already
become a serious problem in many regions. The public trans-
port bus system, as an economical, efficient, low-carbon and
environmentally-friendly vehicle, can greatly alleviate traffic
pressure and effectively alleviate environmental pressures in
terms of energy consumption, which is recognized as the
best option to solve urban traffic problems. In the public
transportation field, how to improve the service of the public
transportation system, save the travelers’ time and improve
the waiting experience for urban residents are urgent prob-
lems to be solved.

With the development of the Global Positioning System
(GPS), by installing positioning sensors on buses, managers
can obtain their spatial location in real-time, and calculate
vehicle arrival time based on information such as the speed
of the buses and distance between stations. Therefore, cit-
izens can arrange their travels more reasonably according
to the estimated arrival time of the vehicle, which greatly
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saves their waiting time. However, due to many factors such
as GPS signals, road traffic, passenger flow, and incidents
situations, the problem of bus arrival prediction becomes
extremely complicated. The single-input prediction method
cannot balance the accuracy between long-distance predic-
tion and short-term prediction, because the prediction method
only based on historical data and real-time input data cannot
effectively respond to the sudden situation and predict long-
distance arrival time, respectively [1].

In order to effectively cope with the influences of the
incidents in the bus arrival prediction problem, this paper
proposes a forecasting analysis method based on space fea-
ture vector. In this method, the bus driving path is divided
into several segments according to the intersection of the
road and calculates the current speed of all buses on each
road [2]. Finally, the weighted average is calculated as the
instantaneous speed of the bus at the current section, and
the required time for the bus to pass the current section is
calculated which will be treated as the eigenvalue of the
spatial vector during the stage of prediction.

However, arrival prediction based on spatial eigenvectors
could not effectively solve the long path forecast problem.
The longer the travel path of the bus is, the more obvious the
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fluctuation of the road condition accumulated by time will
be. In order to solve the above problems, this paper proposes
a station arrival prediction method based on spatial feature
vector, which can solve the problem of remote dependence
of bus by analyzing and calculating bus historical data. In the
previous arrival analysis based on historical data, the analysts
divided the historical data roughly and only divided the day
into rush hours and daily hours. But according to the actual
observation of the authors of this paper, in addition to the
obvious rush hours, the state of the bus is not static, there is
obvious fluctuation as time passes by. Therefore, we obtain
the optimal value of time cycle division based on the sta-
tistical results, divide the day into 188-time slices by using
time-slice method and calculate the actual situation of the
bus within the time cycle, which was taken as the eigenvalue
based on the time eigenvector.

Time-based feature vector analysis can effectively solve
the problem of long-range dependencies, but it cannot deal
with road incidents. Spatial eigenvector analysis can effec-
tively deal with the impact of highway incidents on the
arrival prediction, but it cannot solve the problem of bus
remote dependence. Therefore, this paper proposes an arrival
prediction method based on time and space eigenvectors.
We combine long-term prediction with short-term prediction
to build a hybrid neural network based on LSTM and ANN to
accurately predict the arrival time of vehicles. Based on the
long-term prediction of historical data, a long-term rolling
time window is established to complete data update and
forgetting. Based on the real-time analysis of spatial feature
vectors, the instantaneous short distance arrival prediction
is completed. Finally, after a series of trainings, the model
obtained good experimental results in test sets.

In this paper, a hybrid model of LSTM and ANN based
on spatial-temporal feature vector is proposed. Long-distance
arrival-to-station prediction is performed by the temporal fea-
ture vector [3]. The time-slicing method is used to calculate
the time required to arrive at adjacent stations for all buses
in the current forecast time slice. The prediction method can
be used to effectively avoid prediction accuracy reduction,
which caused by changes in road conditions on long-distance
bus lines as the vehicles travel for a long time. The short-
distance arrival-to-station prediction is carried out by using
the spatial feature dimension. The instantaneous average
speed of a single road vehicle is calculated by the space
pavement segmentation. The instantaneous time is used to
calculate the time between stations in real-time, and the pre-
diction accuracy problem under complex and variable road
conditions is solved. Finally, the LSTM-A model based on an
integrated spatial-temporal vector is used for bus-to-station
prediction. After a lot of training and learning, the model has
achieved great results on the test set.

Il. RELATED WORK

There are many representative methods for bus arrival time
prediction. We present an overview of the last 3 years in
this area. An overview of methods for bus arrival time
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prediction over the last 3 years is presented. Wu et al. [4],
MatiurRahman et al. [5] presented reviews about several
common methods of location prediction based on trajectory
data. Technically, these methods can be divided into five
categories: Support Vector Machines (SVM) [6]-[11] based,
Kalman Filter (KF) [12], [13], [14] based, Global Positioning
System (GPS) [15], [16] based, Particle Filtering (PF)
[17], [18] based, and Neural Network [19]-[31] based.

A. SUPPORT VECTOR MACHINE

SVM firstly maps the input data into higher dimensional
space with a specifically designed kernel such that the rela-
tionship between modified input data and the target variable
is linear. Yang, M., et al. presents a prediction model of
bus arrival time based on Support Vector Machine with a
genetic algorithm (GA-SVM) [6]. Peng, Z., et al. proposed
a forecasting method based on principal component analysis-
genetic algorithm-support vector machine (PCA-GA-SVM)
to improve the precision of bus arrival time prediction [7].
B. Z. Yao et al. proposed a support vector machine model
(single - step prediction model) composed of spatial and
temporal parameters [8]. Bai, Cong et al. proposed a
dynamic bus travel time prediction model for multi-bus
routes, which based on support vector machines (SVMs) and
Kalman filtering-based algorithm [9]. Moridpour, Sara, et al.
proposed a Least Squares SVM (LS-SVM) method that expe-
dites the training process by simplifying the quadratic pro-
gramming problem using a linear regression technique [10].
However, the non-linearity of SVM and SVR comes from
the kernel trick which is not scalable for a large-scale
problem [11].

B. KALMAN FILTERING

KF has been widely applied to this task. Abidin et al. consid-
ered the effect of utilizing information acquired from social
networks in the Kalman Filter model [12]. Li et al. con-
sidered KF combined with other methods, and proposed a
three-stage mixed model which includes K-means, real-time
adjusted Kalman filter, Markov historical transfer model [13].
KF -based method needs a probe to estimate the dynamic
term [14], and it’s hard to build reliable dynamics of buses
on our data set, which combined space and time information.

C. GLOBAL POSITIONING SYSTEM

GPS signal positioning is the most direct method. Based
on the bus riders’ smartphone Wi-Fi information, Liu et al.
presented a model to track and predict the arrival time of a city
bus [15]. Automatic Vehicle Location (AVL) and smartphone
location can also predict bus arrival time. Farooq et al. pre-
sented a prediction system relying on real-time AVL. Those
methods could not make good use of historical information,
and it would ignore space features [16].

D. PARTICLE FILTERING
PF technique has been widely applied to deal with histor-
ical GPS information and could predict bus arrival time.
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Dhivyabharathi er al. proposed a method to predict stream
travel time using a particle filtering approach which considers
the predicted stream travel time as the sum of the median
of historical travel times, random variations in travel time
over time, and a model evolution error [17]. In order to
fix the heterogeneous traffic conditions that exist in India,
Dhivyabharathi et al. developed a model based on par-
ticle filtering technique which is better than the existing
method with MAPE values around 17% with the accuracy
of +/- 2 minutes, wherein inputs are obtained using K-NN
((k-nearest neighbors) algorithm (The core of KNN is that
a sample belongs to most categories of k samples adjacent
to it) [18]. However, the particle filtering algorithm used in
these two papers is only suitable for a nonlinear stochastic
system with state-space model, but the time property of bus
arrival prediction is not considered.

E. NEURAL NETWORK

Neural networks become more and more popular because
of their non-linearly modeling ability. C. H. Chen pro-
posed an arrival time prediction method (ATPM) based on
RNNSs to predict the stop-to-stop travel time for motor car-
riers [19]. J. B. Pang, et al. proposed to exploit the long-
range dependencies among the multiple time steps for bus
arrival prediction via a recurrent neural network (RNN) [20].
Zhang et al. proposed a model based on MapReduce com-
bining clustering with the neural network [21]. H. F. Yang,
Tharam S. Dillon, and Y. P. Chen. proposed a novel model,
stacked autoencoder Levenberg-Marquardt model, which is a
type of deep architecture of neural network approach aiming
to improve forecasting accuracy [22]. Polson, G. Nicholas,
and O. S. Vadim. develop a deep learning model to predict
traffic flows [23]. Y. K. Wu, et al. proposed a DNN based
traffic flow prediction model (DNN-BTF) to improve the
prediction accuracy [24]. Heghedus et al. tried five neural net-
work models and identified the best performing deep learning
model [25]. A method based on a deep neural network
(DNN) model was proposed by Treethidtaphat et al. [26].
Kunpeng Zhang et al. proposed an end-to-end multi-
task learning temporal convolutional neural network
(MTL-TCNN) to predict the short-term passenger demand in
amulti-zone level [27]. In the same year, Zhang et al. also pro-
poses a deep learning based multitask learning (MTL) model
using Bayesian optimization to tune parameters of MTL [28]
to predict short-term traffic speed. Sari, F. Riri. proposed a
new approach based on a Bayesian mixture model for the
prediction [29]. L. Zheng, et al. proposed a feature selection-
based approach to identify reasonable spatial-temporal traffic
patterns related to the target link, in order to improve the
online-prediction performance [30].In order to resolve the
problem of empirical approaches cannot sufficiently capture
diverse travel time distributions, K. P. Zhang, et al. proposed a
deep learning based Trip Information Maximizing Generative
Adversarial Network (T-InfoGAN) [31]. However, in their
works, timely GPS data is not combined with the neural
network model.
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The above several models can solve bus-to-station predic-
tion problem to some degree, but the influence factors that
these models considered have one-sidedness. SVM relies too
much on kernel tricks to achieve prediction of different scale.
KF needs a probe to monitor the state dynamically, which
ignores the influence of the past. GPS over-emphasizes the
current state of the bus, and the prediction accuracy becomes
bad as the predicted distance increases. The PF only considers
the time of the bus to the station and ignores the spatial effect
of the bus. The input used in the NN network is too one-sided
and doesn’t consider the comprehensive effect of time and
space characteristics.

Therefore, this paper proposes an LSTM-A algorithm. This
model combined LSTM and ANN, by adjusting the temporal
vectors and spatial vectors to achieve the bus arrival time
prediction.

lll. METHODOLGY

This section introduces the data set (see Section III-A) used
for the case study, as well as the methods for the data pre-
processing (see Section III-B), temporal-based feature vec-
tor analysis (see Section III-C), spatial-based feature vector
analysis (see Section III-D), and arrival prediction based on
LSTM and ANN (see Section III-E).

TABLE 1. Data description.

FIELD DESCRIPTION ~ FORMAT UNIT
1 LINE_UID LINENUMBER  STRING
2 LINE_TYPE DIRECTION STRING
3 BUS_UID BUS NUMBER STRING
4 STATION_SEQ STATION STRING
- SEQUENCE
ACTUAL
5 C_DATA_TIME STRING
- - ARRIVAL TIME
ACTUAL
6 REA_TIME_STAMP ARRIVAL INTEGER SECOND
TIMESTAMP
DATA
7 POSITION_UP_TIME COLLECTION STRING
TIME
KILOMETER
POSITION_SPEED SPEED FLOAT
- /HOUR
9 POSITION_LATITUDE LATITUDE FLOAT
POSITION_LONGITU

10 = LONGITUDE FLOAT

DE
11

A. DATASET DESCRIPTION

The research data used in this paper come from the Xingtai
bus company. The data is from September 1st to Septem-
ber 30th, 2018, containing a total of 5,804,504 pieces. The
meaning of the field of the dataset is shown in Table 1 and
the data sample is shown in Table 2.

B. DATA PREPROCESSING
This section presents the method to preprocess the data
before the experiment. Data collected from the transit system
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TABLE 2. Data sample.

LINE_UID 0120
LINE TYPE 2
Bus_uip BDBB442B9C424F65A08B
STATION_SEQ 4

2018-09-28 18:52:10:00
REA TIMESTAMP 1538131930
POSITION_UP_TIME 2018-09-28 18:51:44
POSITION SPEED 16.00
POSITION_LATITUDE 37.029716584244376
POSITION_LONGITUDE 114.5346751069406

C_DATA TIME

—_
o000 R W —

exists the situations of lost, duplicated, biased and dirty.
Therefore, the data need to be pre-processed before used. This
paper uses the following two methods to preprocess the data.

During actual driving, the vehicle may encounter sud-
den accidents such as road maintenance, vehicle breakdown,
car refueling, and temporary parking, etc. Therefore, in the
experimental statistics, there are some abnormal points in
which running time is greater than the normal driving time.
According to the statistical results mentioned in the first
section of this chapter, the upper limit of the time window
is set to 300 seconds. In addition, it can be seen from the
experimental results that during the actual time segmentation
process, there are some vehicles spanning two -time slices
when driving between the two stations. This running time
between two stations of this kind of vehicle travels is far
shorter than normal running time. Therefore, according to
the experimental result, the lower limit of the time window
is set to 25 seconds, thereby filtering the abnormal point
to reduce noise interference. The processing result is shown
in Fig. 4. The figure shows the sequence of time lengths for
the line No.0120 running from 6:00 A.M. to 23:00 P.M. in one
day. In this section, the slice of the temporal-based feature
vector is obtained through experiments. The result is the time
value from station 3 to station 4 in different time slices from
288-time slices.

C. TEMPORAL-BASED FEATURE VECTOR ANALYSIS

The historical data of bus arrivals has a very impor-
tant research significance for future bus arrival prediction.
Researchers have proposed a variety of prediction methods
based on historical data, which can be roughly divided into
the simple average method, moving average method and
exponential smoothing method. When the above methods
are used to process time slices, the time slice granularity
is relatively simple and rough. A more common way is to
divide the whole day time period into the peak hours and
other time periods, perform corresponding data processing
for different time periods, and combining GPS information
of the current bus to predict arrival time. This historical
prediction method solves the bus arrival prediction problem
to some extent. However, the time-slice arrival prediction of
large particles will inevitably lead to the relative roughness
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FIGURE 1. Distribution of travel time between bus stations.

of the prediction results. Compared with the fluctuation of
the running time of the bus throughout the day, the prediction
accuracy is slightly worse. Therefore, this paper proposes
a temporal dimension division method based on the actual
travel time slice between bus stations.

i Temporal Slice: For most cities in China, the dis-
tance between the two stations is roughly between
1 and 2 km, and the average speed of city buses
is 20 km/h. Therefore, the bus would take about
3 to 6 minutes between two stations. Based on this
assumption, the author of this article conducted statis-
tics about the distribution of the time between two sta-
tions based on the data of bus line No.0120 of Xingtai
in September 2018. The statistical results are shown
in Fig. 1. The X-axis represents the bus travel time
between two stations, and the Y-axis represents the
probability that the travel time between two adjacent
stations falls in a certain time slice. It can be seen from
the above statistical results that 90% of the buses run
less than five minutes between adjacent stops. There-
fore, the author divided the 24 hours of the day into
288-time slices at a time interval of 5 minutes. In each
time slice, the running time between two stations will
be calculated from the data get within 30 days. Consid-
ering the different conditions of working days, week-
ends and holidays, the experimental data were divided
into two groups according to working days and off
days. The example data mentioned in this paper are the
working day experimental data.

ii Driving State Division: Usually, the bus has two states
when running which is approach the station and stop
at the station. To calculate the time period between
the two stations, it should be count from the time
when the bus leaves the last station to the time when
it leaves the next station, as shown in Fig. 2. The state
of the bus in the stations will be marked as ‘stop’ and
the state of the bus during running will be marked as
‘approach’. For example, the total running time from
station 3 to station 4 is tp, and the running time from
station 4 to station 5 is #1.
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FIGURE 3. Historical travel time I.

iii Historical Running Time: The bus driving records
between station 3 and station 4 of the bus line
No.0120 were chosen for statistical analysis of their
performance on different time slices. The result is
shown in Fig. 3, The X-axis means 288-time slices and
the Y-axis means the running time between the adjacent
stations.

During actual driving, the vehicle may encounter sud-
den accidents such as road maintenance, vehicle breakdown,
car refueling, and temporary parking, etc. Therefore, in the
experimental statistics, there are some abnormal points in
which running time is greater than the normal driving time.
According to the statistical results mentioned in the first
section of this chapter, the upper limit of the time window
is set to 300 seconds. In addition, it can be seen from the
experimental results that during the actual time segmentation
process, there are some vehicles spanning two -time slices
when driving between the two stations. This running time
between two stations of this kind of vehicle travels is far
shorter than normal running time. Therefore, according to
the experimental result, the lower limit of the time window
is set to 25 seconds, thereby filtering the abnormal point
to reduce noise interference. The processing result is shown
in Fig. 4. The figure shows the sequence of time lengths for
the line No.0120 running from 6:00 A.M. to 23:00 P.M. in one
day. In this section, the slice of the temporal-based feature
vector is obtained through experiments. The result is the time
value from station 3 to station 4 in different time slices from
288-time slices.
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In this section, the bus-to-station prediction is divided
into small time slice predictions by slicing, and the vehicle
arrival time length predictions in the time slice is obtained by
comparing the time at the same time slice of different days.

The time-based feature vector analysis is completed to
provide data support for the LSTM-ANN comprehensive
prediction in the following paragraphs. These variables are
combined into a vector to describe the temporal information
of the stop p;;:

T
pij = [pi» Pjs sk. [t 2+ ] (H

pi» pj: The station order is i, j.

Sy Time slice k.

[t1, t2...t,]: The time taken from station i to station j on
day n when the time slice is k.

pij : The feature vector from site p; to site p; in si.

Equation (1) is the mathematical representation of feature
vectors based on temporal’s slice.

D. SPATIAL-BASED FEATURE VECTOR ANALYSIS

The current location of the bus directly determines the dis-
tance to the next target station and subsequent stations. If the
road incidents are ignored, the bus arrival time can be simply
obtained by dividing the distance by the current speed. Bus
arrival time prediction models used this method in the early
period, but this method is too idealized and the prediction
results were different from the actual ones. Later, researchers
used the difference equation to establish an autoregressive
moving average time sequence model, and finally realized
bus arrival time prediction through residual analysis and data
fitting. However, the white noise of the residual sequence
in this model affects the result seriously, and the complex-
ity and variability of city traffic are not considered, so the
prediction is not accurate. Therefore, this paper proposes a
spatial dimension division method based on the road space
slice model to predict the time at the local road.

i Spatial Slice: According to the principle of the reser-
voir, as the accumulation rate of water in a pool depends
on the difference between the inflow and outflow,
the excessive inflow velocity and the low outflow
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velocity are the main cause of pool siltation. Similarly,
whether a section of road is congested depends on the
speed of the upstream vehicle and the speed of the
downstream vehicle. In addition to incidents, vehicle
traffic speeds are only relevant to driving vehicles on
the road segment. Therefore, this paper proposes a
spatial segmentation method based on the traffic con-
vergence of traffic signals. For the bus line with line
number 0120 in Xingtai in September 2018, the line
is divided by the road network traffic light, and the
segmentation result is shown in Fig. 5. In this figure,
the 22-kilometer-long bus line passes through 17 traffic
light intersections. Considering the start and endpoints
of the line, the bus line can be divided into 18 slices
and the spatial feature vector is initialized through the
above steps.
Space Slice Travel Speed Calculation: From the dis-
cussion in the previous section, we can know that the
speed of the vehicle on the road is only related to the
vehicle on the current road. On the one hand, the vehi-
cle will reduce the speed when the road is crowded.
On the other hand, the instantaneous speed of the
single-vehicle will change in a different position. For
example, the first half of the road is congested due to
road construction, vehicle scratching, parking and road
narrowing, whereas the latter half is smooth because the
car misses the congestion area. In this situation, if only
calculate the time until the end of the road according
to the instantaneous speed, there will be a large devia-
tion from the actual arrival time. Thus, in this section,
a method for calculating the instantaneous speed of a
vehicle based on space slice is proposed. The basic
formula is as (2):
1 n

vi= oV (@)
In the above formula, v; is the average speed of the
vehicle whose number is i, n is the number of buses on
the current road, v; is the instantaneous speed of vehicle
numbered j.
Spatial Slice Arrival Time Prediction: If bus numbered
i is in the current space slice we could estimate the

distance to the endpoint of this slice by GPS coordi-
nates, and divide this distance by the current vehicle
speed v; to predict the arrival time. If bus numbered i is
not in the current space slice, we should predict the time
of the current spatial slice though divided the length of
the slice by the average vehicle speed v;. Taking the
line No0.0120 as the measured line and extracting all
the bus information (position, speed, etc.) on the path
at a certain moment (assuming bus i is at the originating
station at this time), the calculation result is as shown

in the Fig. 6.
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FIGURE 6. Time cost of different line segments.

The numbers in the figure represent the arrival prediction
data of the spatial slice at the current time (the value accurate
to one decimal place), and the total length of the route is
63.2 minutes, and the current calculation result is saved as
the spatial feature vector of the time.

In this section, the bus-to-station prediction is divided into
small spatial slice predictions by slicing, and the prediction
time in the slice is obtained by comprehensively considering
the driving speed of all the public transportation vehicles in
the spatial slice. The space-based feature vector analysis is
completed by calculating the time when the bus arrives at the
endpoint in different time slices, and this process provides
data for the LSTM model to predict comprehensive infor-
mation later. These variables are assembled into a vector to
describe the spatial information of the segment of road s;;:

sij = [, j.Lij, [v1, va ... vall” (3)

In this formula, s;; is the road whose starting point is i and
ending point is j, 1;; is the length of s;; and [vy, v2...v,] are
speeds of all buses on the road.

E. ARRIVAL PREDICTION BASED ON LSTM AND ANN

The temporal-based feature vector analysis can predict the
arrival time of the current vehicle with a high probability by
mining historical data, but it cannot effectively respond to
sudden situations. The spatial-based feature vector analysis
can accurately predict the short-distance bus arrival time by
analyzing the real-time situation of the road vehicles at the
current time, but the prediction accuracy of the long-distance
vehicles’ arrival will decrease with the error accumulation.
Therefore, in this section, a hybrid neural network (LSTM-A)
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based on LSTM and ANN is proposed, which combines the
feature vectors based on time-space.

The structure is shown in Fig. 7. In the input layer, T is the
input parameter of the current moment, P;; is the temporal
feature vector and S,,, is the spatial feature vector. Output
layer output the current forecast result.

1 The Calculation of the Temporal Feature Vector Based
LSTM: The current time and temporal feature vector
are used as the input parameters, and the time feature
value based on the historical prediction information is
dynamically updated by the LSTM. If the number of
days exceeds the maximum time threshold, the value
in the initial time feature vector can be forgotten by the
forget gate, and the added time feature vector is updated
through the input gate. Finally, the LSTM calculation
output is confirmed by the output gate.

Forget Gate:

fi =0 (Wr-[d1, da, ...,dy]+by) 4)
Input Gate:

ir = o (Wi-dpt1 + bi) (%)
Jo = tanh(Wy-dyy1 + by) ©)

Hidden Gate:
T: = (f xTr—1 4 i; * ji)*0; @)

Output Gate:
o =o(Wr-[d1, da, ..., dny1]4b0) ®)

W, is the weight matric, and b, is the bias.

T is the old cell state.

Pjj is the input temporal feature vector.

Smn 18 the input spatial feature vector.

R is the predict result of the computation.

o is the sigmoid function.

For example, regarding 28 days as the maximum
threshold of the time feature vector, the current time
moves from September 28th to September 29th, and the
time feature of September 1st will exceed the maximum
time window. The slice data of September 1st is forgot-
ten through the Forget Gate and then the time feature

VOLUME 8, 2020

of September 29 is added to the Input Gate, finally,
the result output is controlled by the matrix 0 1 of the
Output Gate.

The pseudo-code as Algorithm 1 and Algorithm 2:

Algo

rithm 1 ALSTM

Input: Time window W, R (Temporal t, Spatial s)
Output: Result 1: if t in w then

2: forinput=1:tdo
3: tl = LSTMCELL (ct, ht, input)
4: end for
5:end if
6:s1 =s/600;
7:p (2, 82) = PCA (t1, sl);
8:if R then
9: for (x,y)inp (2, s2) do
network = Train (X, y)
10:  end for
11: end if
12: Result = Predict (network, row X, row y);
13: Return Result;
Algorithm 2 LSTM Cell

Input: Cell Status prevct, Hide Status prevht, input
Output: Cell Staus ct, Hide Staus At

: combine = prevht +input:
: ft = forgetLayer(combine);
: candidate = candidatelayer(combine);

= prevct * ft + candidate * it

: ot = outputLayer(combine);
: ht = ot * tanh(ct);
: Return ct, ht;

il

iii

Spatial-Temporal Feature Vector Homogenization: The
temporal feature vector obtained by time slice is seg-
ment via the station interval while the spatial feature
vector obtained by the spatial slice is segmented via the
joint point of the road, so the measurement units of the
two kinds of feature vectors are not uniform. Therefore,
when performing predictive analysis for a specific line,
it is necessary to perform the same operation on the two
feature vectors. In this paper, the Principal Component
Analysis (PCA) is used to analyze and do a projection
to the data, so that the eigenvalue normalization is
realized by projecting the spatial dimension into the
time dimension.

ANN Calculation Based on Temporal-Spatial Fea-
ture Vector: Temporal-based feature vector, the arrival
prediction problem is decomposed into point-to-point
vector depends only on the length of the historical
vector, whereas it is independent of the previous point
of the vector starting point coordinates. Therefore,
the arrival prediction based on the time vector is more
accurate when dealing with the subsequent prediction
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station with a long distance from the bus starting point.
In the face of incidents, however, the response is rela-
tively slow. The spatial-based feature vector turned the
answer to the prediction problem into the ratio between
the length of the current road and the average driving
speed of the current road. This ratio is more accurate in
predicting the arrival time of the short distance to the
station [30], [32]. Over time, however, the predicted
value deviates greatly from the real value after the
traffic conditions of different sections change.

This section combines the advantages of the two analytical

methods, and proposes an ANN calculation method based

on temporal-spatial feature vector, The Linear Regression
model as (9):

n
AjE W) = xiwji ©)
i=0
Sigmoid function:
- - 1
O; (x,w) = m (10)

Formula (9) is the formula for the Linear Regression model
which is used to train and predict the time-spatial feature
vector.

Formula (10) is the Sigmoid activation function which
converts the result from linear to non-linear.

IV. EXPERIMENT AND RESULT

The experiment uses the data of bus line (line_uid = 0120),
and select the data from September 1st to September 20th,
2018 as a training set (excluding 6 days’ holiday, we got
14 days’ data, the time window is set to 14), the data of
September 21%, 2018 will be treated as a test set, the test
results are in Fig. 8, Fig. 9, Fig. 10, Fig. 11.
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FIGURE 8. Actual and predict time comparison.

Our method has been implemented by TensorFlow. To ver-
ify the feasibility and suitability of the calculation method
presented in this paper, the data of line_uid 0114 of Xingtai
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in China is selected to do the analysis for the buses’ running
time. After 1000 times sampling, the data is compared and
analyzed according to the up and down of the line.

In Fig.8-11, rea_time_stamp represents the timestamp for
bus arrives at each bus station and pre_time_stamp is the
predicted timestamp for bus arrives at each station.

Figure 8 shows the actual travel time and predicted travel
time of a single bus on route 0114, the X axis shows the
number of the bus station and the Y axis shows the moment
that the bus at the station.

Figure 9 shows the actual travel time and predicted travel
time difference of a single bus on route 0114, the X-axis
shows the number of the bus station and the Y-axis shows the
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FIGURE 12. Prediction results.

difference between the predicted arrival time and the actual
arrival time.

Figure 10 shows the comparison between the actual and
predicted time of the interval of a bus stop on route 0114,
the X-axis shows the number for the bus station and the Y-axis
shows the time period between adjacent station.

Figure 11 shows the Absolute difference percentage and
AME (Average Magnitude of Error) of the actual and pre-
dicted time consumption at a bus stop on route 0114, the
X-axis shows the number for the bus station and the Y-axis
is the average value of the error.

The experiment mentioned above did analysis and predic-
tion of the chosen dataset. The detailed analysis was done
from the aspect of the real-time of arrival, the difference
between the real and predicted bus arrival time, the time
period between adjacent bus stations, and the mean value
of the error. From the result of the experiment, it can be
noticed that the proposed method gets a great result and
the prediction result has small deviation from the actual
result.
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This paper demonstrates the performance of the proposed
algorithm from the perspectives of average actual running
time, average prediction time, average difference, absolute
difference average, time period prediction accuracy, and time
period distribution frequency and tests these on the data that
we got from the bus route No.0114. The specific parameters
are explained as follows:

Fig. 12(a) is the predicted comparison of each station on
the 0114 line which includes:

avg(rel_dtimestamp): Average actual travel time

avg(per_dtimestamp): Average predicted time
avg (rel_dtimestamp — per_dtimestamp):
difference

avg (abs (rel_dtimestamp — per_dtimestamp)):

Absolute difference average (for each difference the value
is taken as an absolute value and then averaged).

Fig.12(b) is time sampling, the comparison of the oper-
ational data calculation results at the time of 16, 17, 18
and 19 on the day is extracted. Fig.12(c) is the Mean Absolute
Error for each station, the absolute value of the deviation

Average
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between the predicted value of a single site and the arithmetic
mean of the overall prediction. Fig.12(d) is the sampling
period prediction accuracy. Fig.12(e) is a measurement accu-
racy frequency distribution for each station. Taking the sec-
ond station as an example, the current forecast is distributed
between 0.8 and 0.9. Fig. 12(f) is measurement accuracy
frequency distribution.

In this section, the line_uid 0114 with the longest travel
distance is selected as a case study to analyze our method.
The length of the line is 25 Km, and the driving time is about
1 hour and 26 minutes. It passes through the congested road
sections such as the city center and hospitals and also passes
through complex environmental sections such as the suburb.
It is very suitable for this comprehensive prediction model
of long path prediction and a short period with incidents
situation prediction. In order to test the performance of the
experimental model, this experiment demonstrated the pre-
diction results of the mixed model in a complex environment
from the aspects of prediction result, MAE and the prediction
distribution.

A. PREDICTION RESULT

The first line of Fig. 12(a) is a complete prediction for bus
No. 0114, including the predicted results of all stations from
the starting point of the route to the endpoint and the actual
running time of the day. According to the difference analysis,
except for some special stations, the prediction time error of
each station is less than 1 minute, and the performance is
good. From the figure, we notice that the station (26, 27) has
a large error, and it is the spatial-temporal feature vector that
leads to this problem because the number of buses between
stations 26 and 27 is sparse. When the bus is running, due to
we get statistic data of up-going bus and down-going bus sep-
arately, it is reasonable that there are few or no buses at some
stations in a certain period of the time slice, and the relatively
abandoned road will also have an impact on the experimental
results because there are fewer cars running on it. Generally
speaking, among the total 29 stations’ prediction, most of the
deviation of arrival time prediction is less than 30 seconds,
and the prediction results are reliable.

B. MEAN ABSOLUTE ERROR

In the second line of Fig. 12(b), the deviation of prediction
accuracy was calculated for all stations along the route. The
deviation value of more than 93.1% in the whole prediction
process was greater than 70%, and 79% of the deviation value
is greater than 80%, If the spatial and temporal eigenvectors
with insufficient individual data are removed and the sam-
pling periods with good data characteristics are extracted for
prediction analysis, the overall prediction accuracy is as high
as 80%. Different time and space dimensions are selected to
enhance the correlation between feature values, and repeated
experiments can bring further improvement to the model.

C. PREDICTION DISTRIBUTION
The third line of Fig. 12(c) selects the predicted hit rate of
the same site for different spatial-temporal feature vectors
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multiple times. For example, in the above figure, the three
prediction results at the same time of the day are selected,
and site 2 is taken as an example. Among the three predic-
tion results, the accuracy of the two predictions is between
0.8 and 0.9, and the accuracy of one prediction is less than 0.7.
In the measurement data of the sampling period, the value of
the predicted value distribution higher than 0.8 is much larger
than the value lower than 0.8. Therefore, from the perspective
of the accuracy distribution, the overall prediction effect is
good.

In this section, the author makes a comprehensive anal-
ysis of the overall prediction performance from the predic-
tion results, MAE and prediction distribution. Experimental
results show that under the good data conditions, the pre-
diction results will not jitter significantly with the change of
path length, and the overall prediction performance is stable.
To some extent, the model solves the problem of long and
short path predictions and promotes the further development
of the research on bus arrival prediction.

D. CONTRAST EXPERIMENT

In this section, a series of comparative experiments are carried
out, which proved that the performance of the LSTM-A
algorithm is better than the traditional prediction method.
The eigenvalues used in this paper mainly include histori-
cal arrival data, road segmentation data, and real-time vehi-
cle speed data. The above eigenvalues are taken as the
input of the model for contrast experiments. The results
are shown in Fig. 13. Average (AVG), AMM, and Elastic-
netCV denote the prediction results of the arithmetic mean,
the Sklearn linear regression prediction, and the Sklearn elas-
tic network regression prediction respectively. Backpropaga-
tion (BP) neural network is a network using error square as
the target function and using the gradient descent method to
calculate the minimum value of the target function. Alstm is
time recurrent neural networks, which is proposed to solve
the genera long-term dependence problems of the general
RNN [33]. All RNN has a form of a chain of the repeated
neural network module. Moreover, six types of prediction
models are described as follows.

i AVG: It is the most intuitive prediction method to
use arithmetic mean value to predict bus arrival time.
Maet al. [34] and Zhang et al. [35] uses this method in
their experiment. The time period between two stations
is treated as input, then predict the time series for the
target. In this paper, 27 bus stations are included, so the
input variable is 27, and the output is 1.

it AMM: Using linear regression to predict the passing
time for the target between stations. Yu et al. [36],
Fadaei et al. [38]. utilize this method to finish their
experiment. The input is the historical time for the bus
passing the target station. The number of the input and
output equals to bus numbers minus one. So, there are
27 inputs and 1 output.

iii ElasticnetCV: This method using an elastic network
model. Zeng et al. [39] and Lanskd, Lanskd [40]
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FIGURE 13. The results of comparative experiment.

mention this model in their article. The number of input
and output are the same with linear regression which is
27 and 1 respectively.

iv. BP: This method using backpropagation to estimate the
arrival time. Wang et al. [41] and Pan et al. [42] use this
model to predict bus arrival prediction. The number of
the input parameters is 27.

v LSTM: Using LSTM to finish bus arrival predic-
tion. Petersen et al. [43] and Zhao et al. [44] men-
tions this in their article. The influence of prediction
time on prediction results is controlled by the time
window.

vi ALSTM: In this paper, the hybrid model is used for bus
arrival prediction. The input contains 27-times feature
vector and a 1space feature vector.

The bus GPS data from Sep 1% to Sep 20 are used as the
experiment data. A detailed structure is described in Table 3.
The experiment parameters are as follows.

Without considering other external influences, the predic-
tion results of the above methods are shown in Fig.13. From
Fig. 13 (a), it is obvious that the prediction curve of LSTM-A
algorithm in long-distance arrival prediction is closer to the
actual arrival time of the bus, so its result is more accurate.
From Fig. 13(b) we can know that the prediction curve of
the LSTM-A algorithm in short-distance arrival prediction is
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TABLE 3. Structural description.

Hyperparameters AMM/ BP LSTM  ALSTM
ElasticnetCV
Hidden units 80 60 80 60
Learning rate 0.005 0.005 0.001 0.001
Loss weights 1 1 1 1
Batch size 0.25 0.25 0.25 0.25
Dropout rate 0.1 0.1 0.1 0.1
Epoch 10 10 10 10
TABLE 4. Results of short-distance arrival prediction.
Algorithm MAE RMSE MAPE
AMM 52.74 57.67 1.15
AVG 63.70 73.67 1.34
ElasticeCV 45.96 48.64 1.01
BP 32.00 37.45 0.57
LSTM 22.70 26.45 0.41
LSTM-A 17.11 22.82 0.27
TABLE 5. Result of long-distance arrival prediction.
Algorithm MAE RMSE MAPE
AMM 199.11 223.08 0.22
AVG 189.59 215.95 0.21
ElasticeCV 141.63 191.69 0.11
BP 130.25 163.88 0.09
LSTM 98.07 111.04 0.086
LSTM-A 39.56 45.63 0.04

closer to the actual arrival time of the bus, so its result is more
accurate. All in all, although some forecast results are not
good, from the overall forecast value it can be noticed that
the forecast results are close to the real value.

TABLE 4 is the experimental result of short-distance
arrival prediction, and the distance between any two stations
will be used in prediction. It can be seen from the experimen-
tal results that LSTM-A has better performance. TABLE 5
is the experimental result of long-distance arrival prediction,
and the distance from the start point to the endpoints will be
used in prediction. It can be seen from the experimental result
that LSTM-A has better performance.

In this section, the bus arrival is predicted based on short-
distance and long-distance respectively, and the predicted
results are evaluated from MAE, RMSE, MAPE and other
aspects. From the experimental results, it can be seen that the
LSTM-A algorithm proposed in this paper is better.

V. CONCLUSION

This paper presents a bus arrival prediction method and has
the following contributions. First, we divided the 24 hours
into 188 time periods to generate a time feature vector.
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After this, the LSTM time window model was established
based on the time period and this model can be used to solve
the window moving problem when handling time prediction
problems.

Second, this paper divided the long path into several spa-
tial segments and used the co-average speed of the current
segment as the instantons speed. The predicted time of each
segment will be used as the spatial feature vector and it will
be sent to the ALSTM.

Third, a novel hybrid neural network ALSTM was pro-
posed to solve the bus station arrival prediction problem.
The spatial-temporal feature vector was established by some
former work and they were sent to the network to finish the
prediction task and achieve great results.

The main contribution of this paper is as followed, based
on LSTM, ANN and the spatial-temporal feature vector,
this paper achieved the goal of solving the bus arrival pre-
diction problem, and avoided the remote dependency and
error accumulation of public transport vehicles. Besides,
this paper divides the bus station prediction problem into
road section predict subproblems. The concept of real-
time calculation is introduced for each related sub-problem,
so as to avoid the prediction error caused by complex road
conditions. Last but not the least, as shown in the experi-
mental results, the proposed algorithm outperforms the sin-
gle neural network model in the accuracy and travel time
prediction.

In the future, we aim to develop this approach by adding
more feature vector, such as the duration and frequency of
traffic signals, climate characteristics, temporary stops of
public transportation vehicles and the proportion of time
spent on boarding and disembarking, etc. [45]. A high-
dimensional vector analysis model is established by introduc-
ing more feature vectors to further improve the accuracy and
reliability of bus-to-station prediction.
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