
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE IN PARALLEL AND DISTRIBUTED COMPUTING

Received October 27, 2019, accepted December 23, 2019, date of publication January 9, 2020, date of current version January 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965184

Adversarial Examples Detection for XSS Attacks
Based on Generative Adversarial Networks
XUEQIN ZHANG 1, YUE ZHOU 1, SONGWEN PEI 2, (Senior Member, IEEE),
JINGJING ZHUGE 1, AND JIAHAO CHEN 1
1Department of Electronic and Communications Engineering, East China University of Science and Technology, Shanghai 200237, China
2Department of Computer Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Corresponding authors: Xueqin Zhang (zxq@ecust.edu.cn) and Songwen Pei (swpei@usst.edu.cn)

This work was supported by the Natural Science Foundation of China under Grant NNSFC 61472139.

ABSTRACT Models based on deep learning are prone to misjudging the results when faced with adversarial
examples. In this paper, we propose an MCTS-T algorithm for generating adversarial examples of cross-site
scripting (XSS) attacks based on Monte Carlo tree search (MCTS) algorithm. The MCTS algorithm enables
the generation model to provide a reward value that reflects the probability of generative examples bypassing
the detector. To guarantee the antagonism and feasibility of the generative adversarial examples, the bypass-
ing rules are restricted. The experimental results indicate that the missed detection rate of adversarial
examples is significantly improved after the MCTS-T generation algorithm. Additionally, we construct a
generative adversarial network (GAN) to optimize the detector and improve the detection rate when dealing
with adversarial examples. After several epochs of adversarial training, the accuracy of detecting adversarial
examples is significantly improved.

INDEX TERMS Network intrusion detection, generative adversarial network, Monte Carlo tree,
convolutional neural networks.

I. INTRODUCTION
Deep learning methods, with their high-precision in clas-
sification and high-speed processing performance, are
expected to complement or replace traditional intrusion
detection technologies in the detection of intrusions under
complex internet environments. Since being proposed by
Hinton and Salakhutdinov [1], deep learning has proven to
have excellent performance in fields such as image classifi-
cation [2], [3] and data mining [4].

However, deep learning technology tends to perform
poorly when faced with adversarial examples. Adversarial
examples can trick machine learning models with minor
adjustments of the original samples, making machine learn-
ing models produce incorrect outputs [5]. Adversarial exam-
ples have been proven to have strong misleading effects
in the field of image recognition [6]. Therefore, adversar-
ial examples have become an unavoidable problem when
developers apply deep learning models to practical issues,
especially in the information security field. Defending against
attacks caused by adversarial examples and minimizing the

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Li .

effectiveness of adversarial examples are important tasks for
deep learning experts in the security field.

Adversarial examples first appeared in the image classi-
fication field [8]. Adversarial examples take advantage of
the highly nonlinear characteristic of the neural network to
deceive the model through minor changes to the original
samples, making machine learning models produce incorrect
classification decisions.

Assuming that function g is defined in sample space X
and that g(x)>0 denotes that the classification result is true,
the attacker’s goal is to design a sample x∗ that makes
g(x∗) >0. Therefore, the following optimal object can be
defined as (1):

x
∗

= argmaxx ĝ(x), s.t. d(x, x
∗

) ≤ dmax (1)

Restrictions specify that the normal distance between the
generated image and the original image must be no larger
than a certain threshold, which means there can only be slight
visual disturbances to the picture. The image can be misclas-
sified with high confidence after this minor change that is
hard to notice with human eyes. However, unlike image data,
for XSS attack traffic data, a small local change to the original
data can ruin the function of the traffic, so the changes can

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 10989

https://orcid.org/0000-0001-7020-1033
https://orcid.org/0000-0002-4851-7493
https://orcid.org/0000-0003-0810-1458
https://orcid.org/0000-0002-5585-2441
https://orcid.org/0000-0002-2082-4379
https://orcid.org/0000-0003-1697-8022


X. Zhang et al.: Adversarial Examples Detection for XSS Attacks Based on GANs

be done to XSS traffic are restricted in this paper. Since the
bypassing rules of the generation model are limited, we use a
probabilistic simulationmethod rather than a gradient descent
method to ensure feasibility; thus, we use a Monte Carlo
tree search (MCTS) algorithm to generate adversarial traffic
examples.

Adversarial training is a training method that can be used
to defend against adversarial examples. The idea is adding
adversarial examples into datasets at the model training stage,
using a mixture of adversarial examples and original samples
as the training sets. Adversarial training can be integrated into
a GAN model to dynamically generate adversarial examples.
The GAN-based adversarial training method is an advance-
ment of deep learning technology. By alternately training the
generator and the discriminator, the discrimination model can
detect an increasing number of generated adversarial exam-
ples and update itself to defend against them. Since the search
scope of the generator is limited by bypassing rules, the dis-
criminator can theoretically cover all adversarial situations.
Using GAN, the discrimination model can avoid traversing
all attack samples and accelerate convergence when defend-
ing against adversarial examples.

In this paper, we proposed an improved MCTS algorithm
to generate adversarial examples of XSS attack traffic data.
The proposed MCTS algorithm guarantees the feasibility
of the generated adversarial traffic examples and provides
a reward for assessing the performance of each bypass-
ing operation. Additionally, we built a GAN network to
optimize the intrusion detection model to defend against
adversarial attacks. The experimental results showed that our
method can effectively obtain adversarial examples, and the
GAN-optimized detection model can effectively defend
against such adversarial examples.

II. RELATED WORK
Deep learning technology has been used in the field of
information security. For intrusion detection, Nathan et al.
proposed a nonsymmetric deep autoencoder (NDAE) based
on a deep autoencoder (DAE). The proposed model cascades
two NDAEs at the end of the network, and uses random forest
as the classifier. It achieved an average accuracy of 97.85%
on the KDD datasets [7]. Vartouni et al. studied HTTP traffic.
They used an n-grammodel to construct a feature vector from
the original internet traffic using isolation forest (iForest)
for classification [8]. The above experiments show that the
application of deep learning techniques in intrusion detection
can lead to high precision and great performance.

Regarding models based on deep learning, adversarial
examples are a serious threat that can be exploited by hackers.
Grosse Kathrin et al. [9] proposed an adversarial examples
generation algorithm for malware detection, which allowed
63% of malware to successfully bypass detectors constructed
by neural networks. Besides, Tang et al. [10] ASG algo-
rithm for Android malware also bypasses the CNN-based
Android malware detector without affecting the original mal-
ware functions. However, regarding the input data form of

the network model, the above two algorithms both extract
the features of the original malware samples and construct
specific binary vectors to indicate whether a software con-
tains a series of behaviors or introduces a specific library file.
This method is ineffective for byte stream-oriented detection
models or other feature extraction methods; therefore, its
application scope is limited. Al-Dujaili [11] adopted a saddle
point optimization method and added adversarial examples to
the training of a detection network to improve the detection
rate of adversarial examples and the robustness of the detec-
tion model. However, this method also extracts the feature
vectors obtained from feature extraction, rather than using the
original byte stream; therefore, the model is very vulnerable
to the influence of the feature extraction algorithm. Such a
method is also used in [12]. Kreuk Felix et al. used two
methods called mid-file injection and end-of-file injection
to restrict the adversarial examples to changing only the
useless parts of malicious software. Using the fast gradient
sign method (FGSM) algorithm, adversarial examples were
generated under the premise that the function of malicious
software was unchanged, which also effectively deceived the
original detector. However, upgrading the detection model to
cope with adversarial examples is not discussed. Compared
with the aforementioned methods, we proposed an improved
MCTS algorithm for generating adversarial examples that
guarantees both antagonism and feasibility and is more effec-
tive than FGSM.

The GAN-based adversarial training method is a useful
way to improve the discrimination model to defend against
adversarial examples. Jie Cao et al. used a GAN to build a
pose-invariant model for human face recognition, which has
effectively improved the recognition rate of the model [13].
Researchers at Carnegie Mellon University used a GAN to
improve the target detection rates of occluded objects [14].
However, few studies have applied GANs to intrusion detec-
tion technologies.

In this paper, we proposed a GAN-based adversarial train-
ing method named MCTS-T to defend against adversarial
examples. To ensure the effectiveness of generated XSS
adversarial samples, two factors of ‘‘modification position’’
and ‘‘modification action’’ are considered synthetically in the
MCTS-T algorithm. Compared to the traditionalMonte Carlo
tree algorithm, the improvements in MCTS-T are as fol-
lows: 1)In the selection stage, an improved UCB method
called UCB-T is proposed to select the best action sequence
and the corresponding adversarial examples for XSS attacks.
2)In the expansion stage, a dropout strategy is applied to
increase the generalization ability of the MCTS-T model.
3)In the simulation stage, feedback is obtained by the detec-
tion model proposed in Section 2.2.

III. GENERATING XSS ADVERSARIAL EXAMPLES
The XSS attack is one of the most common vulnerabilities in
web applications. It induces users to execute malicious scripts
by inserting HTML or JavaScript code into the effective input
area of a website stealing user information. Deep learning

10990 VOLUME 8, 2020



X. Zhang et al.: Adversarial Examples Detection for XSS Attacks Based on GANs

models have proved to be useful for defending against normal
XSS attacks. However, few models are designed for adver-
sarial examples. In this section, we proposed an MCTS-T
algorithm to generate adversarial examples of XSS attacks.
The proposed MCTS-T generation algorithm is specifically
designed as a black model, which means that the attackers do
not need to know the internal configurations of the detectors
to bypass an intrusion detector. Therefore, our generation
algorithm can be easily applied in practice.

A. XSS BYPASSING RULE SETS
Since we need to ensure the feasibility of our generated
attacks, we cannot modify the original data at will. In this
section, we summarized the following bypassing rules based
on OpenAI Gym for XSS attacks:
• Hexadecimal Encoding: After hexadecimal encoding,
tag content can still be parsed by an escape browser.
For example, the hexadecimal escape of letter s is
‘‘&#0x73’’ or ‘‘&#x73’’.

• Decimal Encoding: Similar to hexadecimal encoding,
decimal encoding is available for bypassing. For exam-
ple, the decimal escape of letter s is ‘‘&#115’’.

• URL Encoding: URL encoding is used by browsers
for packaging from the input. It can take the form of
‘‘% + hexadecimal encoding’’. For example, the corre-
sponding URL encoding of letter s is %73. In addition,
unlike hexadecimal encoding, URL encoding can be
applied to any place on the submitting form, rather than
being limited to the tag.

• Inserting Invalid Characters: Inserting invalid characters
such as space, ‘‘/0’’, or enter in the middle of the tag
content will not affect the browser’s normal parsing but
can cut off keywords.

• CaseMixture: HTML tags are not case sensitive. Chang-
ing the content case of the HTML tag will not affect the
normal parsing of browsers.

The proposed MCTS-T generation algorithm can modify
only the original XSS attacks according to the aforemen-
tioned rules to ensure that the modified attacks are still valid.

B. XSS DETECTION MODE
To verify the validity of our algorithm for deep learning
detection models, we build a deep learning anomaly detec-
tion model by referring to paper [15]. The model first con-
verts hexadecimal traffic data into decimal data one by one.
Because each data point is represented by double hexadec-
imal digits in the traffic, the maximum value of each data
point is 255 in decimal and the range of the image pixel
value is 0–255. During the preprocessing stage, the model
converts the original traffic data flow into a two-dimensional
image structure. CNN is used to learn the spatial features
of the traffic image. The multilayer CNN structure extracts
high-dimensional features from the original traffic image,
outputting them as a one-dimensional vector.

The model adopts the default structure and hyperpa-
rameters of Alexnet, which contains eight hidden layers.

Each of the first six hidden layers consists of a CNN layer and
a pooling layer. The last two hidden layers are full connection
layers that integrate the CNN outputs and send them to a
SoftMax layer. Finally, the SoftMax layer predicts the result
according to the feature vector and propagates loss backward
by updating the parameters of CNN.

The model is trained only by the original XSS attacks
dataset. When the training of the model has completely
converged, and its loss and accuracy no longer have obvi-
ous changes, we use the fully convergent detection model
as our baseline to verify whether our generation algo-
rithm can bypass it. Note that we also compared in-depth
learning models; details can be found in the experimental
section.

C. GENERATING ADVERSARIAL EXAMPLES
BASED ON MCTS-T
According to reinforcement learning theory, the variation
operation of XSS traffic is called an action, and the traffic
samples before and after the action are referred to as dif-
ferent states. As mentioned in Section 3.1, each bypass rule
can be defined as an action. Therefore, generating adver-
sarial examples involves determining the action sequence.
We proposed an MCTS-based algorithm to find the optimum
action sequence and generate the corresponding adversarial
examples.

MCTS is a common search algorithm in computer science.
It constructs an incomplete search tree and estimates a glob-
ally optimal solution according to the simulation results of the
partial state sequence. Therefore, the MCTS-based algorithm
can provide a reward value for a black-box model. There are
four main steps in the MCTS algorithm:

Selection: Start traversing from the root node to a deeper
node until reaching a subsequent state node that has not been
visited.

Expansion: Add a subsequent state node to the tree.
Simulation: Start simulating from the new state, i.e., per-

form random operations according to the action set before
reaching the maximum depth.

Feedback: The loss of the final state propagates backward,
updating parameters of the selected nodes in the tree

Different from the traditional MCTS algorithms, we
proposed an MCTS-T algorithm specifically designed
for XSS attacks and applied to generate adversarial
examples.

Assuming that the current state of the sequence is Si
(S0 presents the original state of the sequence), there are
two factors determining the next state Si+1, one is the mod-
ification position and the other is the action corresponding
to each position. In the selection stage, we use the Upper
Confidence Bounds (UCB) algorithm to choose the best path.
The UCB algorithm is a classical selection algorithm often
used by MCTS. The advantage is that it can take into account
the breadth and depth of search, and has a good global
optimization ability. For each node, a UCB value determines
whether we choose the current node. The traditional UCB is

VOLUME 8, 2020 10991



X. Zhang et al.: Adversarial Examples Detection for XSS Attacks Based on GANs

FIGURE 1. Process of generating an adversarial example of XSS attacks using the MCTS-T algorithm.

defined as (2):

UCB =
Rj
Nj
+

√
C × lnN

Nj
(2)

WhereRj represents the total reward of the jth child node,Nj is
the number of times the jth child node is selected. N is the
number of times the current node is selected. So the first part
of this formula is the utilization of existing knowledge, and
the second part is the exploration of inadequately simulated
nodes. Parameter C controls the balance of two parts. How-
ever, such UCB formula is not suitable for XSS attacks. For
the issue of verifying XSS attacks, we have two decision part.
First is to choose the candidate modification scope; Second is
to choose the bypassing action. Besides, we record the num-
ber of times each location has been selected. We define the
reward of position k as R_posk and the times as N_posk . For
each bypassing action, we also define the reward and times
of action j as R_act j and N_act j. Therefore, the improved
UCB-T algorithm for MCTS-T is a Cartesian product of the
candidate modification position and the bypassing action for
each position.

UCB−T =
Rposk×Ractj
Nposk × Nactj

+

√
C1 × lnNpos

Nposk
+

√
C2×lnNact

Nactj
(3)

where C1 and C2 represent the factor of choosing a new
position and a new act. When we find the position posk and
action act j corresponding to the maximum UCB-T value,
the next state Si+1 can be determined.

In the expansion stage, a dropout method is used to
choose the candidate modification position randomly. At the
beginning of the stage, for each single data in the traf-
fic, we stochastically ignore it with a certain probability p
(p= 0.5 usually). The ignored data will not be processed this
time, which makes the generative samples more generalized.
The words with gray backgrounds shown in Fig. 1 are the
examples of the candidate modifications generated by the
dropout method and will change randomly in each selection
stage. All actions in the current state are traversed, and for
each action aj, the sequence state S̃i+T ,j obtained by the action
is saved. We repeat the above action N times and obtain the
final state S̃i+N ,j.

In the simulation stage, for each final state S̃i+N ,j of the
sequence, it will be sent into the XSS detection model D
described in Section 2.2 and obtain the SoftMax output as
confidence 1Ri+N ,j, which represents the traffic sequence
classified as normal or attack.

1Ri+N ,j = SoftMax(D(S̃ i+N ,j)) (4)

In the MCTS, for current state Si, the feedback of action
aj is 1Ri,j. It equals the weighted average value of 1Ri+1,j,
that is

1Ri,j =

∑
j wj · Ri+1,j∑

j wj
(5)

where wj represents a predefined weight associated with the
probability of each action. It can be seen from (5), 1Ri,j is
obtained by1Ri+1,j, and the1Ri+1,j is obtained by1Ri+2,j,
and so on. The 1Ri+N ,j is obtained by Formula (4). The
reward is used as feedback in a sequential layer-based process

10992 VOLUME 8, 2020



X. Zhang et al.: Adversarial Examples Detection for XSS Attacks Based on GANs

until the ith layer is attached. After the reward value 1Ri,j of
each action aj is obtained, we update R_act i,j and R_posi,k in
UCB-T formula as (6) and (7):

R_act i,j = R_act i,j +1Ri,j (6)

R_posi,k = R_posi,k +1Ri,j (7)

Finally, when the search process is finished, the best
sequence is determined according to the UCB-T formula,
and the corresponding adversarial example can also be
determined.

IV. GAN-OPTIMIZED DETECTION MODEL
Deep learning detectors often have difficulty detecting adver-
sarial examples. To address this problem, we add adversarial
examples into the discrimination model training set, labeling
them as attacks and then retrain the model. The process of
generating and training is repeated until the deep learning
model can stably detect adversarial examples. After the deep
learning network converges, the best structure for input inter-
ference resistance is achieved.

FIGURE 2. Structure of the GAN.

The structure of the GAN adopted by this paper is shown
in Fig. 2. The generator G gives a state transition probability
decided by Q to maximize its expected end reward:

J (θ ) =
∑
aj∈A

Gθ (si+1,j|si) · Q
Gθ
Dφ(si, aj) (8)

where QGθDφ(s0, aj) represents the action-value function of aj
obtained by the Monte Carlo search of discrimination net
(in Section 2.3). Thus, a generator is more likely to generate
adversarial examples that can effectively bypass the detector.

Each round of updating the parameters of the discrimina-
tion model is the detection model’s learning process of the
newly generative adversarial examples. For the discrimina-
tion net, the objective loss function is as (9):

min
φ
−EY∼pnormal [logDφ(Y )]− EY∼pattack [log(1− Dφ(Y ))]

−EY∼Gθ [log(1− Dφ(Y ))] (9)

where Y ∼ Pnormal represents real normal traffic data,
Y ∼ Pattack represents real attack traffic data, and Y ∼ Gθ
represents generative XSS adversarial examples.

The generation net and discrimination net carry out mini-
max two-player games, alternately updating parameters. The
specific process is as follows:

Algorithm 1 Training Steps of XSS Traffic Generation Net
Require:GeneratorGθ ; DetectorDθ ; Training samples S0;
Randomly initialize parameters θ of Gθ , Dθ
Pretrain Dθ with original training samples S0
do

empty adversarial set A
for each step in g-steps do

generate XSS adversarial example sT
for t = 1:T do

MCTS calculate action-value Q(st , aj)
end
Calculate loss according to value Q and update
generation net Gθ by Eq. (6)

end
for each step in d-steps do

Train net Dθ with original training samples and
adversarial examples

update net Dθ according to the loss by Eq. (7)
end

whileDθ converged

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this paper, the generation algorithm of adversarial exam-
ples of XSS attacks is studied for the first time. Since no
similar algorithm has been proposed, we perform ablation
experiments to verify the effectiveness of our proposed algo-
rithm. We use the deep learning framework Caffe to build the
XSS intrusion detection model. The PC configuration in this
experiment is a Core i5-7400 CPU, GTX 1060 graphics card,
8G memory, and Ubuntu 16.04 system.

A. DATASETS AND EVALUATION METRIC
To include the new type of XSS attack, an intrusion detec-
tion evaluation dataset called CICIDS2017 [16] is used.
This dataset contains benign and up-to-date common attacks
based on real-world data (PCAPs). Labeled files based on
timestamp, source and destination IPs, source and destination
ports, protocol, and attack are provided in this dataset by the
CICFlowMeter tool. The damn vulnerable web app (DVWA)
is used to automate the attacks in XSS. For this experiment,
we extract 4789 XSS attack traffic examples and 12000 nor-
mal traffic examples from the dataset. Table 1 shows the quan-
titative distribution of the training set and the validation set.

The main evaluating indicators used in the experiment are
recall rate (TPR) and precision:

TPR =
TP

TP+ FN
× 100% (10)

precision =
TP

TP+ FP
× 100% (11)

VOLUME 8, 2020 10993



X. Zhang et al.: Adversarial Examples Detection for XSS Attacks Based on GANs

TABLE 1. Quantitative distribution of datasets.

FIGURE 3. An example of the XSS attack traffic variant.

where TP denotes the number of samples correctly identified
as XSS attacks, FP denotes the number of normal samples
incorrectly identified as XSS attacks, and FN denotes the
number of XSS samples incorrectly identified as normal
traffic.

TPR represents the proportion of correctly identified XSS
attacks in all XSS attacks, and it reflects the rate of false nega-
tives, i.e., 1−TPR. Precision represents the proportion of real
XSS attacks in all samples identified by the model as XSS,
and it reflects the rate of false positives, i.e., 1−precision.

B. EXPERIMENTAL RESULTS
First, we tested the performance of the original XSS attack
detection model (i.e., the discrimination net used in GAN).
XSS variants of XSS attacks in the validation set were gen-
erated through adversarial examples generating the method
described in Section 2. To ensure the robustness of the results,
ten variants were generated for the original XSS traffic, which
means that the ratio of adversarial examples to the original
examples was 10:1. Fig. 3 shows an example of an XSS attack
traffic variant.

In this experiment, we tested the original XSS detector with
the original dataset and the adversarial dataset. We also com-
pared the MCTS-T proposed in this paper with the traditional
FGSM [17]. The experimental results are shown in Table 2.

TABLE 2. Detection results with different generation algorithms.

Here, D_FGSM and D_MCTS-T means the dataset gener-
ated by FGSM andMCTS-T algorithm respectively. The pur-
pose of an algorithm for generating adversarial examples is to

confuse the detection models. The higher the false-negative
rate (the lower the TPR) is, the better the algorithm. The
table shows that the performance of the original detec-
tor is degraded by the adversarial examples and that the
false-negative rate increases, which proves the effective-
ness of the adversarial examples. Additionally, the MCTS-T
algorithm is better than the traditional FGSM algorithm,
increasing the false-negative rate of the detector by approxi-
mately 6%. The precision reflects the false alarm rate of the
model. With a precision above 99%, the deep-learning-based
XSS detection model has a very low false-positive rate.

To further validate the effectiveness of our generated
adversarial dataset, we applied the original dataset and the
adversarial dataset to LSTM [18] and XGBoost [19]. The
hyperparameters of the comparison classifiers are shown
in Table 3. The experimental results are shown in Table 4.

TABLE 3. Structure of comparison classifiers.

TABLE 4. Experimental results with comparison classifier.

Asmentioned above, the decline in TPR indicates the effec-
tiveness of adversarial examples. As shown in Table 4, when

FIGURE 4. Effects of MCTS-T depth on TPR and time consumption.

10994 VOLUME 8, 2020



X. Zhang et al.: Adversarial Examples Detection for XSS Attacks Based on GANs

FIGURE 5. Convergence curve of the discrimination model in GAN. The blue curve shows the accuracy of the
validation sets. The green and orange curves show the loss of the training set and the validation set,
respectively.

TABLE 5. Effects of MCTS-T depth.

using adversarial examples, the TPR of LSTM decreased by
16.51%, and the TPR of XGBoost decreases significantly
by 59.46%. The experimental results prove the effectiveness
of our adversarial examples. The slight increase in Precision
is because the number of adversarial examples is higher than
the number of original examples, leading to a larger TP value
in formula (11).

Second, we compare the effect of the MCTS-T’s search
depth on the search time and effectiveness of adversarial
examples. As shown in Table 5 and Fig. 4, with the increase in
the search depth ofMCTS-T, the detection rate of the detector
for adversarial examples decreases significantly. However,
an increase in tree depth also leads to an increase in the search
time. To balance the effectiveness and generation time of
adversarial examples, a search depth of T = 5 is used.
We observed the iterative process of GAN to find the

change in the detection rate (TPR) for adversarial examples
under different numbers of iterations. The results are shown
in Table 6 and Fig. 5. For the detection model, the goal of
optimization is to defend against adversarial examples; the
lower the false-negative rate (the higher the TPR) is, the better
the detection model. Table 4 shows that, with the increase
in the number of iterations, TPR decreases first and then
increases, while precision remains stable. After more than
5 iterations, the TPR and precision remain stable, and the
model converges. Therefore, 5 iterations are performed. The
experimental results show that the precision remains stable,
indicating that the effectiveness of the detection model is not
affected during the optimization of GAN.

TABLE 6. Detection rate of adversarial examples with different GAN
iterative epochs.

TABLE 7. Performance of the GAN-optimized model.

We also compared the performance of the GAN-optimized
model on the original dataset and the adversarial set generated
by MCTS-T. Table 7 shows that the GAN network optimizes
the original detection mode to make the model more effective
for detecting XSS adversarial examples, with TPR increased
by 8.24%. While ensuring that the false alarm rate does not
increase, GAN greatly improves the ability of the model to
detect adversarial examples.

VI. CONCLUSION
Deep-learning-based XSS attack detection models can detect
attacks effectively, but they cannot to detect adversar-
ial examples. This paper proposed an MCTS-T adver-
sarial example generation algorithm for XSS attacks.
The proposed algorithm can generate adversarial examples
for any black-box model because the MCTS-T can obtain
the reward value by analyzing the statistical result of the

VOLUME 8, 2020 10995



X. Zhang et al.: Adversarial Examples Detection for XSS Attacks Based on GANs

model output. We optimize the XSS detection model with
GAN to enhance its ability to defend against adversar-
ial examples. By alternatively training the discrimination
model and generating new adversarial examples, the con-
vergent discriminant model can detect the adversarial exam-
ples to the greatest extent. The experiments show that the
MCTS-T algorithm can generate effective adversarial exam-
ples to bypass deep-learning-based detectors. Moreover, the
GAN-optimized XSS detection model can defend against
XSS attacks and its adversarial examples. The disadvantage
of MCTS-T algorithm is that it can only generate adversarial
examples of XSS traffic at present. In the future, we will
pay efforts to study a general adversarial example generation
algorithm.

REFERENCES
[1] G. E. Hinton, ‘‘Reducing the dimensionality of data with neural networks,’’

Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006.
[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classifica-

tion with deep convolutional neural networks,’’ in Proc. Int. Conf. Neu-
ral Inf. Process. Syst. Red Hook, NY, USA: Curran Associates, 2012,
pp. 1097–1105.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA,
USA, Jun. 2015, pp. 1–9.

[4] S. Pei, T. Shen, C. Gu, Z. Ning, X. Ye, and N. Xiong, ‘‘3DACN: 3D
augmented convolutional network for time series data,’’ Inf. Sci., vol. 513,
no. 2020, pp. 17–29, Nov. 2019.

[5] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, ‘‘Evasion attacks against machine learning at test
time,’’ inProc. Joint Eur. Conf.Mach. Learn. Knowl. DiscoveryDatabases.
Berlin, Germany: Springer, 2013, pp. 387–402.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, ‘‘Intriguing properties of neural networks,’’ 2013,
arXiv:1312.6199. [Online]. Available: https://arxiv.org/abs/1312.6199

[7] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, ‘‘A deep learning approach to
network intrusion detection,’’ IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 1, pp. 41–50, Feb. 2018.

[8] A. M. Vartouni, S. S. Kashi, and M. Teshnehlab, ‘‘An anomaly detection
method to detect Web attacks using stacked auto-encoder,’’ in Proc. 6th
Iranian Joint Congr. Fuzzy Intell. Syst. (CFIS), Feb. 2018, pp. 131–134.

[9] K. Grosse, N. Papernot, and P. Manoharan, ‘‘Adversarial examples for
malware detection,’’ in Proc. Eur. Symp. Res. Comput. Secur. Cham,
Switzerland: Springer, 2017, pp. 62–79.

[10] T. Chuan, Z. Yi, and Y. Yuexiang, ‘‘DroidGAN: Android adversarial
sample generation framework based on DCGAN,’’ J. Commun., vol. 39,
no. S1, pp. 70–75, 2018.

[11] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. Oreilly, ‘‘Adversarial
deep learning for robust detection of binary encoded malware,’’ in Proc.
IEEE Secur. Privacy Workshops (SPW), vol. 1, May 2018, pp. 76–82.

[12] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and
J. Keshet, ‘‘Deceiving end-to-end deep learning malware detectors using
adversarial examples,’’ 2018, arXiv:1802.04528. [Online]. Available:
https://arxiv.org/abs/1802.04528

[13] J. Cao, Y. Hu, H. Zhang, R. He, and Z. Sun, ‘‘Learning a high fidelity
pose invariant model for high-resolution face frontalization,’’ 2018,
arXiv:1806.08472. [Online]. Available: https://arxiv.org/abs/1806.08472

[14] X. Wang, A. Shrivastava, and A. Gupta, ‘‘A-fast-RCNN: Hard positive
generation via adversary for object detection,’’ 2017, arXiv:1704.03414.
[Online]. Available: https://arxiv.org/abs/1704.03414

[15] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
‘‘HAST-IDS: Learning hierarchical spatial-temporal features using deep
neural networks to improve intrusion detection,’’ IEEE Access, vol. 6,
pp. 1792–1806, 2018.

[16] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, ‘‘Toward generat-
ing a new intrusion detection dataset and intrusion traffic characterization,’’
in Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, 2018, pp. 108–116.

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harness-
ing adversarial examples,’’ 2014, arXiv:1412.6572. [Online]. Available:
https://arxiv.org/abs/1412.6572

[18] S. Althubiti, W. Nick, J. Mason, X. Yuan, and A. Esterline, ‘‘Applying long
short-term memory recurrent neural network for intrusion detection,’’ in
Proc. SoutheastCon, St. Petersburg, FL, USA, Apr. 2018, pp. 1–5.

[19] S. Dhaliwal, A.-A. Nahid, and R. Abbas, ‘‘Effective intrusion detection
system using XGBoost,’’ Information, vol. 9, no. 7, p. 149, Jun. 2018.

XUEQIN ZHANG received the Ph.D. degree
in detection technology and automation devices
from the East China University of Science and
Technology (ECUST), Shanghai, China, in 2007.
Since 1998, she has been with the Electri-
cal and Communication Engineering Department,
ECUST, where she is currently an Associate Pro-
fessor. In 2006, she was a Visiting Scholar with the
University of Wisconsin–Madison. Her research
interests include information security, pattern
classification, and data mining.

YUE ZHOU received the B.S. degree in micro-
electronics from China Jiliang University, in 2017.
He is currently pursuing the M.S. degree in com-
munication and information engineering with the
East China University of Science and Technology.
He has been involved in several intrusion detection
projects. His research interests include intrusion
detection and machine learning.

SONGWEN PEI (Senior Member, IEEE) received
the B.S. degree from the National University of
Defence Technology, Changsha, China, in 2003,
and the Ph.D. degree from Fudan University,
Shanghai, China, in 2009. He has been a Guest
Researcher with the Institute of Computing Tech-
nology, Chinese Academy of Sciences, since 2011.
He was a Research Scientist with the University
of California at Irvine, from 2013 to 2015, and
the Queensland University of Technology, in 2017.

He is currently an Associate Professor with the University of Shanghai
for Science and Technology. His research interests include heterogeneous
multicore systems, cloud computing, and big data. He is a Senior Mem-
ber of the CCF, China. He is also a Board Member of CCF-TCCET and
CCF-TCARCH. He was a recipient of the Pujiang Talent of Shanghai,
the Leading Talent of Suzhou, and the Shanghai Science and Technology
Progress Award.

JINGJING ZHUGE received the B.S. degree in
information engineering from the East China Uni-
versity of Science and Technology, in 2016, where
he is currently pursuing the M.S. degree in signal
and information processing. He has been involved
in numerous network security projects. His cur-
rent research interests include intrusion detection,
machine learning, and neural networks.

JIAHAO CHEN received the B.S. degree from the
East China University of Science and Technology,
in 2016, where he is currently pursuing the M.S.
degree. He has been involved in numerous network
security projects. His current research interests
include intrusion detection, information security,
and pattern recognition.

10996 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	GENERATING XSS ADVERSARIAL EXAMPLES
	XSS BYPASSING RULE SETS
	XSS DETECTION MODE
	GENERATING ADVERSARIAL EXAMPLES BASED ON MCTS-T

	GAN-OPTIMIZED DETECTION MODEL
	EXPERIMENTAL RESULTS AND ANALYSIS
	DATASETS AND EVALUATION METRIC
	EXPERIMENTAL RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	XUEQIN ZHANG
	YUE ZHOU
	SONGWEN PEI
	JINGJING ZHUGE
	JIAHAO CHEN


