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ABSTRACT Caches are widely applied to improve data delivery performance in distributed systems like
edge networks and content delivery networks (CDNs). We consider caching mechanism in those networks
that deliver contents to end users. The challenge comes from the dynamic content distribution problem. The
distribution of data popularity is highly skewed and changing over time. Besides, the access pattern of the
user requests also varies over time. Some learning algorithms for edge caching problems need to rebuild a
new model periodically to adapt to system dynamics, where the knowledge learned from the past is discarded.
Besides, each model updating needs a large amount of data, leading to outdated models for consecutive user
requests. Inspired by the success of incremental learning approaches in processing massive data in real time,
we propose an incremental learning based framework at an edge caching server. The incremental learning
algorithm is used to preserve valuable knowledge and to adapt to dynamic workloads faster. We implement
our incremental learning based cache system prototype and evaluate its performance under various real-world
workloads. The experimental results show that our algorithm can boost cache hit ratio for dynamic workloads

compared with the state-of-the-art caching algorithms.

INDEX TERMS Edge caching, incremental learning, system dynamics.

I. INTRODUCTION

Nowadays content delivery networks (CDNs) and edge net-
works are becoming indispensable architectures of modern
communication networks. Research shows that up to 72%
of internet traffic will be carried by CDNs by 2022 [1].
In those networks, numerous edge content servers such as
CDN leaf nodes and small base stations in 5G networks are
distributed geographically. These servers cache contents from
backend/original content servers for their end-users in prox-
imity. Then, upon arrival of each user request, an appropriate
edge cache server provides cached contents. Caching popular
content in edge servers is promising to achieve massive sav-
ings in terms of energy and bandwidth [2]. With the help of
edge caching, the workloads of back-end content servers can
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be relieved by reducing duplicated downloads and the user
experience can be improved by reducing access latency [3].

One of the key points to enhance the performance of
edge caching servers is to maximize the cache hit ratio,
i.e., the number of cache hits is divided by the total number
of requests on each edge server. The dominant challenges are
as follows. In many real-world workloads, the distribution of
data popularity is highly skewed. As indicated in [4], approxi-
mately 50% to 90% of data objects are infrequently accessed.
Moreover, the access patterns of requests may change over
time [5]. To challenge the access heterogeneity, traditional
caching algorithms often explore the recency and frequency
of requests to place data into cache. Typically, least-recently-
used (LRU), least-frequently-used (LFU) and their variants
are widely used to cache popular objects in CDNs [6].

To better improve the performance of edge cache systems,
machine learning based cache management algorithms are
extensively studied, since edge servers are equipped with
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both caching and computing capacities for intelligent caching
decisions [7]. Applying machine learning approaches to edge
caching is aimed to dynamically cache most popular objects
restricted to storage capacity. By mining the access patterns
of user requests, the features (e.g., the trends of request
frequency) of popular requested objects can be learned. Thus,
storing potentially popular objects in edge servers predicted
by machine learning models could improve cache efficiency.
These algorithms are proposed to boost the cache hit ratio
recently.

However, we observe that some of these learning
approaches [8], [9], especially those offline learning models,
may have the following problems for edge caching. Firstly,
these methods periodically discard the old model since the
model may no longer be suitable for current environment.
The knowledge learned from the past data will be discarded
completely, even though some of the knowledge might be
useful. Secondly, the model can not be updated until it has
accumulated enough data to rebuild a new model. These
learning approaches usually need a large training set and
many iterations of training to efficiently train a model. Edge
caching servers always face fast changing conditions includ-
ing unexpected (or even adversarial) access patterns [9], such
as the changes of users’ preference, sudden heavy workloads
by emerging hot news and mobility of users. Moreover, users
may be remapped to other edge servers by network con-
troller due to load balance or network congestion [10], which
increases the variety of the user access patterns.

Based on these observations, our motivation is to build an
incremental learning based edge caching framework, which
not only keeps recent learned knowledge but also learns new
knowledge from a limited amount of training data. Our goal
is to explore a learning model by the incremental learning
framework to adapt to the changes of the access patterns. As a
result, we propose an efficient learning based edge caching
algorithm to improve the performance of edge caching.

Inspired by the success of incremental learning approaches
in processing non-stationary streaming data, we propose an
incremental learning based framework at an edge caching
server to relieve the problems mentioned above. The key
idea for incremental learning is that continuously add new
information into the already constructed model to adapt to the
change of the environment. The benefit is to exploit current
knowledge and minimize the training time for the model
adaptation to new data distribution [11]. With the proposed
caching framework, we utilize an incremental learning algo-
rithm (Learn++.NSE [12]) to adapt to dynamic workloads
and evaluate its performance.

In summary, our main contributions are as follows.

« We present an incremental learning based framework at
an edge caching server for the caching problem with the
dynamic user access pattern. The incremental learning
algorithm is used to preserve valuable knowledge and to
adapt to dynamic workloads faster.

« We implement our incremental learning based cache
system prototype and evaluate it with several real-world
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workloads. The experimental results show that our algo-
rithm can boost cache hit ratio for dynamic workloads
compared with the state-of-the-art caching algorithms.

The rest of this paper is organized as follows. In section II,
some related work of machine learning based edge cache
management is presented. In section III, some preliminaries
of the incremental learning approach used in our system
are introduced. In section IV, the system model is described
and our objective is formulated. The implementations of
each module of the cache system are discussed in section V.
In section VI, the experimental results with real-world traces
is shown. Finally, conclusions are drawn in section VIIL.

Il. RELATED WORK

With the widely deployment of CDNs and 5G networks,
caching data at edge servers (e.g., small base stations in 5G
networks) has attracted more investigate interests recently.
The goal is that caching a small number of popular objects at
edge caching servers can significantly reduce the workload
for duplicated downloads from back-end data servers [13].
Nowadays, research work focuses on the intelligent caching
management by applying learning algorithms to improve
cache efficiency.

In [14], Li et al. propose a popularity-driven content
caching replacement method by learning the popularity of
content and using it to determine which content it should
store and which it should evict from the cache. In the method,
popularity is learned in an online fashion and requires no
training phase. Further, the work of [15] proposes a Markov
cache model that seamlessly adapts to the changes of request
patterns in a CDN server. The study in [16] models objects
behavior using a conditional probability to predict each object
expected hit density and adapt caching behavior in real time.
The work in [17] formulates a joint content placement and
load balancing under dynamic user request and proposes an
online primal-dual algorithm to reduce the system cost.

Moreover, reinforcement learning methods are exploited
to improve the content caching. The study in [18] jointly
considers global and local popularity demands for a local
small base station and proposes a Q-learning based reinforce-
ment learning scheme to learn and adapt to the underlying
dynamics of user requests. In [19], Chen et al. propose a Deep
Q-Network based reinforcement learning based framework
at an edge node to improve both short-term and long-term
cache hit ratios. The study in [20] proposes a 3D augmented
convolutional network to extract time series information and
solve the problem of imbalanced data. The study in [21]
considers the interaction between a parent caching node and
leaf nodes in CDNs and applies deep reinforcement learning
to adapt to dynamic evolution of user requests.

At the same time, some studies utilize some compli-
cated learning methods to manage edge caching content by
using offline learning models. Narayanan et al. [§] use an
offline-trained LSTM Encoder-Decoder model to forecast
the popularities of objects and to prefetch popular objects.
The method needs a large training set to train a deep
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learning model. If the access pattern changes, the deep
learning model will be retrained with much heavy costs.
In [9], Berger uses lightweight boosted decision trees to
build up a caching decision model, called GDBT. To cope
with the change of access patterns, the algorithm rebuilds
a new model periodically. However, different from online
learning and reinforcement learning, such offline learning
strategies may not be able to adapt the model as soon as
the change of access patterns. Different from those studies,
our work explores a specific incremental learning algorithm
called Learn++.NSE to adapt to dynamic workloads for edge
caching. The method can preserve prior valuable knowledge
and adapt to dynamic workloads faster, which brings a higher
caching efficiency.

lil. PRELIMINARIES
In this section, we briefly describe preliminaries of the incre-
mental learning and its main challenge of concept drift.

A. INCREMENTAL LEARNING

Different from learning methods used in [8], [9], the incre-
mental learning algorithm continuously predicts input
instances and incrementally updates the predicting model
after receiving new instance. The model is originally pro-
posed by a small amount of training data, and make pre-
dictions for the coming instance. As a note, here an input
instance corresponds to an object request. The model is
continuously updated based on the previous one as more
training data arrive. To speed up the model updating process,
the training for data can be done by one-pass computation
without iterations.

The scheme of the incremental learning can be formalized
as follows. For a given sequence of data instances, after
extracting its feature X, a decision model is a function H that
maps the feature X to the output target variable: = H(X).
Therefore an incremental learning algorithm specifies how to
build a map function, which calls a prediction model, from a
sequence of data instances.

We adopt the terms in [22] to describe the basic proce-
dure of incremental learning to make predictions and update
models:

1) Predict: When a new instance with feature X !
arrives, a prediction y’ is made using the prediction
model H'~!.

2) Diagnose: After some time called verification latency,
the true label y' is available and the loss can be esti-
mated as L(y', y').

3) Update: The instance with feature X’ and true label y’
are used for model updating based on previous model
and loss to obtain a new model H’. In some settings,
the losses estimation and the model updating need a
batch of instances rather than in one-by-one way.

The incremental learning methods can update the model
based on previous one upon the arrival of user requests.
As a comparison, offline machine learning approaches
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periodically discard old models and reconstruct new models
by many iterations of training to improve prediction accuracy.

B. CONCEPT DRIFT

The concept drift refers to changes in the conditional dis-
tribution of the output (i.e., predictions of the model) given
the input features [22]. If the concept drift happens, the old
pattern mined from the past data may not be suitable for the
new data, leading to wrong decisions or predictions. Concept
drift can be formally defined as 3X : P, (X,y) # P, (X, ),
where Py, denotes the joint distribution between input feature
X and target variable y at time #( [22]. P(X, y) is composed of
two parts as P(X,y) = P(X) % P(y|X). That is, concept drift
can be triggered by the changes of both P(X) and P(y|X). The
phenomenon of concept drift has been recognized as the root
cause of decreased effectiveness in many data-driven infor-
mation systems such as data-driven early warning systems
and data-driven decision support systems [23].

Learning for edge caching from non-stationary data stream
is a problem of learning under concept drift. Edge caching
nodes face quickly changing conditions that include unex-
pected (or even adversarial) traffic patterns [9], [24]. Besides,
users may be remapped to other edge servers by network
controller due to load balance or network congestion [10].
That is, the distribution of trend features of request pattern,
P(X), varies with time. Same feature may lead to different
popularities for the concept drift. Thus, the distribution of
popularity of requested objects P(y|X) given trend features
also varies with time. For edge caching scenarios, the faster
the prediction model adapts to new distribution, the higher the
cache efficiency can be derived.

Learning under concept drift has been a pop research area.
So far, many incremental learning techniques have been pro-
posed to solve this problem. Learn++.NSE (nonstationary
environments) [12] is an ensemble-based incremental learn-
ing algorithm with the passive approach to accommodate
the uncertainty of concept drift. Passive approaches do not
detect the concept drift in the environment, but rather simply
perform an adaptation to model parameters when new data
arrive. Ensemble based approaches provide a natural fit to
the problem of learning in a non-stationary environment and
have many advantages [25]. First, the algorithm can easily
incorporate new data into the model when new data are pre-
sented, simply by adding new base predictors to the ensemble.
Second, it can forget irrelevant knowledge by removing the
corresponding base predictors. Third, it can perform well
for the reoccurrence of earlier request distribution. To cope
with the concept drift, we use Learn++.NSE in our pro-
posed caching framework to adapt to dynamic distribution of
content popularity. It regularly updates the model based on
previous one after a batch of requests.

IV. SYSTEM MODEL AND PROBLEM DEFINITION

A. EDGE CACHING PROBLEM FORMULATION

Consider a content delivery network (CDN) consists of a core
server connected to a set of edge servers via dedicated links.
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We assume that the core server has access to C =
(1,2, ..., C) objects each of the same size. Each edge server
is equipped with a caching capacity that can cache up to S
objects where S < C. We assume that each edge server serves
M clients requesting objects from the set C.

We assume overall requests are distributed into 7' time slots
sequentially. There are m requests in time slot ¢ denoted as
Req' = (reqi,reqa, ..., reqy), 1 <t < T. Each request
is represented by req: = (pi, gi)', 1 < i < m, where p! is
the timestamp of the request and ¢ is the ID of the requested
object.

In our incremental learning caching framework, a sequence
ofmodelso = (H',H?,...,H',...,H ™), 1 <t <T—-1,
is generated to adapt to dynamic workloads, where H' makes
cache decisions for requests in Req' . At first, Req' is used
to generate initial model H'.

The long-term hit ratio for time slots 2 < ¢ < T is defined
by Equation (1).

_ PR Sy 1(req})
M

where the indicator function L(req}) is defined as
Equation (2).

R

ey

1, if ¢} has been cached

L(req;) = @

0, otherwise

Therefore, our objective is to generate a sequence of mod-
els o to maximize the long-term cache hit ratio as defined in
Equation (3).

maximize E[R|o] 3)
o

B. INCREMENTAL LEARNING FOR EDGE CACHING
As we know that the probability distribution of the data
access frequency is highly skewed, only a small proportion
of data will be accessed with a high probability. Therefore,
it could yield a high hit ratio by keeping the most commonly
accessed objects in the cache [5]. Based on these observa-
tions, the incremental learning algorithm can learn from the
access pattern of the most accessed objects and cache poten-
tially popular objects to improve cache hit ratio. We describe
the incremental learning model and its auto adaptation based
on Learn++.NSE as follows.

Let D' = (di,da,...,dn)", where d = (x;,y),
1 <i < m, xf represents the feature vector for req? and
y; represents the popularity label of the requested object.
A feature vector x will be extracted when request req} comes
and the model H'~! uses x! to get a cache decision according
to Equation (4).

1, cache ¢!

H ™ 'h = 4

0, do not cache ¢!

H'~! is an ensemble composed of base predictors with dif-
ferent voting weights. The cache decision is obtained as the
weighted majority voting of the ensemble members.
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In this work, the learning algorithm tries to learn the access
patterns of objects within the top-K popularity every time
slot 7. Popularity label y; can be revealed by ranking the fre-
quency of distinct objects requested in Reg’. The popularity
label is defined as follows:

. 1, if ¢} with in top K popularity

Yi= 5)

0, otherwise

After revealing y!, D' will be used to update the decision
model according to Equation (6).

H' = x(H'""', D" (6)

where m represents the incremental learning algorithm
to update H' with previous model H'~' and training
data D'.

According to the basic procedure of incremental learning
mentioned in section III, the loss of the batch of instances
between predictions of model H'~! and true popularity label
can be calculated at first. Then D' is used for adapting
learning model based on the previous model and the loss.
As a result, H' will be generated as the model for Reg't!
in time slot # + 1 to adapt to potential changes of the access
pattern. According to Equation (3), the incremental learning
algorithm generates a sequence of models o's to fit the change
of access patterns to improve cache efficiency.

V. SYSTEM FRAMEWORK AND IMPLEMENTATION

In this section, we introduce our proposed incremental learn-
ing based edge caching framework. First, we give a brief
explanation to the function of each component and the whole
workflow. Then, we give a detailed description of the incre-
mental learning mechanism for edge caching.

A. FRAMEWORK OVERVIEW

Our incremental learning based edge caching framework
consists of the following four components: a feature table,
an incremental learning (IL) predictor, data cache and back-
end storage, which are shown in Fig. 1. The first three compo-
nents are located at the edge server while the last component
is located at the core server. The feature table takes the user
requests as the input stream and stores a set of run-time
context information for each distinct requested object. The
IL predictor uses the information in the feature table as an
input to predict whether the requested object to cache or not,
and then returns the decision to the cache. While the cache is
used to store the objects and if a requested object is not cached
it will be retrieved from the backend storage. According to
the incremental learning procedure mentioned in previous
section, the basic workflow at each time slot ¢ takes place
as follows.

For each user request reg! in Req', the requested object’s
timestamp is used to update the context information in the
feature table and the object is looked up in the cache and
returned to the client if the requested object has been cached.
Otherwise, the object will be requested from the backend
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Request Stream Feature Table periodically trigger
(timeStamp’ ID) D PreFreq 7Gup‘ Gap, | Gap, mOdel adaptation
update features D1 v ot e e | |eed| [ T T T T -:
al retrieve features |
reqlf - — - — ] |
' ID_i PF_i Gli | G2i | G3.i . |
req, I I
req, I |
| |
A
req! sk :
! Cache redivton
(ID, value) - — precieiion, — P IL Predictor
req,,
D1 | V.1
m2 | va
retrieve object
DS | Vs retrieve object
——————————— »  Backend Storage
FIGURE 1. The block diagram of the incremental learning based edge caching framework.
Gap,=T10-T5
N
( A
T1 T2 T3 T4 TS T6 T7 T8 T9 T10
1 —2—3—>4—1—2—>3—1—2—1
A —T10-
Gap,=T10-T1 Gap,=T10-T8
FIGURE 2. A simple example to illustrate the gaps of accessed objects.
storage to serve the client. At the same time, the IL predictor We use (Gapi, - - -, Gape) for an identical object as default

is called to get a decision whether to store this object in the
cache or not. At the end of each time slot, the decision model
will be updated based on the information in the feature table
according to incremental learning algorithm.

B. FEATURE TABLE

For each requested object, its context information is mapped
into the feature table as input feature vector for the incre-
mental learning algorithm. When a request comes, timestamp
gaps between consecutive requests to an identical object are
updated. For example, assume that the requested object ID
sequence is 1,2,3,4,1,2,3,1,2, shown in Fig. 2. When
another request for object 1 arrives, the current timestamp
gaps for object 1 is denoted as (Gapy = 2,Gapy = 5,
Gapz = 9). Each object needs a circular queue to maintain its
recent requests’ timestamps restricted with the queue length.
The queue length equals to the length of the feature vector.
When a new request to an object arrives, each prior times-
tamp in the object’s circular queue is subtracted by current
timestamp to get the feature vector. Then, the timestamp
is added into the object’s queue. When the queue is full,
the oldest buffer will be overlaid by the latest timestamp.

VOLUME 8, 2020

features. With limited-length queue, features can be refreshed
identically and dynamically for each object.

The study in [4] merely uses Gap; as the parameter to
measure the frequency of a distinct object; here we use up to
6 timestamped gaps to capture the increasing or decreasing
trends of popularity. The study in [9] uses machine learning
method with consecutive timestamp gaps from 1-50 as fea-
tures, and each model is trained with 1M records. As for our
incremental learning approach, we use only 100K records for
each time slot. Thus, less dimensions of features are used
to simplify the model to avoid insufficient training. Based
on the idea that if the items kept in the cache are the most
commonly accessed ones, the cache has a higher probability
resulting into a higher hit ratio [5]. A frequency counter is also
needed for identical object to record popularity during the
current time slot. When the current time slot ends, the objects
are ranked by frequency counters, and then the counters are
cleaned. The objects with in top-K frequency are labeled as 1
while others are labeled as 0 according to Equation (5). After
the popularity ranking process, features and their correspond-
ing labels are sent to the the IL predictor to trigger model
adaptation.
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C. IL PREDICTOR

The IL predictor plays the important role in the whole frame-
work, which completes the following two tasks: prediction
and adaptation. For a cache miss, it predicts an object whether
within the top-K popularity or not according to Equation (5),
and returns the prediction to the cache controller. For a cache
hit, the IL predictor just counts it and the hit count will
be used to compute the misclassification ratio during model
adaptation phase.

When time slot 7 ends, the IL predictor H’ —1 will be
updated by the model auto adaptation algorithm. All requests
in time slot ¢ forms a training set to evaluate and update the
model H'~!. The main procedure can be described as follows.

1) For each cache miss in current request stream Reg’, for
example req’, the IL predictor will look up the features
x] of requested object from the feature table, and then
input the features to current prediction model H'~! to
make a binary decision to cache it or not.
2) After processing a predefined batch size m of object
requests, the model adaptation algorithm is triggered.
For adaptation, the algorithm evaluates the loss in cur-
rent time slot and gets a new ensemble model H'.

3) The new model is used to predict for requests in time
slot r + 1.

The model auto adaption algorithm is the core of the incre-
mental learning framework. To implement it, there are the
following three aspects to consider. Firstly, the algorithm gets
misclassification ratio to inspect the degree of environment
change in current time slot. All instances are weighted by the
misclassification ratio to measure their efficiency for training.
Secondly, the algorithm trains a new base classifier; and then,
all existing base classifiers are evaluated on the weighted
instances in time slot ¢. Finally, different voting weights are
distributed to base classifiers according to their historical
performances. The base classifiers with higher performance
are more fitted to the recent access pattern. Then, a new model
can be derived. A more detailed description of the algorithm
is shown in Algorithm 1.

The training set D' is available at the end of time slot 7.
Each of m instances of D' consists of the feature vector x! and
the popularity label y;. For t = 1, the knowledge base is ini-
tialized on the first available batch of data, and the weight w}
for each instance is setto 1 /m. Fortz > 1, the misclassification
ratio E' of the ensemble H'~! is calculated by Equation (7),
which reflects the degree of environment change.

m
E'=1/m-Y LH"(}) #}) (7)

i=1
Then, instance error weights w! are updated according
to Equation (8) and are normalized to F f to evaluate the
competence of base classifiers. Misclassified instances give a
higher weight for better learning to base classifiers than those
instances correctly classified. If the misclassification ratio
E! is lower, base classifiers will get higher punishment with
misclassified instances for their incompetence. Otherwise,
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Algorithm 1 The Model Auto Adaptation Algorithm

Input:
1: Training set D" = (x;,y;)",i =1, ..., min time slot f;
2: Base classifiers hy, k = 1,2,...,t — 1 generated in

previous time slots;
3: Sigmoid parameter a (slope) and b (infliction point).
Output: New model H'*1,
4. 1.Weight instances:
5. if t = 1 then
6: Initialize F} = w] = 1/m, Vi
7: else Fl = wi/ Y00 wih, Vi
8: end if
9: 2.Evaluate base classifiers:
10: Generate a base classifier ; with D
1 g =y Lo L(hy(x)) # i), fork =1,2,...,¢
12: if ¢f_, > 1/2 then
13: generate a new base classifier 4,
14: end if
15: if e _, > 1/2 then
16: sete, =1/2
17: end if
18: Br =€, /(1 —¢gp), fork =1,...,¢
19: 3.Weight base classifiers and update model:
200 By =350, B fork=1,2,...,1
21: Wl =log(1/B;), fork =1,2,...,¢
22: H’(xf‘“) = arg max. y_;, W[ - ]l(hk(xl.’H) =), forc €
{0, 1}

it does not need to punish base classifiers.

E', H'"™'G)) =)

1, otherwise

®)

wh=1/m-

Next, the training set D is used to train a new base clas-
sifier, h;, to adapt to new environment. Note that only base
classifiers with error ratio less than 1/2 can boost ensem-
ble’s performance. Thus, the new generated classifier will
be retrained if the misclassification ratio is greater than 1/2.
The base classifiers i (k = 1,---,t — 1) are evaluated
with weighted instances to get the misclassification ratio &},
in time slot k, and the maximum error is saturated at 1/2. &} is
normalized between [0, 1] interval as ,B,’{, where 0 represents
no error, and 1 represents the max error ratio.

For weighting base classifiers, the normalized error f;
of each base classifier is weighted by a Sigmoid function
which evaluates recent history performance. In the original
Sigmoid function as shown in Equation 9, the slope parameter
a represents the declining degree of the Sigmoid function and
the infliction point parameter b indicates the halfway crossing
point. These parameters allow to weight classifiers over a
certain scope of times. The Sigmoid function is normalized
according to Equation (10).

O—Ii = 1/(1 +e—a(t—k—b)) )
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t—k
of =0(/> o’ (10)
=0

Then, the final voting weight W/ of each base classifier
is derived as a log-normalized form of the weighted error,
which is commonly used to update weights of base classifiers
in ensemble learning. As a result, the recent competence is
considered with more voting weights. Under this sigmoidal
weighting strategy, any classifier containing relevant knowl-
edge can receive a high voting weight. Note that it is not
the classifier age that affects the voting weight, but the com-
petence determinates its voting weight according to recent
environments. Finally, a new model H' is derived and will
be applied in next time slot, where ¢ = 0 means not caching
the requested object while ¢ = 1 means caching according to
Equation (2).

To sum up, the model auto adaptation algorithm uses
three ways to adapt to changes of the access pattern of
requests. First, the algorithm gives instances different weights
to adapt to the changes and to boost the model performance.
Second, the algorithm gives base classifiers different voting
weights according to their error weights. When access pattern
changes, base classifiers with bad performance will be frozen
by low voting weights. When the base classifiers fit the access
pattern again, they can be activated with high voting weights.
Third, the voting weights of base classifiers are weighted by
the recent performances. Thus, the ensemble can catch up
with the latest trends. In this work, the model auto adaptation
algorithm is used to update the model in an incremental
learning way as the access pattern of requests changes.

D. CACHE CONTROLLER

This component contains cached objects physically. If the
requested object has been cached, then it will be served by
the cache. The cache management policy is based on the deci-
sions of the IL predictor. If a cache miss happens, the cache
controller will fetch the requested object from the backend
storage. Meanwhile, it lets the IL predictor to predict whether
the object will be in top-K popularity or not. The IL predictor
first looks up features x; from feature table and then make a
prediction. If the prediction is H'~!(x!) = 1, the object will
be prefetched into the cache. Here we use LRU as the cache
replacement policy.

VI. EXPERIMENTAL EVALUATION
A. SIMULATION SETUP
We implemented the IL predictor based on Learn++.NSE
algorithm [26] and the whole prototype was written in JAVA
in a CentOS operating system. The measurements are taken
on a single core of an Intel i7-7700K CPU running at 4.2GHz
with 16GB RAM and one 1TB 7200rpm hard disk. We eval-
uated the proposed caching algorithm with public real-world
workloads.

There are many factors that affect the performance of our
algorithm, such as properties of datasets, cache capacities,
features for the learning algorithm. In our implementation,
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TABLE 1. The characteristics of the used datasets to evaluate the
performance of caching algorithms.

# of requests (M) | # of identical objects (M)
CDN 10 2.26
Wikipedia 9 1.59

the length of each time slot is set to 100K, and the top-
20% popular objects in each time slot are labeled as popular,
ie., y§ = 1. The access feature takes (Gapy, - - - , Gapg) by
default. The base classifier for Learn++.NSE is the naive
Bayes, and the Sigmoid parameters are a = 0.5,b = 10
as recommend in [12]. Since the halfway crossing point of
the Sigmoid function b = 10, latest 20 base classifiers are
maintained and the old ones are pruned to reduce memory
cost.

We compared our proposed algorithm with LRU,
LRU-K [27], LFUDA [28] algorithms which are commonly
used algorithms in CDNs [28] and GDBT proposed by [9].
LRU-K caches objects after the K hits in an LRU list to filter
burst data. In this study, the parameter K is set to 2. LFUDA
dynamically ages the frequency counters of LFU to reduce
cache pollution problem of LFU. For each trace, another
1 million records are used to warm up the IL. model by 10 base
classifiers without caching objects, which is enough ensure
the learning process to converge. Similarly, 1 million records
are also used to warm up a GDBT model. GDBT uses the
same settings to train as IL models (the same access features
and the top-20% popularity). Each GDBT model is updated
every 1 million requests with 30 iterations as done in [9].

B. WORKLOAD ANALYSIS

We use two public real-world workloads described in Table 1
to evaluate the performance. Each piece of requests is com-
posed of timestamp and object ID. Another 1M pieces of
records to warm up both GDBT and incremental learning
models are not included in the table.

o CDN [9] refers to production trace from anonymous
top-ten US websites recorded on a SanFrancisco CDN
server. We select 10M pieces of requests with about
2.3M distinct objects.

« Wikipedia [29] is reference to web request to Wikipedia
servers. We select 9M pieces of requests with about
1.5M identical objects at the beginning of Novem-
ber 2007.

C. PERFORMANCE ANALYSIS

We first show the performance of the proposed algorithm for
cache hit ratio under different cache capacities. We vary the
cache capacity from 0.8% to 5% of distinct objects. Then,
we evaluate the cache hit ratio of our proposed IL algorithm
and compare it with other algorithms.

The performance for cache hit ratio with different caching
strategies is illustrated in Fig. 3 and Fig. 4. We observe that
IL algorithm is always superior to LRU-K, LFUDA and LRU.
For CDN trace, IL algorithm performs better than GDBT
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FIGURE 3. Hit-ratio comparison under different caching algorithms driven
by CDN trace (IL with the default 6 gaps as feature).
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FIGURE 4. Hit-ratio comparison under different caching algorithms driven
by Wikipedia trace (IL with the default 6 gaps as feature).

when cache size is larger than 34K and up to 3.7% higher
with the 113K cache size. When the cache size is about 18K,
GDBT performs 3.2% better than IL. As for Wikipedia trace,
IL algorithm commonly performs better than GDBT with
the max advantage up to 2.6%. Except when cache size
is about 12K, GDBT performs 0.9% better than IL. The
Wikipedia trace has a larger proportion of identical objects to
the requests than CDN trace. Thus, requests for same objects
are more than CDN trace, resulting higher hit ratio. Besides,
each GDBT model is trained with traces up to 10x than each
IL model. Thus, GDBT model is more competent at learning
features of long term popular objects and is more competent
with smaller cache. Because when cache size is getting larger,
the cache hit ratio is raised by admitting medium popular
objects. The GDBT model tends to not admit in medium
popular objects for the impact of training with longer traces.
However, IL based caching policy is more likely to cache
medium popular objects than GDBT because of the shorter
model updating period. To sum up, GDBT based caching
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FIGURE 5. Hit-ratios of IL algorithm with different features driven by CDN
trace.
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FIGURE 6. Hit-ratios of IL algorithm with different features driven by
Wikipedia trace.

policy performs better when the cache size is small, but IL
based caching algorithm performs better when cache size is
getting larger.

As shown in Fig. 5 and Fig. 6, we compare the impact
for the cache hit ratio under IL algorithms with different
features. The quantity of features plays an important role for
caching performances. IL_12 denotes timestamp gap features
(Gapy, - - - , Gapyz2). With a larger time scope considered,
the most popular objects might be requested several times
more than the medium popular ones. Thus, the feature vectors
differ a lot between the medium popular objects and the
most popular ones. When cache size is small, large times-
tamp gaps such as Gapl2 can help admit the most popular
objects. However, when cache size is getting larger, medium
popular objects might not be admitted into the cache for their
feature Gapi, just being empty. IL_4 denotes features from
(Gapy, - - - , Gaps). With less features considered in IL_4,
the feature vectors of medium popular objects are more close
to the most popular ones.
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The influence of popularity label for the cache hit ratio is
illustrated in Fig. 7 and Fig. 8. According to Equation (5),
objects within the top-K frequency in a time slot are taken as
popularity labels y} = 1. Different percentages from 10% to
30% are denoted as IL_pop10%, IL_pop20%, IL_pop30%,
respectively. The strategy taking top-10% frequency as pop-
ularity label tends to admit the most popular objects and
performs better when cache size is small. Only objects with
features of top-10% popularity will be admitted into the
cache. The medium popular objects are more likely to be
admitted under the strategy taking top-30% as popular. Thus,
the strategy taking top-30% as popular performs better when
cache size is getting larger.

Fig. 9. shows the time consumption in dealing with user
requests under different features. Since only time consump-
tion of the learning algorithms is taken into consideration,
different datasets should have same time cost under same
algorithm. For each 1 million requests, GDBT based offline
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FIGURE 9. Time consumption comparison under different features.

caching algorithm generates only one model, whereas our IL
based algorithm generates up to 10 models to fit latest access
patterns and achieve higher cache hit ratio. Under the default
setting as features (Gap - - - Gap6), each model training time
of IL_6 consumes only 3.6% of the model training time of
GDBT. It uses 20 base predictors (the naive Bayes) to keep
previous knowledge and thus costs more time on predictions.
Taking both prediction and model updating into considera-
tion, the overall throughput of IL_6 is about 24% higher than
that of GDBT. Under different features, the time consumption
for IL is always less than that of GDBT.

VIi. CONCLUSION

In this paper, we consider an edge caching mechanism for
edge networks to deliver contents to end users. The challenge
comes from the dynamic content popularity distribution and
the frequent changed request patterns. By integrating the
advances in edge networks with the advances in machine
learning, the future role of edge applications is becoming
more intelligent. It’s expected that the performance of edge
caching can be significantly improved by various learning
algorithms. However, some learning algorithms for edge
caching problems need to rebuild a new model periodically
to adapt to changes of the access pattern of user requests,
and then the knowledge learned from the past may be dis-
carded. Besides, each model updating needs massive training
data, during which the model might be outdated. This work
presented an incremental learning based edge caching frame-
work to preserve valuable knowledge and adapt to dynamic
workloads. We implemented our incremental learning based
cache prototype and evaluate its performance with various
real-world workloads, and compared its performance with
the state-of-the-art algorithms. The experimental results show
that our proposed method performs better with real-world
workloads in most cases. The extensions of our proposed
framework for more general edge caching system models will
be our on-going research topics.
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