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ABSTRACT Censoredmeasurements frequently occur in network systems involving censored sensors or sat-
urated sensors. In addition, unreliable network characteristics can produce random measurement delays
during signal transmission. In this paper, we investigate the state estimation problem for network systems
with the simultaneous appearance of the aforementioned two measurement uncertainties. The occurrences
of two random measurement phenomena are described by two Bernoulli random variables in which the
censored variable is dependent on the delay variable. The probability of the process signal being uncensored
is calculated by the local approximations using a priori and a posteriori of the state estimation. Then, a novel
measurement model that incorporates both the censoring random matrix and the signal delay is established.
Based on this model, an optimal recursive estimation method is proposed for systems with specified two
uncertainties by making use of an innovation analysis approach and a weighted conditional expectation
formula. The superior performance of our proposed method is verified through a typical oscillator simulation
example.

INDEX TERMS Censoredmeasurement, innovation analysis, randomparametermatrices, randomly delayed
measurements.

I. INTRODUCTION
In the last few decades, the problem of state estimation for
discrete-time linear systems has been extensively studied
by researchers owing to its important applications in var-
ious fields such as target tracking, navigation and param-
eter estimation [1]–[10]. The sources of network system
uncertainties, such as imperfect transmission channels, net-
work congestion, and sensor saturated mechanisms, will
result in the signals being subject to problems of ran-
dom delays [11]–[13], saturation [14]–[16], and/or packet
dropouts [17], [18].

Tobit measurement censoring is a common uncertainty
that occurs in many engineering applications such as i) bio-
chemical measurements with limit-of-detection saturation,
ii)inexpensive sensors with saturation censoring, and iii) line-
of-sight tracking with occlusion. Tobit censoring is also
referred to as clipped measurement or limit-of-detection
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discontinuity, and it arises from limitations in the dynamic
range of sensors. Specifically, if the signal to be measured
exceeds the sensor inherent threshold, those signals could
be censored and cannot be measured correctly [15], [16].
Censoring has the form of a piecewise linear transform,
with a zero slope in the censored region, causing signifi-
cant challenges to the general nonlinear estimators, such as
the unscented Kalman filter (UKF) and extended Kalman
filter (EKF) [19]. An attempt was previously made in [14]
to manage the state estimation of censored measurements.
Although the measurement noise is non-Gaussian near the
censoring region, a novel Tobit Kalman filter (TKF) was
developed based on the formulation of the Kalman fil-
ter [20], which was a computationally efficient, unbiased
recursive estimator for this special dynamic system with
censored measurements. In the literature [19], it was shown
that the TKF has more accurate state estimates and state
error covariance with censored measurement data, while both
EKF and UKF provide unreliable estimates in censored data
conditions.
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Later studies have been made to the TKF so as to accom-
modate the effects of fading measurement, non-Gaussian
Lévy measurement noise, multiplicative measurement noise,
multiplicative measurement noise under redundant transmis-
sion channels protocol, and additive measurement random
matrices [21]–[24]. In the area of multisensor information
fusion, by setting delayed data packet obeying a Poisson
distribution, a distributed federated TKF algorithm over a
packet-delaying networkwas developed in [25], while in [26],
a modified TKF with two-side censoring was proposed and
applied in event-based multisensor fusion with a deadzone-
like measurement.

Additionally, in either signal processing or control the-
ory, discrete-time systems with random transmission delays
arise in many real-world communication networks, such as
hydraulic processes, temperature processes, chemical sys-
tems and large-scale industrial network systems [11], [27].
Noticing the significance of measurement delays to state
estimation, existing works [11]–[13] have studied EKF with
one-step random measurement delay, and UKF with one-
step or two-step random measurement delays for networks
with nonlinearity via the least square filtering method.
A generalized Gaussian-type filter with a one-step random
measurement delay was presented in [28] under a unified
framework, which includes the implementation of a cubature
Kalman filter (CKF) with a one-step random delay. Based on
the Monte Carlo method, a novel particle filtering method
for nonlinear systems with random one-step delayed mea-
surements was proposed in [29], with the unknown delay
probability being estimated via the maximum likelihood cri-
terion. Then, a particle filter algorithm for network systems
with random one- or two-step delayed measurements was
investigated in [30]. Considering multiple-step measurement
delays, a particle filter was designed in [31] by applying a
similar idea as in [29]. The above discussions demonstrate
that state estimation, for systems with delayedmeasurements,
is an aspect of deep concern.

Recently, discrete-time systems with mixed uncertainties
(e.g., missing measurements, random measurement delays,
and packet dropouts) have been increasingly considered.
The filtering problem for such systems has been thoroughly
studied via different theoretical frameworks. For example,
in [27],based on the mean and covariance functions of the
signal and noises, recursive least-squares linear estimation
algorithms were derived for one-step measurement delay and
packet dropout by an innovation approach; in [17], with
a state-space method, a unified parameterized augmented
model was defined to describe triple uncertainty, and three
sequences of Bernoulli variables were used to model the
entire uncertain system, based on which the optimal linear
filter, predictor and smoother were obtained via an innovation
approach; in [32], a particle filter for nonlinear networked
systems with random one-step delay and missing measure-
ments was proposed by utilizing two Bernoulli random vari-
ables. Under the framework of a Gaussian filter, a Gaussian
weighted integral method was developed in [33] for nonlinear

systems with a one-step measurement delay and colored
noise; in [34], for linear systems influenced by multiplicative
and time-correlated additive measurement noise, an optimal
linear estimator was proposed without computing the inverse
of the state transition matrix.

If the network system contains the censored sensor,
the simultaneous consideration of transmission delay and the
effect of the censored sensor are significant and unavoid-
able in practical engineering. Unfortunately, although some
approaches have been proposed for systems with censored
sensors [20]–[26], a recursive filtering algorithm for censored
sensors with the receiving signal subject to one-step mea-
surement delay has not been investigated to date. The reason
may be because the calculation process is beyond the existing
framework of TKF, and this process cannot be solved by the
simple combination of the TKF and the measurement delay
model. Also, if the TKF is applied to networks where trans-
mission channels to the censored sensor can induce random
delay, the performance of the TKF would inevitably degrade.

Motivated by the above discussions, in this paper, we aim
to improve the TKF by developing a novel recursive filtering
algorithm, which can deal with estimation problems in the
network systems with a one-step delayed signal and censored
measurement. The delayed signal and censored measurement
are bothmodeled as sequences of Bernoulli random variables.
Furthermore, a new measurement model is set to simultane-
ously incorporate the above two random phenomena.

The main contributions of this paper are highlighted as
follows. (i) To the best of the authors’ knowledge, this paper
represents the first of the few attempts to deal with the
recursive filtering problem for linear systems with a one-
step delayed signal and censored measurement in a unified
framework by an innovation analysis and the technique of
random matrix expectation. (ii) Compared with the TKFs
in [20]–[23], the calculation of probability being uncensored
includes not only the calculation of the current signal with
a one-step state prediction but also the calculation of the
delayed signal with the state posteriori. (iii) The proposed
filter is of a recursive nature and is thus suitable for online
applications.

The rest of the paper is organized as follows. The problem
to be investigated is formulated in Section II. The proposed
recursion algorithm is derived in Section III. Example of
an oscillator is provided in Section IV to demonstrate the
applicability and superiority of the proposed state estimation
algorithm. Concluding remarks are drawn in Section V.
Notation: The notations used throughout the paper are

standard except where otherwise stated. For any matrix A
the symbols AT and A−1 represent its transpose and inverse,
respectively; Rn denotes the n-dimensional Euclidean space
and Rm+n is the set of n × m real matrices. In and 0 rep-
resent the n × n identity matrix and zero matrix of appro-
priate dimensions, respectively. Ai,j and Ai represent the
(i, j)th subblock and ith row, respectively, of the matrix A.
diag ([xm]) represents a diagonalmatrix whose diagonal entry
is xm, and col {x1, · · · , xm} represents the column vector.
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Superscripts ‘‘∧′′ and ‘‘ ∼′′ over certain variables rep-
resent the estimate and the estimation error, respectively.
Moreover, for arbitrary random vectors X and Y, we denote
Cov (X,Y) = E

[
XYT

]
− E [X] E[Y]T . and Var (X) =

Cov (X,X), where E [·] represents the mathematical expecta-
tion operator. The symbol δk represents the Kronecker delta
function, which is equal to one at time k , and zero, otherwise.
Let λ (α) = φ (α)

/
[1−8(α)], where φ (·) and 8(·) are

the probability density function (pdf) and the cumulative dis-
tribution function (cdf), respectively, of a Gaussian random
variable.

II. PROBLEM FORMULATION
Consider the following linear discrete time-varying system:

xk = Ak−1xk−1 + wk−1 (1)

z̄k = Ckxk + vk (2)

where xk ∈ Rnx and z̄k ∈ Rny denote the state vector and
the ideal measurement vector, respectively. Ak ∈ Rnx×nx

and Ck ∈ Rny×nx are the known time-varying system matrix
with appropriate dimensions. wk ∈ Rnx and vk ∈ Rny are
the zero-mean Gaussian noise with covariance Qk and Rk ,
respectively.

The latent signal transmissionmodel to the censored sensor
is given by

ȳ∗k =

{
(1− γk) z̄k + γk z̄k−1 k ≥ 2
z̄1 k = 1,

(3)

where the random variable sequence {γk , k ≥ 1} is mutually
independent and denotes the random one-step delay, satis-
fying the Bernoulli distribution with the statistical property
E [γk ] = pk , and the signal z̄1 is always received by the
censored sensor.

The structure of a network system is outlined as follows:
the state xk is evolving through a state equation, the outputs
signal z̄k generated from xk are sent to the censored sensor
via an unreliable network mechanism, and during this period
the one-step delay phenomenon may occur; that is, z̄k−1 may
be received by the censored sensor at time k , and the output
ȳk transformed by the censored sensor with input z̄k or z̄k−1
is transmitted to the fusion center for state estimation (see
Fig. 1).

As illustrated by Fig. 1, the transmission signal with delay
is censored by the censored sensors, so the actual measure-
ment output for state estimation has the following expression:

ȳk =

{
ȳ∗k ȳ∗k > τ

τ ȳ∗k > τ ,
(4)

where ȳk is the actual measurement output, and τ =[
τ 1 · · · τm · · · τ ny

]T
∈ Rny×1 denotes the censoring thresh-

old vector.
To have a better predictive description of whether the

latent measurement ȳ∗mk
(
m = 1, · · · , ny

)
will be censored,

we introduce an additional Bernoulli random variable

FIGURE 1. Flow chart of the sensor network system.

ηk
m
(
m = 1, · · · , ny

)
at time k − 1 as follows:

ηk
m
=

{
1 (1− γk) z̄mk + γk z̄

m
k−1 > τm

0 (1− γk) z̄mk + γk z̄
m
k−1 ≤ τ

m,

η1
m
=

{
1 z̄m1 > τm

0 z̄m1 ≤ τ
m k = 1,

(5)

where ηkm = 1 denotes that the latent measurement ȳ∗mk will
not be censored and the system output for state estimation
is ȳ∗mk , and ηkm = 0 denotes that threshold τm will be
output for the state estimation at time k . So the influence
of measurement output on the state xk will be represented
by (1− γk) z̄mk + γk z̄

m
k−1 with probability E [ηkm]. From (5),

variables ηkm
(
m = 1, · · · , ny

)
are dependent on the delayed

Bernoulli variables γk , and the probability of the measure-
ment ȳ∗mk being uncensored is identical to that of the occur-
rence of the event {ηkm = 1}, which is denoted as ckm with
the probability distribution as follows:

ckm = p
{
ηk

m
= 1

}
= p

{
ȳ∗mk > τm

}
, (6)

At any given time step k , the probability ckm is unknown
and needs be computed. The probability value will be pre-
sented in section III.

Let 5k = diag
{
ηk

1, ηk
2, · · · , ηk

ny
}
denote the diagonal

Bernoulli random matrix, which indicates the censored ran-
domness of latent measurement ȳ∗mk . With5k we modify (4)
to the following censoring measurement model:

yk = (1− γk)5kzk + γk5kzk−1. (7)

Remark 1: Model (7) represents the rewritten form of (4),
which includes the censoring matrix 5k and the translation
transformation of the censoring measurement equation ȳk =
5k ȳ∗k +

(
Iny −5k

)
τ with zk = z̄k − τ , zk−1 = z̄k−1− τ and

yk = ȳk − τ . In addition, model(7) has a similar form as the
delay measurement model formulated in [12], [13] and [29],
except that there exists the censoring Bernoulli matrix. This
transformation helps tomake themeasurement equationmore
compact and concise.

Owing to the transformation in (7), the above (3), (4), and
(5) are correspondingly rewritten as:

y∗k =

{
(1− γk) zk + γkzk−1 k ≥ 2
z1 k = 1

yk =

{
y∗k y∗k > 0
0 y∗k ≤ 0;
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ηk
m
=

{
1 (1− γk) zmk + γkz

m
k−1 > 0

0 (1− γk) zmk + γkz
m
k−1 ≤ 0;

η1
m
=

{
1 zm1 > 0
0 zm1 ≤ 0, k = 1.

(8)

The probability ckm can also be expressed as:

ckm = p
{
ηk

m
= 1

}
= p

{
ymk > 0

}
. (9)

To facilitate subsequent developments, we introduce the fol-
lowing definitions:

χk = Ckxk − τ ,Yk−1 =
{
yi
}k−1
i=1 , χ̂k|k−1 = E

[
χk |Yk−1

]
,

x̂k|k−1 = E [xk |Yk−1 ] ,Pk|k−1 = E
[
x̃k x̃Tk |Yk−1

]
,

Pk,k−1|k−1 =E
[
x̃k x̃Tk−1 |Yk−1

]
, χ̂k−1|k−1 =E

[
χk−1 |Yk−1

]
,

x̂k−1|k−1 = E [xk−1 |Yk−1 ] , x̂k−1|k−1 = E [vk−1 |Yk−1 ] ,

v̂k|k−1 = E [vk |Yk−1 ] ,Pvvk−1|k−1 = E
[
ṽk−1ṽTk−1 |Yk−1

]
,

ẑk−1|k−1 = E [zk−1 |Yk−1 ] ,Lmk|k−1=
(
−χ̂

m
k|k−1

)/√
Rm,mk ,

Lmk−1|k−1 =
(
−χ̂

m
k−1|k−1

)/√
Rm,mk−1,

λ
(
Lk|k−1

)
= col

{
λ
(
L1k|k−1

)
, · · · , λ

(
L
ny
k|k−1

)}
. (10)

Next, for the addressed problem, the following two
assumptions are made.
Assumption 1: The initial state x0 and the processes
{wk , k ≥ 1}, {vk , k ≥ 1} and {γk , k ≥ 1} are mutually inde-
pendent.
Assumption 2: For small state estimation errors, x̂k|k−1 and

the estimate x̂k−1|k−1 provide a reasonably accurate approx-
imation of xk and xk−1.

Assumption 2 is made to account for the probability
of uncensored measurement, because this probability at
time k is a function of distance of latent measurement
and the threshold. If the latent measurement is one-step
delayed signal zk−1, the posterior estimate x̂k−1|k−1 will be
used to approximate the probability of signal zk−1 being
uncensored, which is similar to use the predictive estimate
x̂k|k−1 for the probability of signal zk being uncensored at
time k .

III. MAIN RESULTS
In this section, we aim to establish a unified framework
to solve the addressed recursive filtering problem in the
simultaneous presence of delayed transmission signal and
censored measurements. Although the TKF was obtained
under a similar framework as the Kalman filter (KF), it is
insufficient to the actual problem we are addressing. We will
establish filter theory via an innovation analysis approach,
which has two main differences from the idea proposed
in [20]:i) a modified uncensored probability encompassing
the probability of occurrence of the delayed signal zk−1, and

ii) additional computations of uncensored statistics involved
with the delayed signal zk−1.

A. UNCENSORED PROBABILITY AND PROPERTY
First, for the given systems (1)-(4), state prediction is pre-
sented, which has the same form as the prediction of the KF
due to the Gaussian process noise, and the expression is:

x̂k|k−1 = Ak x̂k−1|k−1 , Pk|k−1 = AkPk−1|k−1ATk + Qk .

(11)

With state prediction, the probability of latent signal z1 being
uncensored can be calculated by the initial state value. As the
received latent measurement by the censoring sensor may be
delayed signal zk−1 at time k; the calculation of probability
of measurement being uncensored should contain this pos-
sibility. Thus, using the conditional probability and law of
total expectation, the probability ckm can be obtained by the
following lemma.
Lemma:The probability ckm of themeasurement y∗mk being

uncensored is approximated as:

ckm ≈ pk
(
(1− pk−1) δk + pk−1

(
1−8

(
Lmk−1|k−1

)))
+ (1− pk)

(
1−8

(
Lmk|k−1

))
, k > 1;

c1m = 1−8
(
Lm1|0

)
(12)

where δk is used to indicate whether the event {ẑk−1|k−1 >
0
∣∣yk−1 = zk−1 } is necessary or impossible, and c1m denotes

the probability of signal zm1 being uncensored as x̂1|0 has been
obtained from (11). The detailed lemma proof is provided in
Appendix A.

In virtue of notation definitions in (9) and the probability
in (12), the following properties are easily inferred:
Properties:

1.E [(1− γk)5k |Yk−1 ] = (1− pk)ψk,1;

2.E [γk5k |Yk−1 ] = pkψk,2, k > 1;

3.E
[
vk
∣∣5k = Iny , γk = 0,Yk−1

]
= v̂ck|k−1

=

√
Rkλ

(
Lk|k−1

)
;

4.E
[
vk−1

∣∣5k = Iny , γk = 1,Yk−1
]
= v̂ck−1|k−1

= (1− pk−1) v̂k−1|k−1 δk

+ pk−1
√
Rk−1λ

(
Lk−1|k−1

)
;

5.E
[
vkvTk

∣∣5k = Iny , γk = 0,Yk−1
]
= 0k|k−1 ;

6.E
[
vk−1vTk−1

∣∣5k = Iny , γk = 1,Yk−1
]
= 0ck−1|k−1

= (1− pk−1) δk
(
Pvvk−1|k−1 + v̂k−1|k−1 v̂

T
k−1|k−1

)
+ pk−10k−1|k−1 ; (13)

where ψk,1 = diag
([
cmk,1

])
, ψk,2 = pkdiag

([
cmk,2

])
with

cmk,1 = 1 − 8
(
Lmk|k−1

)
, cmk,2 = (1− pk−1) δk + pk−1
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(
1−8

(
Lmk−1|k−1

))
, k > 1; the definitions of matri-

ces 0k|k−1 and 0k−1|k−1 together with the detailed proof of
the properties are shown in Appendix B.
Remark 2: The condition Yk−1 is to indicate that state

estimate x̂k−1|k−1 and its variance Pk−1|k−1 have been got.
The equality in property 3 holds from the fact that when the
noise vk is conditional on 5k = Iny , γk = 0 and Yk−1,
it follows the truncated normal distribution. Additionally,
the matrix ψ1,1 can give the uncensored probability of the
first latent measurement y∗1 only from the initial state and
the system transition model. Once y1 is available, ψk,2 can
be computed together with ψk,1, where ψk,2 represents the
probability of signal zk−1 being uncensored. Compared with
the research in [20], the newly emerging items v̂ck−1|k−1 and
0ck−1|k−1 describe the uncensored statistics from the delayed
signal zk−1.
Based on the above-established properties 1, 2, 3 and 5,

and given measurements Yk−1, the conditional expectations
of the measurement model (7) can be computed as follows:

E [(1− γk)5kzk |Yk−1 ] = (1− pk)ψk,1ẑ
c
k|k−1 ,

E [γk5kzk−1 |Yk−1 ] = pkψk,2ẑ
c
k−1|k−1 , (14)

where

ẑck|k−1 = E
[
zk
∣∣5k = Iny , γk = 0,Yk−1

]
= χ̂k|k−1 + v̂

c
k|k−1 ,

ẑck−1|k−1 = E
[
zk−1

∣∣5k = Iny , γk = 1,Yk−1
]

= χ̂k−1|k−1 + v̂
c
k−1|k−1 . (15)

B. STATE ESTIMATION
We proceed to obtain the recursive estimator of the state
x̂k|k = E [xk |Yk ], Pk|k = Var [xk |Yk ] by the innovation
analysis approach, the principle of which is explained as
follows. If L

(
y1, · · · , yk

)
denotes the linear space spanned

by the observations
{
y1, · · · , yk

}
, the linear estimator of

the signal xk based on the observations
{
y1, · · · , yk

}
is the

orthogonal projection of the vector xk onto L
(
y1, · · · , yk

)
.

Hence, the orthogonal projection lemma (OPL) states
that the estimator x̂k|k is the only element of the space
L
(
y1, · · · , yk

)
satisfying that estimation error, xk − x̂k|k ,

is orthogonal to L
(
y1, · · · , yk

)
. The innovation approach

transforms the measurement process
{
yk ; k ≥ 1

}
into an

equivalent process (innovation process) of orthogonal vec-
tors

{
ξ k ; k ≥ 1

}
, which are defined by ξ k = yk − ŷk|k−1.

It is known that
{
ξ k ; k ≥ 1

}
is a zero mean white process,

and each set
{
ξ1, · · · ξ k

}
spans the same linear subspace as{

y1, · · · , yk
}
(which are generally non-orthogonal vectors).

The orthogonality of the new process enables us to derive the
estimators x̂k|k with considerable simplification by calculat-
ing the linear combination of the innovations.

To compute the filter estimate of the state, we must first
consider the noise filter estimate v̂k|k and its covariance Pvvk|k
for possibly delayed latent measurement.
Theorem 1: For the system composed of (1), (2) and (7),

the filter estimate v̂k|k and its covariance Pvvk|k given Yk at

time k ≥ 1 have the following expressions:

v̂k|k = Pvξk|k−1
(
4k|k−1

)−1
ξ k|k−1 , k > 1, (16)

Pvvk|k = Rk − P
vξ
k|k−1

(
4k|k−1

)−1(Pvξk|k−1 )T , k>1, (17)

where Pvξk|k−1 is the cross-covariance matrix between vk and
the innovation ξ k given Yk−1 with the form:

Pvξk|k−1 = (1− pk)ψk,10k|k−1 , k > 1; (18)

innovation ξ k|k−1 is computed as

ξ k|k−1 = yk − ŷk|k−1, (19)

with ŷk|k−1 as the one-step linear predictor of yk being

ŷk|k−1 = (1− pk)ψk,1ẑ
c
k|k−1 + pkψk,2ẑ

c
k−1|k−1 , k > 1,

ŷ1|0 = ψ1,1ẑ
c
1|0 ; (20)

and 4k|k−1 is denoted as the covariance matrix of ξ k|k−1
given Yk−1, whose expressions are:

4k|k−1

= (1− pk)
(
E
[
χkχ

T
k |Yk−1

]
+ χ̂k|k−1

(
v̂ck|k−1

)T)
+ (1− pk)

(
v̂ck|k−1 χ̂

T
k|k−1 + 0k|k−1

)
+ pk

(
E
[
χk−1χ

T
k−1 |Yk−1

]
+ χ̂k−1|k−1

(
v̂ck−1|k−1

)T)
+ pk

(
v̂ck−1|k−1 χ̂

T
k−1|k−1 + 0

c
k−1|k−1

)
−
(
(1− pk) ẑ

c
k|k−1 + pk ẑ

c
k−1|k−1

)
×
(
(1− pk) ẑ

c
k|k−1 + pk ẑ

c
k−1|k−1

)T
, k > 1;

41|0

= C1P1|0CT1 + 01|0 − v̂
c
1|0
(
v̂c1|0

)T
, k = 1; (21)

with

E
[
χkχ

T
k |Yk−1

]
= CkPk|k−1CTk + χ̂k|k−1 χ̂

T
k|k−1 ,

E
[
χk−1χ

T
k−1 |Yk−1

]
= Ck−1Pk−1|k−1CTk−1

+ χ̂k−1|k−1 χ̂
T
k−1|k−1 .

At time k = 1, the filter initial values for vk are approximated
as follows:

v̂1|1 = R1
(
41|0

)−1
ξ1|0 ,

Pvv1|1 = R1 − R1
(
41|0

)−1R1. (22)

Proof: First, given Yk−1, vk follows a Gaussian distri-
bution and it is independent of Yk−1, thus v̂k|k−1 = 0 and
Pvvk|k−1 = Rk . Based on OPL, equations (16) and (17) are
established.

The one-step linear predictor ŷk|k−1 in (20) is defined as
ŷk|k−1 = E

[
yk |Yk−1

]
, and it is obtained by the simple

addition of the two expressions in (14).
Equation (19) is obtained from the definition of

innovation ξ k|k−1 .
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The cross-covariance Pvξk|k−1 between innovation ξ k|k−1
and noise vk based on Yk−1 is calculated as:

Pvξk|k−1 = E
[
vkξTk|k−1 |Yk−1

]
= E

[
vk
((
1− γ k

)
5kzk

)T
|Yk−1

]
= E

[
vkvTk (1− γk)5k |Yk−1

]
= p [(1− γk)5k |Yk−1 ]

×E
[
vkvTk

∣∣5k = Iny , γk = 0,Yk−1
]

= (1− pk)ψk,10k|k−1 , (23)

where the third equality is derived by using the conditional
expectation formula and the property 1 and 4. Thus, (18) is
obtained.

In terms of the definition of measurement model (7) and
the covariance formula of the discrete random variable, the
entries of 4k|k−1 are given as follows:

4k|k−1

= Cov
[
ξ k|k−1 |Yk−1

]
= Cov

[
ξ k|k−1

∣∣Yk−1,5k = Iny
]

+Cov
[
ξ k|k−1 |Yk−1,5k = 0

]
= Cov

[
(1− γk)5kzk , (1− γk)5kzk

∣∣5k = Iny ,Yk−1
]

+Cov
[
(1− γk)5kzk , γk5kzk−1

∣∣5k = Iny ,Yk−1
]

+Cov
[
γk5kzk−1, (1− γk)5kzk

∣∣5k = Iny ,Yk−1
]

+Cov
[
γk5kzk−1, γk5kzk−1

∣∣5k = Iny ,Yk−1
]

= (1− pk)E
[
zkzTk

∣∣5k = Iny , γk = 0,Yk−1
]

− (1− pk)2ẑ
c
k|k−1

(
ẑck|k−1

)T
− pk (1− pk) ẑ

c
k|k−1

(
ẑck−1|k−1

)T
+ pkE

[
zk−1zTk−1

∣∣5k = Iny , γk = 1,Yk−1
]

− p2k ẑ
c
k−1|k−1

(
ẑck−1|k−1

)T
− pk (1− pk) ẑ

c
k−1|k−1

(
ẑck|k−1

)T
, (24)

where Bernoulli statistical properties E
[
(1− γk)2

]
= 1 −

pk , E
[
γ 2
k

]
= pk and E [(1− γk) γk ] = 0 are used for the

derivations. With simple algebraic manipulation, the part for
k > 1 in (21) can be obtained.
Note that when computing41|0 , z1 does not arrive at time

k = 1; using x̂1|0 obtained from (11) and by the fact that
v1 follows the truncated Gaussian distribution, we obtain the
initial innovation covariance:

41|0 = Cov
[
51z1,51z1

∣∣51 = Iny ,Y0
]

= E
[
z1zT1

∣∣51 = Iny ,Y0
]
− ẑc1|0

(
ẑc1|0

)T
= C1P1|0CT1 + χ̂1|0 χ̂

T
1|0

+ χ̂1|0
(
v̂c1|0

)T
+ v̂c1|0 χ̂

T
1|0 + 01|0

−
(
χ̂1|0 + v̂

c
1|0
) (
χ̂1|0 + v̂

c
1|0
)T

= C1P1|0CT1 + 01|0 − v̂
c
1|0
(
v̂c1|0

)T
.

Next, we give Theorem 2 for the estimates of the state xk
and its covariance Pk .
Theorem 2: For the system composed of (1), (2) and (7) and

the given x̂k−1|k−1 and Pk−1|k−1 , the filter estimate of state
x̂k|k and its covariance Pk|k at time k satisfy the following
expressions:

x̂k|k = x̂k|k−1 + P
xξ
k|k−1

(
4k|k−1

)−1
ξ k|k−1 ,

k ≥ 1, x̂0|0 = x0. (25)

Pk|k = Pk|k−1 − P
xξ
k|k−1

(
4k|k−1

)−1(Pxξk|k−1)T ,
k ≥ 1, P0|0 = P0. (26)

Pxξk|k−1 ≈ (1− pk)Pk|k−1C
T
k ψk,1

+ pkAk−1Pk−1|k−1CTk−1ψk,2, k > 1,

Pxξ1|0 = P1|0CT1ψ1,1, k = 1, (27)

where Pxξk|k−1 = Cov
[
xk , ξ k|k−1 |Yk−1

]
denotes the condi-

tional cross-covariance matrix between xk and the innovation
ξ k|k−1 given Yk−1.

Proof: First, according to Assumption 2, the following
three approximations hold true:

E [xk5k |γk = 0,Yk−1 ]
≈ E [xk |Yk−1 ] E [5k |γk = 0,Yk−1 ] ; (28)

E
[
xkvTk5k |γk = 0,Yk−1

]
≈ E [xk |Yk−1 ]

×E [5k |γk = 0,Yk−1 ]
×E[vk |5k = I, γk = 0,Yk−1 ]T ; (29)

E
[
xk−1vTk−15k |γk = 1,Yk−1

]
≈ E [xk−1 |Yk−1 ]

×E [5k |γk = 1,Yk−1 ]
×E[vk−1 |5k = I, γk = 1,Yk−1 ]T . (30)

The state x̂k|k and error covariance Pk|k are obtained from
OPL. Then, cross-covariance Pxξk|k−1 is decomposed into the
sum of two items:

Pxξk|k−1 = Cov
[
xk , ξ k|k−1 |Yk−1

]
= Cov [xk , (1− γk)5kzk |Yk−1 ]

+Cov [xk , γk5kzk−1 |Yk−1 ] . (31)

With the above approximations and the established prop-
erties, the first item on the right of (31) is calculated as:

Cov [xk , (1− γk)5kzk |Yk−1 ]
= E

[(
xkxTk

)
CTk (1− γk)5k |Yk−1

]
+E

[
xk (1− γk) vTk5k |Yk−1

]
−E

[
xkτT (1− γk)5k |Yk−1

]
− x̂k|k−1E

[
xTk C

T
k (1− γk)5k |Yk−1

]
− x̂k|k−1E

[
(1− γk) vTk5k |Yk−1

]
+ x̂k|k−1E

[
τT (1− γk)5k |Yk−1

]
≈ Pk|k−1CTk E [(1− γk)5k |Yk−1 ]

= (1− pk)Pk|k−1CTk ψk,1; (32)
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similarly, the second item on the right of (31) is calculated as:

Cov [xk , γk5kzk−1 |Yk−1 ]

= E
[
xkxTk−1C

T
k−1γk5k |Yk−1

]
+E

[
xkvTk−1γk5k |Yk−1

]
−E

[
xkτT (1− γk)5k |Yk−1

]
− x̂k|k−1E

[
γkxTk−1C

T
k−15k |Yk−1

]
− x̂k|k−1E

[
γkvTk−15k |Yk−1

]
+ x̂k|k−1E

[
τT (1− γk)5k |Yk−1

]
= E

[
xkxTk−1 |Yk−1

]
CTk−1E [γk5k |Yk−1 ]

− x̂k|k−1 x̂
T
k−1|k−1C

T
k−1E [γk5k |Yk−1 ]

+Ak−1E
[
xk−1vTk−1γk5k |Yk−1

]
≈ Pk,k−1|k−1CTk−1E [γk5k |Yk−1 ] . (33)

Inserting (32) and (33) into the definition of Pxξk|k−1,
we obtain the part at time k > 1 in (31); for time k = 1,

Pxξ1|0 = Cov
[
x1, ξ1|0 |Y0

]
= Cov [x1,51z1 |Y0 ]

= E
[
x1xT1 |Y0

]
CT1ψ1,1 − x̂1|0 x̂

T
1|0C

T
1ψ1,1, (34)

with the simple operation, Pxξ1|0 is obtained.
Combing Theorems 1 and 2, we have accomplished the

filter design for network systems with randomly censored
measurement and one-step delayed latent measurement.
Remark 3: Since the measurement noise does not follow a

Gaussian distribution around the censoring region, the state
estimate x̂k|k and the related χ̂k|k do not follow a Gaussian
distribution.
Remark 4: As analyzed and indicated in [19], compared

with the practicality and adequate estimates provided by the
TKF, the nonlinear UKF can produce errors in the piecewise
uncertainty of the censored measurement. Thus, it is deduced
that a Gaussian approximate filter with one-step delay, such
as the UKF with a one-step delay [11] or the CKF with a one-
step delay [28], cannot efficiently solve the problem of mixed
measurement uncertainties with simultaneous signal delay
and measurement censoring; Additionally, the TKF lacks the
necessary theory to deal with the Tobit measurement prob-
lem with the occurrence of transmission delay. In contrast,
the proposed approach, in theory, guarantees appropriateness
of the problem solved in this paper.
Remark 5: The above discussions and derivations have

given the recursive algorithm for the case of the signal
delay followed by the measurement censoring. Another case
that the measurement censoring happens before the one-step
transmission delay can be similarly derived, which indicates
that the two algorithms are essentially the same. The detailed
explanation of problem formulation of another case is shown
in Appendix C.

IV. ILLUSTRATIVE EXAMPLE
In this section, we employ an oscillator example given
in [19]–[22] to demonstrate the performance of the proposed
filter approach. The system matrices for the oscillator model
and the corresponding parameters of the dynamic systems
given by (1)-(4) are as follows:

A =
[
cos (ωT ) − sin (ωT )
sin (ωT ) cos (ωT )

]
, Ck =

[
1 0

]
,

the frequency isω=0.0052π with a sampling period ofT =1,
process noise with variance Qk = diag

{[
(0.1)2 (0.1)2

]}
is

uncorrelated with measurement noise with varianceRk = 10.
The initial conditions are set as x̂0|0 =

[
5 0

]T , P0|0 = I2,
delay probability pk = 0.8 for all k , censored threshold
τ = 0, and the simulation time 1,000.
The performance of the proposed method is analyzed by

comparison with the TKF proposed in [20] and the CKF with
one-step delay given in [28] (denoted as CKF-Delay) in the
same conditions. The number of Monte Carlo simulations
is 10. The root mean square error (RMSE) criterion and
average RMSE (ARMSE) criterion are employed to quantify
the performance of the estimators. The RMSE and ARMSE
of the filter at time k are computed as follows:

RMSEk =

√√√√ 1
MC

MC∑
i=1

(
x(i)k − x̂

(i)
k|k

)2
,

ARMSE =

√√√√√ K∑
k=1

MC∑
i=1

(
x(i)k − x̂

(i)
k|k

)2
K ∗MC

, (35)

where x(i)k|k is denoted as the filtering estimate at time k in the

i-th simulation run, and x(i)k is the i-th true values of the state.
MC and K represent the number of Monte Carlo simulations
and the number of iterations, respectively.

Fig. 2 shows the true state and its corresponding estimates
from different filter methods when delay probability pk is 0.8.
RMSE comparison curves between the TKF and the proposed
method, CKF-Delay and the proposed method are illustrated
in Fig. 3 and Fig. 4, respectively. The specific ARMSE values
are summarized in Table 1. For delay probability pk = 0.3,
the same comparison curves and ARMSE values as those of
pk = 0.8 are presented in Figs. 5 to 7 and Table 2. From
these figures, we can see that, except for a few values of k ,
the proposed method exhibits superior performance for the
delay conditions.

For the first state, the proposed method has a slightly better
performance than that of the TKF, and both are better than
those of the CKF-Delay and the CKF whose state curves and
RMSE curves are not plotted to maintain the presentation
clarity. For the second state, it is clear that the proposed
method tracks the real state more accurately and exhibits a
smaller ARMSE. Furthermore, from the Tables, it is also
concluded that the TKF exhibits better performance than the
CKF-Delay, and the CKF-Delay shows superiority over the
CKF when censored measurements and transmission delays
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FIGURE 2. True values of state and its corresponding estimates for
pk = 0.8.

FIGURE 3. RMSE comparisons with the TKF for pk = 0.8.

FIGURE 4. RMSE comparisons with the CKF with one-step delay for
pk = 0.8.

occur simultaneously. The RMSE curves are plotted sepa-
rately to avoid confusion from too many curves in one graph.

Fig. 8-Fig. 9 show the comparisons of the ARMSE curves
of the 1st and 2nd state estimations, respectively, for different

TABLE 1. ARMSEs of the states between the proposed method and
similar methods applied to a stochastic oscillator model for pk = 0.8.

FIGURE 5. True values of state and its corresponding estimates for
pk = 0.3.

FIGURE 6. RMSE comparisons with the TKF for pk = 0.3.

TABLE 2. ARMSEs of the states between the proposed method and
similar methods applied to a stochastic oscillator model for pk = 0.3.

values of delay probability pk . From the 1st state comparison
in Fig. 8, it can be seen that the performance of the proposed
method is slightly better than that of the TKF, and both are
smaller than the existing CKF-Delay. From the comparison
of the 2nd state in Fig. 9, it can be seen that the performance
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FIGURE 7. RMSE comparisons with the CKF delayed by one-step for
pk = 0.3.

FIGURE 8. ARMSE comparisons of 1st state estimation when
p = 0.1,0.2, · · · ,0.9.

FIGURE 9. ARMSE comparisons of 2nd state estimation when
p = 0.1,0.2, · · · ,0.9.

of the proposed method is obviously better than that of the
TKF, and both outperform the existing CKF-Delay.

Overall, according to the values listed in the two tables
and graphs for the long simulation performance, it can be

concluded that the proposed algorithm presents more robust
tracking ability for the considered model.

V. CONCLUSION
In this paper, we have presented an improved method for the
TKF under the sensor network circumstanceswith two impor-
tant random phenomenons, that is, censored measurements
and one-step delayed signal transmission. The probability
of latent measurement being uncensored is first modified to
account for the delay, and it is provided by a lemma. In a
unified framework, the resulting filter formulation is given by
two theorems. The behavior of the proposed filter was com-
pared with those of three other methods, namely: the TKF,
CKF, and CKF with a one-step delay. Outcomes demonstrate
that even when a high proportion of the latent measurements
is delayed and censored, the proposed filter can also provide
accurate state estimates and can consistently outperform the
other three filters under the same conditions. The compari-
son of the ARMSE for different delay probabilities showed
and demonstrated better overall performance of the proposed
method. In contrast to the standard TKF, the derived formula
does not require an uncorrelation assumption among the mea-
surement components. For further research, the Tobit Kalman
filtering problems for linear systems with network-induced
phenomena of packet dropouts, and for information fusion of
the multisensor with transmission delay and censoring can be
investigated.

APPENDIXES
APPENDIX A
DERIVATION OF (12)
Applying the rule of conditional expectation yields

ckm = Eγk
[
Eηk |γk

[
ηk

m
|Yk−1

]]
= p {γk = 1}E

[
ηk

m
|γk = 1,Yk−1

]
+ p {γk = 0}E

[
ηk

m
|γk = 0,Yk−1

]
. (36)

Note that the expectation E [ηkm |γk = 0,Yk−1 ] is identical
to the probability of the measurement zk being uncensored.
Using the notations defined in (9), we then have

E
[
ηk

m
|γk = 0,Yk−1

]
= 1−8

(
Lmk|k−1

)
. (37)

The expectation E [ηkm |γk = 1,Yk−1 ] in (32) corresponds to
the following probability:

E
[
ηk

m
|γk = 1,Yk−1

]
= p

{
z̄mk−1 > τm |Yk−1

}
.

Using the total expectation rule, we can conclude that

E
[
ηk

m
|γk = 1,Yk−1

]
= p

{
ȳk−1 = z̄k−1

}
p
{
z̄mk−1 > τm |Yk−1

}
+ p

{
ȳk−1 = z̄k−2

}
p
{
z̄mk−1 > τm |Yk−1

}
= (1− pk−1) p

{
z̄mk−1 > τm

∣∣Yk−1, ȳk−1 = z̄k−1
}

+ pk−1p
{
z̄mk−1 > τm

∣∣Yk−1, ȳk−1 = z̄k−2
}
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According to Assumption 2, the approximation of ˆ̄zmk−1|k−1
to z̄mk−1 holds true when ȳk−1 is equal to z̄k−1; thus,

E
[
ηk

m
|γk = 1,Yk−1

]
≈ (1− pk−1) p

{
ˆ̄zmk−1|k−1 > τm

∣∣Yk−1, ȳk−1 = z̄k−1
}

+ pk−1p
{
z̄mk−1 > τm

∣∣Yk−1, ȳk−1 = z̄k−2
}

= (1− pk−1) δk + pk−18
(
Lmk−1|k−1

)
. (38)

We obtain (12) by combining (36), (37) and (38).

APPENDIX B
DERIVATION OF (13)
From the rule of conditional expectation and the results of
(37) and (38), we have the following two expressions:

E [(1− γk)5k |Yk−1 ]

= Eγk [E [(1− γk)5k |Yk−1 ]]

= p {γk = 1}E [(1− γk)5k |γk = 1,Yk−1 ]

+ p {γk = 0}E [(1− γk)5k |γk = 0,Yk−1 ]

= (1− pk) diag
([

1−8
(
Lmk|k−1

)])
. (39)

The derivation of property 1 is obtained from (39).
Property 2 can be similarly obtained as follows:

E [γk5k |Yk−1 ]

= Eγk [E [γk5k |Yk−1 ]]

= p {γk = 1}E [5k |γk = 1,Yk−1 ]

+ p {γk = 0}E [γk5k |γk = 0,Yk−1 ]

= pkdiag
([
(1− pk−1) δk + pk−18

(
Lmk−1|k−1

)])
. (40)

From the theorem that if random variable x obeys a stan-
dard normal distribution, its probability density function trun-
cated from lower bound L is pL (x) = φ (x)

/
[1−8 (L)];

thus, the first two truncated origin moments of x, i.e.,
E [x |x > L ] = λ (L) and E

[
x2 |x > L

]
= Lλ (L)+ 1 can be

computed. Therefore, the third equality regarding measure-
ment noise vk in property 3 is easily obtained.
Based on the total expectation law, property 4 is calculated

as follows:

E
[
vk−1

∣∣5k = Iny , γk = 1,Yk−1
]
= v̂ck−1|k−1

= E [vk−1 |z̄k−1 > τ ,Yk−1 ]

= p
{
ȳk−1 = z̄k−1

}
×E

[
vk−1

∣∣z̄k−1 > τ ,Yk−1, ȳk−1 = z̄k−1
]

+ p
{
ȳk−1 = z̄k−2

}
×E

[
vk−1

∣∣z̄k−1 > τ ,Yk−1, ȳk−1 = z̄k−2
]

= (1− pk−1) v̂k−1|k−1 δk + pk−1

×col

√Rm,mk−1E

 vmk−1√
Rm,mk−1

∣∣∣∣∣∣ vmk−1√
Rm,mk−1

> Lmk−1|k−1


(41)

where vmk−1
/√

Rm,mk−1 obeys the truncated normal distri-

bution with truncated expectation λ
(
Lmk−1|k−1

)
, using

the notation in (9), the second item in (41) equals
pk−1

√
Rk−1λ

(
Lk−1|k−1

)
. Thus, we obtain the equality in

property 4.
For the fifth equality in (13), the expectation of the diago-

nal element for square matrix
[
vkvTk

]
is derived as follows:

E
[(
vmk
)2 ∣∣ηkm = 1, γk = 0,Yk−1

]

= Rm,mk E


 vmk√

Rm,mk

2 ∣∣∣∣∣∣ vmk√
Rm,mk

>
τm − χ̂

m
k|k−1√

Rm,mk


= Rm,mk

(
Lmk|k−1 λ

(
Lmk|k−1

)
+ 1

)
(42)

From the fact that R is diagonal and the definition for
v̂ck|k−1 in property 3, the expectation of the non-diagonal
element is expressed as follows:

E
[
vmk v

n
k

∣∣ηkm = 1, ηk n = 1, γk = 0,Yk−1
]

= E
[
vmk
∣∣ηkm = 1, γk = 0,Yk−1

]
×E

[
vnk
∣∣ηk n = 1, γk = 0,Yk−1

]
= v̂mck|k−1 v̂

n c
k|k−1 (43)

where v̂mck|k−1 denotes them− th element of the vector v̂ck|k−1 .

Define 0k|k−1 =
[
0mnk|k−1

]
ny×ny

, where

0mnk|k−1 =

R
m,m
k

(
Lmk|k−1 λ

(
Lmk|k−1

)
+ 1

)
m = n√

Rm,mk Rn,nk λ
(
Lmk|k−1

)
λ
(
Lnk|k−1

)
m 6= n.

(44)

Thus, we obtain property 5 in (13).
For the sixth equality in (13), the calculation process is

similar to that of (43) and (44).

E
[
vk−1vTk−1

∣∣5k = Iny , γk = 1,Yk−1
]

= p
{
ȳk−1 = z̄k−1

}
×E

[
vk−1vTk−1

∣∣z̄k−1 > τ ,Yk−1, ȳk−1 = z̄k−1
]

+ p
{
ȳk−1 = z̄k−2

}
×E

[
vk−1vTk−1

∣∣z̄k−1 > τ ,Yk−1, ȳk−1 = z̄k−2
]
, (45)

from (42), we have

E
[
vk−1vTk−1

∣∣5k = Iny , γ k = 1,Yk−1
]

= (1− pk−1) δkE
[
vk−1vTk−1

∣∣Yk−1, ȳk−1 = z̄k−1
]

+ pk−10k−1|k−1

= (1− pk−1)
(
Pvvk−1|k−1 + v̂k−1|k−1 v̂

T
k−1|k−1

)
δk

+ pk−10k−1|k−1
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FIGURE 10. Flow chart of the sensor system with the censoring prior to
the delay.

where 0k−1|k−1 =
[
0mnk−1|k−1

]
ny×ny

with

0mnk−1|k−1

=

R
m,m
k−1

(
Lmk−1|k−1 λ

(
Lmk−1|k−1

)
+ 1

)
m = n√

Rm,mk−1R
n,n
k−1λ

(
Lmk−1|k−1

)
λ
(
Lnk−1|k−1

)
m 6= n.

(46)

Thus, we obtain property 6.

APPENDIX C
The structure of themeasurement censoring prior to the signal
delay is shown in the Fig.10.

The same assumptions as Assumptions 1 and 2 are first
made to this case, and the censored output ȳ∗k is:

ȳ∗k =

{
z̄k z̄k > τ

τ z̄k ≤ τ ,
(47)

where the definitions of z̄k and τ are same as those in (2)
and (4).

Then a Bernoulli indicator variable ηk
m for ȳ∗mk is intro-

duced, whose expression is:

ηk
m
=

{
1 z̄mk > τm

0 z̄mk ≤ τ
m.

(48)

Combining the diagonal randommatrix5k composed of ηk
m,

ȳ∗k is rewritten as:

ȳ∗k = 5k z̄k +
(
Iny −5k

)
τ , (49)

where5k models the occurrence of censored output versus an
actual output. The transmission signals entering fusion center
for state estimation may be subject to one-step random delay,
which leads to the following expression of measurement
ȳk as:

ȳk =

{
(1− γk) ȳ∗k + γk ȳ

∗

k−1 k ≥ 2
ȳ∗1 k = 1,

(50)

where properties of {γk , k ≥ 1} are the same as those in (3).
Likewise, let zk = z̄k − τ , zk−1 = z̄k−1 − τ and yk = ȳk − τ
then (50) is modified as:

yk =

{
(1− γk)5kzk + γk5k−1zk−1 k ≥ 2
ȳ∗1 − τ k = 1,

(51)

with

E [(1− γk)5k |Yk−1 ] = (1− pk)ψk,1,

E [γk5k−1 |Yk−1 ] = pkψk,2, k > 1. (52)

It is obvious that the equations in (52) are the same as
properties 1 and 2 .

From the above problem formulation, we can see that the
rest of state estimation for the case depicted in Fig.10 will be
the same as those for the case depicted in Fig.1.
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