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ABSTRACT We quantify the generalization of a convolutional neural network (CNN) trained to identify
cars. First, we perform a series of experiments to train the network using one image dataset - either
synthetic or from a camera - and then test on a different image dataset. We show that generalization between
images obtained with different cameras is roughly the same as generalization between images from a camera
and ray-traced multispectral synthetic images. Second, we use ISETAuto, a soft prototyping tool that creates
ray-traced multispectral simulations of camera images, to simulate sensor images with a range of pixel sizes,
color filters, acquisition and post-acquisition processing. These experiments reveal how variations in specific
camera parameters and image processing operations impact CNN generalization. We find that (a) pixel size
impacts generalization, (b) demosaicking substantially impacts performance and generalization for shallow
(8-bit) bit-depths but not deeper ones (10-bit), (c) the network performs well using raw (not demosaicked)
sensor data for 10-bit pixels.

INDEX TERMS Imaging systems, camera design, autonomous driving, network generalization, convolu-
tional neural network, physically based ray tracing.

I. INTRODUCTION
Training a convolutional neural network (CNN) to detect
cars requires a large amount of labeled data. To support this
application, a number of groups have taken an empirical
approach, acquiring data with a specific camera or a small
collection of cameras that were designed for consumer pho-
tography. These data sets are then labeled, either by people
alone or with the help of specialized algorithms. Several of
these datasets have been shared and serve as a resource for
training [7], [14], [29], [42].

Such an empirical approach to network training is not prac-
tical for camera design. The cost of designing and building a
camera, acquiring training data, labeling the training data, and
assessing the network performance is simply too expensive.
Simulation of image data from the novel camera design is the
only option. For this reason we are developing software tools
(ISETAuto) [3], [25], [26]) for simulating physically accu-
rate, complex and realistic driving scenes, modeling camera
optics and sensors, and controlling the neural networks that
detect and localize objects.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yeon-Ho Chung .

In this paper, we first address the broad question of how
well training with synthetic data sets, generated by modern
soft prototyping software, generalizes to camera data. Estab-
lishing the level of generalization across data sets is a central
question in many neural network applications; establishing
the accuracy of generalization is essential for this application.
We then show how the soft prototyping system can be used to
explore how training generalizes as specific camera parame-
ters and image processing operations are varied.

This work contributes the following:
1. We quantify generalization by measuring how well a

network trained on data from one imaging system performs
on an independent data obtained with a second imaging sys-
tem. These measurements reveal significant limits on gener-
alization between images from different cameras, extending
earlier reports [36].

2. We analyze generalization for networks trained and
evaluated on combinations of synthetic images and camera
images. The generalization limitations between synthetic and
camera are similar to those found between camera data sets.

3. We measure generalization using images created with a
soft prototyping tool that controls camera parameters (e.g.,
pixel size, quantization) and image processing algorithms
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(e.g., exposure control). These controlled measurements
quantify the impact that camera parameters have on network
generalization and performance.

II. RELATED WORK
A. GENERALIZATION
How well a system generalizes between different datasets
(train on A, test on B) is a key measure of computer vision
object detection algorithms. Lack of generalization was iden-
tified as a critical shortcoming of support vector machine
(SVM) algorithms due to different types of dataset bias:
selection bias; capture bias; negative set bias [36]. The size
and complexity of image datasets increased significantly
over the past decade. In the case of automotive applications
the development of region proposal networks (RPN) has
extended the applications from databases containing images
of single objects (e.g., CalTech 101 and ImageNet) to images
representingmore complex scenes (BDD, KITTI, Cityscape).
Quantifying generalization of neural networks between these
complex image datasets remains an important question [28].
Understanding generalization can not only help us under-
standing the limit of the deep neural network, but also guide
us feeding more suitable data to it.

B. SYNTHETIC DATA METHODS
Because of the challenges in obtaining large empirical
datasets, there has been a great deal of working using
computer graphics to generate synthetic datasets to use for
training. A number of authors consider specific methods of
creating synthetic images for automotive applications, and
they draw different conclusions about the ability of these
methods to generalize to camera images [5], [28], [32], [34],
[37], [39], [41]. These papers include useful ideas about
how to create images that improve generalization between
synthetic and camera datasets.

One method uses computer graphics to augment camera
images, superimposing virtual objects of the target category
onto the image [1], [23]. This approach is simpler than syn-
thesizing entire scenes and improves generalization. A sec-
ond method is to build scenes and objects using game engine
technology [19], [37]. This approach is helpful for building
scenes; its limitation concerns the image quality and realism
of rendering. Third, some authors use ray-tracing to produce
high quality and realistic images [3], [41]. Ray-tracing has
been combined with driving simulators to automate the cre-
ation of large numbers of realistic scenes [26]. A limitation
of ray-tracing is that the rendering time is long compared
to game engines. Real-time ray-tracing based on physical
principles is an important current research topic [17], which
can potentially be helpful.

C. SYNTHETIC DATA MOTIVATIONS
It is worth distinguishing three purposes for using synthetic
data. One is to build a single network that performs well on
data from any camera. It is not yet known what the limits of

TABLE 1. A summary of the papers using data synthesis methods to
improve generalization for automotive scenes.

network performance might be; the human ability to recog-
nize objects across many types of cameras supports the idea
that a single network might be able to succeed with images
from a wide range of cameras [16]. Massive simulation, say
by generating a very large number of images from many
different cameras with diverse scene content, is one approach
to creating such a universal network [31], [32], [37], [41].
This approach synthesizes images as a data augmentation
method.

A second purpose is to improve a network’s performance
on images from a particular camera. A typical approach is to
augment labeled data from the specific camera with synthetic
data. A number of different methods are available to make
synthetic imagesmatch existing camera images. For example,
style transfer has been used [5] and networks have been
proposed to generate synthetic scenes that match the scenes
in a specific dataset [13], [19]. The objective is to reduce
the burden of acquiring and labeling new training data. This
approach synthesizes images as a form of domain adaptation.

A third purpose is to co-design cameras and networks [3],
[25], [26]. The goal of this application is to explore cam-
era design that spans a wide range of parameters, including
designs that are beyond the scope of traditional consumer
photography cameras, in order to discover systems whose
images improve the accuracy of object detection networks.
Soft prototyping and synthetic data is essential for co-design.
This approach synthesizes images as a form of image system
optimization.

III. METHODS
A. CAMERA DATASETS
We used public camera data sets from KITTI, CityScape,
and Berkeley Deep Drive (BDD). These contain RGB image
data shared in the form of PNG (KITTI, CityScape) or JPEG
(BDD) files along with corresponding object labels.

1) KITTI
We analyzed images from the KITTI dataset1 [15], which
includes images from two monochrome and two color cam-
eras. We selected the color images for object detection. The
KITTI dataset camera had a pixel size of 4.65 µm and a lens

1http://www.cvlibs.net/datasets/kitti/setup.php
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with a 4mm - 8mm focal length based on a varifocal video
lens [15].

2) BDD
The BDD dataset2 [42] contains 80,000 labeled images and
video clips. It contains an additional 20,000 unlabeled images
and videos for testing. The annotations include image level
tagging, object bounding boxes, drivable areas, lane mark-
ings, and full-frame instance segmentation. The BDD data
set includes JPEG images acquired using a variety of cameras
and image processing chains.

3) CITYSCAPE
The CityScape dataset3 [7] contains 5000 (3700 available)
pixel level labeled images collected in street scenes from
50 different cities in daylight. CityScape does not provide
camera information for their dataset.

We selected 3700 images from each dataset, and extracted
bounding box labels from segmentation labels. The KITTI
and CityScape data were collected during daytime on
city streets. Unless other comparisons were of interest,
we matched the BDD data by selecting 3700 images with the
metadata description of ‘‘city street’’ and ‘‘daytime’’.

B. SYNTHETIC DATASETS
1) SYNTHIA
SYNTHIA [32] is a labeled image dataset for driving sce-
narios created using a game engine [38]. The images (960 ×
720) represent a virtual city and come with precise pixel-level
semantic annotations formany different classes: car, building,
etc.

2) SYNSCAPE
The Synscape dataset [41] was created using ray-tracing.
There are 25,000 images with two different resolutions.
We used the images with 1440×720. Each image is annotated
with class, segmentation instance, and depth information.

3) ISETAUTO: SIMULATED SCENES
Simulated scene radiance data and sensor irradiance were
generated for a collection of 4000 city scenes, using the
ISET3d software4 [26]. This software defines the positions
of vehicles and pedestrians that match traffic statistics using
the Simulation of Urban MObility (SUMO) software pack-
age5 [21]. The specific objects (vehicles, pedestrians, bicy-
clists) scenes and their surface properties were assembled by
random sampling from a database of nearly 100 car, 3 bus,
80 pedestrians, 10 bicycles. The buildings, trees and other
city features were positioned by an ISET3d algorithm that
samples from city and suburban building collections includ-
ing more than 200 buildings.

2https://bdd-data.berkeley.edu/
3https://www.cityscapes-dataset.com/
4 https://github.com/iset/iset3d
5http://sumo.sourceforge.net/

The scenes are rendered using a modified version of the
ray-tracing software described in Physically Based Ray Trac-
ing (PBRT) [30] and implemented as a Docker container.6

Containerization supports reproducibility by incorporating
all the dependencies, and it also supports cloud-scale comput-
ing because many scenes can be produced at the same time
using Kubernetes. The camera optical system is simulated
with PBRT: the camera lens for the simulations we used in
this paper was a wide angle (112 deg) multi-element design
with 6 mm focal length. The on-axis point spread of the lens
has a full-width at half maximum of approximately 1.5 µm,
making it suitable for simulation with a range of pixel sizes.

4) ISETCAM: SIMULATED CAMERAS
The ISETCam7 software converts the spectral irradiance at
the sensor into sensor digital values [11]. The software can
simulate a range of sensor parameters including varying
pixel size, color filters, and image processing algorithms.
The sensor electrical properties we simulated were based on
the specifications of the MT9V024 sensor manufactured by
ON Semiconductor, a sensor that is designed for automotive
machine vision applications with options for monochrome,
RGBBayer andRCCC color filter arrays. TheMT9V024 sen-
sor has relatively high light sensitivity and signal-to-noise
with a linear dynamic range of 55 dB. We fixed the sensor
dye size to be 3.6× 8.6 mm and field of view to be 32 (V)×
70 (H) degree. Simulating changes in pixel size varies the
number of pixels inversely to the square of pixel size.

The exposure control was simulated using either (a) a
center-weighted algorithm, concentrated on the image region
in front of the car, (b) an exposure-bracketing using three
different captures (2 ms, 4 ms, 8 ms), or (c) a global-weighted
algorithm, using the entire image. For the single exposure
case, the exposure duration was set so that the brightest region
part of this center region produced a sensor voltage that was
90% of the voltage swing but constrained to be no longer
than 16ms (60 frames per second). These simulations include
object motion blur.

The physical accuracy of the ISETCam camera simulation
has been evaluated in prior publications. Several indepen-
dent studies report a close correspondence between measured
and simulated sensor performance [6], [10], [11]. Additional
validation is based on the use of physical principles: the
optics is modeled in PBRT using physical principles of ray
tracing and Snell’s Law [20] and diffraction [12]. To confirm
the implementation we compared the optics simulations with
these physical principles and the widely used commercial
program, Zemax [24]. The surface rendering (PBRT) is based
on ray tracing algorithms, with an accurate simulation of
physics of light and its interactionwithmany types of surfaces
includingmetals, diffuse reflectors, retro-reflective materials,
and glass. The interaction function is known as bidirectional
reflectance distribution function (BRDF), is derived based on

6https://hub.docker.com/u/vistalab
7https://github.com/iset/isetcam
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the real-world experiments, and the function itself is validated
by comparing the measured results [27], [40]. The three-
dimensional models of the cars are derived from a 3D scan
of a real car and the physical dimensions are accurate. The
ambient light spectral characteristics were measured using a
multispectral lighting capture system and are validated [22].

Further details about how the ISETCam sensor models are
created can be found in [25].

C. OBJECT DETECTION NETWORK
We use Mask R-CNN [9], [18] to detect and localize objects.
MaskRCNN includes a region proposal network (RPN) that
creates different regions (rectangles) on an image where an
object might be found and another network to detect objects
using these regions. In this paper, we evaluate datasets using
only the bounding box output of Mask R-CNN. We choose
ResNet 50 with FPN as the backbone of the network.
We chose the anchor sizes for the RPN to be [32, 64, 126, 256,
512] with three different ratios: [0.5, 1, 2]. We trained and
evaluated the model for cars and pedestrians using 4 Nvidia
P100 GPUs.We report the results for cars but not pedestrians.
The car models are highly realistic while the human models
are less compelling. Accurate human models are needed for
a precise evaluation of the pedestrian class.

D. METRICS
1) OBJECT DETECTION SYSTEM PERFORMANCE
When the network identifies an object within a bounding box,
and that box overlaps with at least half of the area of the
bounding box on the labeled pixels, the detection is consid-
ered correct. Combining the hits and false alarms from this
measure, we obtain the average precision based on the inter-
section over union, a metric that is widely used in machine-
learning [8]. The AP (Average Precision) is equivalent to
measuring the area under the receiver operating characteristic
defined in signal detection theory [35]. Unless indicated oth-
erwise, we use the shorthand AP to describe AP@0.5IOU.

2) LABELING POLICY
Different camera datasets use different labeling policies.
Although the datasets are annotated by humans, KITTI anno-
tates the 2d bounding box with a minimum requirement of
height of the box to be larger than 25 pixels, whereas BDD
and CityScape contain objects with smaller bounding boxes
labeled.

We use two different labeling policies for our evaluation.
The experiments conducted on pixel size generalization con-
tains the labels of all the cars within 150 meters regard-
less of the pixel size. For the other evaluation experiments,
we labeled the cars using the KITTI labeling policy with a
minimum box size.

3) OBJECT DETECTION NETWORK TRAINING
We trained all models from scratch. Training was based on
3000 images which were presented to the network with a

FIGURE 1. Replicability of model training at multiple checkpoints.
A ResNet model was trained on ISETAuto data. The four panels show how
AP performance changed when testing on four different datasets (the
four panels), each run five times (five curves). In all cases the stable
values were reached after 80 epochs, and the standard deviation of the
AP after stabilization is below 0.01.

batch size of 8 images per training step; model weights
were updated after each batch. For example, for the case
of 40,000 training steps, a total of 320,000 images were
presented so that the training set of 3000 images was

10446 VOLUME 8, 2020



Z. Liu et al.: Neural Network Generalization: Impact of Camera Parameters

FIGURE 2. Top. Representative scenes from three different public datasets used for autonomous driving. Images
from different datasets are easily distinguished by human subjects. The discrimination can be made in large part by
color cast and contrast. Bottom. The table shows the AP@0.5IOU measured when training on 3000 images from the
data set listed in the column header, and evaluating with the images from the data set listed at the left of the row.
The column headers show the number of cars in each of the data sets (The values in parentheses).

presented about 106 times (epochs). Themodel was evaluated
and the AP values saved at 16 checkpoints. Model perfor-
mance was evaluated based on 700 images that were not used
in training (held out).

We evaluated how closely repeating the training returns the
same AP value (Figure 1). We initialized the ResNet50 net-
work randomly and measured AP through 106 train-
ing epochs for four different cases: training on the
ISETAuto synthetic data and evaluating on the empirical
(KITTI/BDD/CITYSCAPE) and ISETAuto images. The five
curves track the change in AP performance for different
replications. For the empirical data, there is variation in
the AP level between replications up to about 80 training
epochs. As training continues, the AP level settles near the
peak value with very little variation; the standard devia-
tion of the AP value is well below 0.01 in all conditions.
Using the synthetic ISETAuto data for training and testing,
theAP level stabilizes after approximately 80 training epochs.
Hence, the assessments in this paper report AP values after
80 training epochs, after the AP value stabilizes. Based on
the analysis in Figure 1, we consider AP values to be reliable
within +/−0.01.

IV. EXPERIMENTS
We begin by analyzing generalization between camera
datasets. We use the generalization between camera datasets
as a baseline to compare generalization between synthetic
and camera datasets. Finally, using the soft prototyping tools
we examine generalization between images obtained using
different cameras and post-processing methods.

A. GENERALIZATION BETWEEN CAMERA DATASETS
1) GLOBAL GENERALIZATION
We trained the network three times, using 3000 labeled
images from KITTI, BDD or CITYSCAPE. After training,

FIGURE 3. Generalization between city and highway scenes in the BDD
dataset. Other details as in Figure 2.

FIGURE 4. Generalization between different times of day for images in
the BDD dataset. Other details as in Figure 2.

we evaluated (350 images for validation at each checkpoint,
and another 350 images to measure system performance) and
calculated the AP for car detection using held-out data from
KITTI, BDD, CITYSCAPE. We trained the models with the
original resolution for all datasets. The images in Figure 2
illustrate the appearance of typical images from three empir-
ical data sets.
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FIGURE 5. Top. Representative scenes from three different synthetic datasets used for autonomous driving.
SYNTHIA used a rasterization method to generate the scenes, Synscpae and ISETAuto used ray-tracing. The quality
of the images from SYNTHIA is less physically accurate than the images from Synscape and ISETAuto, but they can
be rendered faster. Bottom. The table shows the AP@0.5IOU measured when training on 3000 images from the
data set listed in the column header, and evaluating with the data set listed at the left of the row. The column
headers show the number of cars in each of the data sets.

The numerical values in Figure 2 shows the AP for each
of the training and evaluation conditions. The first column
shows that training on the KITTI dataset achieves a high
performance level, but generalizes poorly to the BDD and
CITYSCAPE data sets. The second column shows that BDD
training generalizes well to the other datasets. The third col-
umn shows that CITYSCAPE generalizes to KITTI well, but
does not generalize well to BDD. A few reports of generaliza-
tion scores in the literature are consistent with these values.
In one study, training on 70,000 BDD images achieved a
generalization to KITTI of about 0.55 using a criterion of
AP@0.7IOU [31]. With 3,000 BDD images, we found a
generalization performance level of 0.67 at AP@0.5IOU.

A particularly clear conclusion from examining the gen-
eralization table is this: The KITTI data are an out-
lier. Training on the KITTI dataset does not generalize
to the BDD or CITYSCAPE data, and training on the
BDD or CITYSCAPE does not generalize well to the KITTI
data. The difference in generalization may be due in part to
the use of different cameras, and it may also be explained in
part by labeling policy differences, which results in different
number of instances for model training. The KITTI data only
labels cars when the bounding box is at least 25 pixels on
a side, while the other datasets include cars with smaller
bounding boxes. Given that there are no small bounding
boxes labeled in the KITTI data set, generalization perfor-
mance levels on the BDD and CITYSCAPE data will be
low.

There is a significant asymmetry in the generalization val-
ues. Training on BDD generalizes well to CITYSCAPE, but
training on CITYSCAPE does not generalize well to BDD.
The difference may be due to the diversity of camera types

used to collect the data for the BDD sample, while only a
single type was used for CITYSCAPE.

2) SCENE TYPE GENERALIZATION
The type of scene is another limit on generalization. The
BDD images include labels identifying images as arising
from cities, highway, day, night, clear and rain. We examined
generalization between training on city and highway scenes
(Figure 3). Trained on highway generalizes well to city (less
than 1% variation); trained on city has a 4% performance drop
to highway scenes. This is surprising because normally we
assume the model can learn more features when it is trained
on a complex background (city scenes are more complex
than highway); yet the generalization is better in the opposite
direction.

Training on images labeled as Day generalizes poorly to
Night, and similarly training on Night generalizes poorly to
Day (Figure 4). This is unsurprising because the statistics
of these images are so different from one another. We also
noticed that the Night images are more difficult for the model
to learn than Day images (lower performance with the same
training setting. The features learned in Night images gen-
eralize better to Day images than the reverse. These values
set a baseline for expectations between conditions with poor
generalization.

B. GENERALIZATION BETWEEN SYNTHETIC AND
CAMERA DATA SETS
1) GLOBAL GENERALIZATION
Next, we trained and evaluated using three types of synthetic
images. The SYNTHIA images [32] are generated using a
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FIGURE 6. Performance (AP@0.5IOU) for a network model trained on
different real and synthetic datasets (legend). The networks are evaluated
using the ISETAuto dataset which includes metadata about the distance
to each car [25]. The ordering of the generalization remains consistent for
cars at all distances.

rasterization method; Synscape [41] and ISETAuto [25], [26]
are generated using ray tracing. We compared the general-
ization between the synthetic and camera data as well as
the generalization between the synthetic data sets (Figure 5),
we selected only images with metadata descriptions of ‘‘city
street’’ and ‘‘daytime’’ for these comparisons.

Training using the ISETAuto images generalizes better
than trainingwith either of the other synthetic data sets. Train-
ing on the ISETAuto data generalizes to the KITTI dataset
(0.62) only slightly less than training on the BDD (0.67) and
CITYSCAPE (0.65) image data. Training on the ISETAuto
generalizes to BDD (0.47) slightly better than training on
CITYSCAPE (0.42) or KITTI (0.25). Training on ISETAuto
generalizes better to CITYSCAPE (0.59) than training on
KITTI (0.35). Generalization from SYNTHIA and Synscape
to any of the other data sets is poor, including the three public
empirical data sets and ISETAuto.

2) OBJECT DISTANCE GENERALIZATION
We examined whether failures to generalize are restricted to
the smaller and more distant cars by calculating AP@0.5IOU
as a function of distance. Specifically, we evaluated the per-
formance of networks trained on different public and syn-
thetic datasets on the synthetic images in the ISETAuto,
which include metadata describing the distance to each of
the cars. Failures to generalize were present for cars at all
distances (Figure 6). This suggests that the limited general-
ization is not associated with the distance or size of the car in
the image.

3) SENSOR PIXEL SIZE GENERALIZATION
The three public datasets contain images with different cam-
era spatial resolutions. To examine the impact of pixel size
on generalization, we synthesized ISETAuto images with
sensors at pixel sizes ranging from 1.5 µm to 6 µm; each
training set had the same number of objects (Table 2). The
ISETAuto images synthesized at 1.5µmgeneralize the best to
CITYSCAPE, which has the largest number of image spatial

TABLE 2. Generalization is assessed when training with an ISETAuto
dataset at a range of pixel sizes (columns). Evaluation was performed
with the public datasets (rows). The shaded box in each row shows the
pixel size that generalized best to each of the public datasets (maximum
within the row). The KITTI dataset was acquired using a camera with a
4.65 µm pixel. The BDD and CITYSCAPE data cameras are not specified.

samples. The ISETAuto data set at 3 µm generalizes the best
to BDD. The ISETAuto images synthesized using 3 µm to
6µmpixel sizes generalize at similar levels to theKITTI data.

C. GENERALIZATION BETWEEN SYNTHETIC DATA SETS
1) SENSOR PIXEL SIZE GENERALIZATION
We compared the generalization between networks trained
with different pixel sizes (Figure 7). Performance generally
declines as pixel size increases, as expected: sensors with
larger pixels have lower spatial resolution. The generalization
measurements suggest that training a network with pixels of
size S generalizes well to smaller pixel sizes, say S/2. The
training generalizes poorly, however, to larger pixel sizes.
We find it surprising that training on a 6 µm pixel gener-
alizes very well to a 3 µm pixel. In fact, the performance
is slightly higher. This may reveal a tradeoff between the
precision of the training and the quality of the image data.
The 6 µm sensor often has very small bounding boxes (mea-
sured in pixels) for the cars. Thus the limited generalization
may be counter-balanced by the improvement in the image
resolution.

2) COLOR FILTER ARRAY GENERALIZATION
For car detection the choice of color filters - ranging from
monochrome to RGB to RCCC - generalizes well (Figure 8).
A network trained on a monochrome sensor generalizes very
well to either the raw sensor data from an RGB or RCCC
sensor. Apparently the network learns to extract information
that is not eliminated by the variations introduced by the color
filters. Moreover, the generalization is symmetric in the sense
that training on any of the different sensors evaluates well on
data from the other sensors.

It may be that detection of other objects (e.g., traffic lights)
may benefit from choosing the color wisely. The simulations
for cars, however, suggests that a monochrome sensor is no
worse than a color sensor.
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FIGURE 7. Generalization is assessed between networks trained and evaluated with datasets with different pixel sizes (ISETAuto). The sensor size
(field of view) is constant as we vary pixel size, so that images measured with larger pixels have fewer spatial samples. The images at the right
show a car at 150 meter from a pinhole camera (FOV 45 degree) simulated with different pixel sizes. The images at the top show the car-detection
results for images with different pixel sizes using a network trained with 1.5 µm pixel. Other details as in Figure 2.

FIGURE 8. Generalization is assessed between networks trained and
evaluated using 10 bit sensor images with different color filters (ISETAuto
simulations). When using 10 bit pixels, generalization is very high. Other
details as in Figure 2.

3) BIT-DEPTH GENERALIZATION
Figure 9 shows a car inside a shadow of a bright scene. The
critical information about the car is represented in the smaller
digital values (0-30). For the 8-bit camera (top) the lowest
30 levels have a very poor representation of the car, which
is difficult to see. In these same levels, the 10-bit camera
(bottom) includes a reasonable representation of the same
car. Note that changing the bit-depth does not change the
pixel dynamic range; it increases the contrast within the dark
digital levels. The simulations were performed using a center-
weighted exposure algorithm.

For a monochrome sensor there is little performance differ-
ence between networks trained and evaluated on 8-bit (0.79)
and 10-bit (0.79) (Table 3). However, the networks trained at

FIGURE 9. A car captured in the dark part of a scene with two different
cameras. The scene has a bright sky that effectively sets the exposure
duration. The cameras with the two different bit-depths do not represent
the car equally well. The 8 bit camera (top) lacks detail, while the 10-bit
camera (bottom) has enough intensity resolution to contrast the car from
its surroundings.

TABLE 3. Generalization is assessed on monochrome sensor raw images
with different bit-depth.

different bit-depths do not generalize well. Training on 8-bit
evaluates on 10-bit images at a low level (0.62), and training
on 10-bit evaluates on 8-bit at a low level (0.71).
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FIGURE 10. Generalization between different exposure-control algorithms (Exposure bracketing, EB;
Center-weighted, CW; Global exposure, GE). On the whole EB and CW are similar, though they can differ in
important edge cases [25]. The GE performance is low, presumably because it is a poor method for capturing data.
But training on EB generalizes well to EB and CW showing that what is learned is similar. Other details as in Figure 2.

TABLE 4. Generalization is assessed on RGB sensor raw images with
different bit-depth.

For RGB sensors the generalization across bit-depths is
even worse (Table 4). Training with an 8-bit RGB sen-
sor reaches a low performance level (0.38); increasing to a
10-bit quantization produces a much higher AP@0.5IOU
(0.79). Naturally, the generalization between 8- and 10-bit is
very poor.

For the RGB sensors, automotive scenes, and a center-
weighted exposure algorithm, we find that increasing to a
16-bit depth is not significantly different from 10-bit. In each
case, however, the generalization is modest or poor. Training
on 10-bit evaluates at 0.71 on 16 bit, and training 16 bit
evaluates at 0.68 on 10 bit. Hence, the network is using the
number of levels as an important signal.

4) DEMOSAICKING INTERACTS WITH BIT-DEPTH
Demosaicking matters a great deal at 8 bits, but less so
at 10 bits. When training and testing with the raw sensor
image at 8 bits, performance is very poor (0.375, Table 4).
Demosaicing the 8-bit sensor data significantly improves the
performance (0.7997). Surprisingly, demosaicking does not
significantly improve performance for a sensor with 10 or
16 bits.

The value of demosaicing for 8-bit images has been pre-
viously reported [4]. Their methods did not permit them to
check the dependence on bit depth.

5) SENSOR CONTROL ALGORITHMS (EXPOSURE)
The exposure control algorithm is very important for high
dynamic range scenes, such as the ones found in driving
conditions. If the exposure is set too short significant portions
of the image may under-exposed and be very dark; if the
exposure is too long significant portions of the scene may be
saturated.

We compared three different exposure algorithms
(Figure 10). The global exposure algorithm sets the exposure
based on the brightest portion of the image, and this algorithm
has the lowest performance. The very bright sky, or large
specular regions, choose a short duration and as a result much
of the image may be too dark for car detection.

Restricting the exposure to a central part of the scene is typ-
ically a better sample of the important parts of the image for
detection, and this improves performance. Exposure bracket-
ing algorithms effectively increase the sensor dynamic range
in exchange for the time required to obtain multiple captures.

There is good generalization between networks trained on
global exposure, center-weighted and exposure bracketing.
This suggests that training on any of these algorithms teaches
the network the same critical features, and the performance
differences arise because the global exposure data are poor
quality.

6) POST-ACQUISITION PROCESSING
(GAMMA CORRECTION)
Post-acquisition processing algorithms also influence perfor-
mance and limit generalization (Figure 11). We compared the
performance of networks trained using the raw sensor values
with a network trained using the sensor values passed through
an exponential (gamma) function, and with a network trained
in which the gamma value is set adaptively depending on the
image contents.

The absolute network performance is fairly robust to the
gamma value: performance levels are roughly equal for a
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FIGURE 11. Generalization is assessed between networks trained and evaluated using different levels of gamma correction (ISETAuto
simulations). The images at the top show car detection on images with gamma=1 or gamma=0.1. The images on the top row are evaluated by
a network trained with gamma=1, results on second row are evaluated by a network trained with gamma=0.1. Other details as in Figure 2.

range of exponents (diagonal entries of Figure 11). However,
generalization is poor when trained with different gamma
values. The generalization between different gamma levels
between very close values (0.2 and 0.3) is good. But post-
processing exponents that differ by more than 0.1, say (0.1 vs
0.3) or (1 and 0.3), generalize poorly.

V. DISCUSSION AND SUMMARY
There is widespread agreement that there are limitations to
network generalization [36]. There is also consensus that
modern artificial networks do not generalize as well or in
the same way as humans [16]. There are conflicting views
as to whether generalization is specifically poor between
simulations of camera images and camera images [5], [28],
[33], [34], [37], [39].

This paper quantifies generalization between different
types of image data. The results clarify that performance
derived from training on physically-based multispectral sim-
ulations of camera images generalizes to camera images at
nearly the same level as performance generalization between
different camera image datasets.

A. FACTORS LIMITING GENERALIZATION
Using simulation methods we analyzed the impact of camera
parameters and post-acquisition processing on generaliza-
tion. It is difficult to perform analyses at this level of gran-
ularity from public data sets of camera images. For example,
the BDD dataset includes a large number of images of a
wide range of scenes, obtained using cameras with different
lenses, sensors, acquisition, and post-acquisition algorithms.
Separating out the impact of one or even a combination of
camera parameters from this complex dataset is impossible.
Obtaining a new large and more controlled dataset of real
camera images is impractical. It is feasible, however, to create

synthetic data that systematically vary individual camera
parameters, andwe have done so. These experiments quantify
generalizationwith respect to parameters including pixel size,
exposure control, color filters, bit-depth, and post-acquisition
processing.

In related work we describe technical methods for creating
and reasons for using synthetic data. Table 5 lists results
from the literature that use these methods to train networks
and assess performance on public data sets (KITTI and
CITYSCAPE). The physically-based multispectral simula-
tions of camera images (ISETAuto) performs at about the
same level as data augmentation methods, domain random-
ization, and domain adaptation (style transfer). Several of
these methods generalize to the KITTI data about as well as
training on BDD (0.67) or CITYSCAPE (0.65).

The last three rows of the table show that the absolute level
of performance with ISETAuto has not reached its highest
possible level. In row 5 we trained with 3,000 images con-
taining 25,077 objects and reached an AP level of 0.569 on
Cityscape. Adding more objects (29,942) increased perfor-
mance to 0.586. Adding 1,000 more images for a total
of 36,885 objects further increased performance to 0.625.
We found the same pattern of increasing improvement using
the KITTI test. This level of generalization is very similar
to the generalization between camera images. We summarize
Table 5 by noting that the quality of the synthetic images has
reached a level where they can be helpful for several different
objectives, including camera design.

1) GENERALIZATION AND SIMILARITY
Data from many of the Tables show that generalization
between data sets is asymmetric. For example, training on
KITTI generalizes poorly to BDD, but training on BDD
generalizes well to KITTI. The asymmetry in generalization
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TABLE 5. Generalization using networks trained with simulated data and tested on camera images. Rows 1-4 are results taken from the literature. Rows
5-7 are from simulations with ISETAuto. All performance levels were measured using AP@0.5IOU.

is sensible: one data set may span a much greater range and
be more instructive.

Some authors have suggested that to improve generaliza-
tion one might create image data sets that are more simi-
lar [19], [36]. We can measure the distance between image
collections in various ways, including the Kernel Inception
Distance (KID) score [2]. For some applications there may be
value in using generative adversarial networks to reduce the
distance between image data sets. But note that by definition
distance is a symmetric measure, and for this reason it is
not a replacement for generalization which can be (and is)
asymmetric.

We computed the KID values between the image data
sets used in our analyses. The KID distances are roughly
consistent with generalization; for example, the SYNTHIA
data set is the least similar (most distant) to the others.
Synscape and ISETAuto are similar to KITTI and Cityscape,
but ISETAuto is more like BDD. The greatest similarity
is between ISETAuto and Cityscape. These distances are
roughly consistent with the generalization, but of course they
do not capture the asymmetry.

B. FUTURE
The generalization between the ray-traced synthetic images
and the camera images is encouraging. The performance
level using synthetic images for the car detection applica-
tion is already adequate to be helpful in advancing all three
objectives (universal network design, specific camera sim-
ulation, co-design of camera and network). It is likely that
more experiments and innovation can increase the level of
generalization.

For our project, camera and network co-design, many
parameters remain to be explored. These include camera
placement, lens designs, and novel sensor designs. The quan-
tification of generalization we report here suggests that a soft
prototyping tool will provide useful guidance to explore this
parameter space.

The simulation environment also enables us to control
parameters of the scene, in particular object placement. This
provides an opportunity to perform additional experiments
in which objects are added to the scene in unusual locations
(e.g., [37]). The necessity of accurately placing objects for
training is an interesting and open question.

Finally, one might aspire to extend this work from car
detection to other challenging automotive tasks, such as traf-
fic sign identification, as well as other topics in robotics
and machine vision. The ability to build realistic models of
different environments - such as hospital corridors or factory
floors - is a challenge but within reach. Our results suggest
that building synthetic images of these environments using
computer graphics will be beneficial for developing new
camera designs.
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