
Received November 29, 2019, accepted December 20, 2019, date of publication January 9, 2020, date of current version January 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965169

Keypoint Detection Using Higher
Order Laplacian of Gaussian
YONGJU CHO 1,2, DOJIN KIM 3, SALEH SAEED 3, MUHAMMAD UMER KAKLI 2,
SOON-HEUNG JUNG 1, JEONGIL SEO 1, AND UNSANG PARK 3
1Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea
2University of Science and Technology, Daejeon 34113, South Korea
3Department of Computer Science and Engineering, Sogang University, Seoul 04107, South Korea

Corresponding author: Unsang Park (unsangpark@sogang.ac.kr)

This work was supported by the Korea Government (MSIT) (development of 3D spatial media core technology) under Grant 19ZR1120.

ABSTRACT This paper presents a keypoint detection method based on the Laplacian of Gaussian (LoG).
In contrast to the Difference of Gaussian (DoG)-based keypoint detection method used in Scale Invariant
Feature Transform (SIFT), we focus on the LoG operator and its higher order derivatives. We provide
mathematical analogies between higher order DoG (HDoG) and higher order LoG (HLoG) and experimental
results to show the effectiveness of the proposed HLoG-based keypoint detection method. The performance
of the HLoG is evaluated with four different tests: i) a repeatability test of the keypoints detected across
images under various transformations, ii) image retrieval, iii) panorama stitching and iv) 3D reconstruction.
The proposed HLoGmethod provides comparable performance to HDoG and the combination of HLoG and
HDoG provides significant improvements in various keypoint-related computer vision problems.

INDEX TERMS SIFT, DoG, LoG, higher order DoG, higher order LoG.

I. INTRODUCTION
Keypoint based image representation methods have shown
their effectiveness for image search, registration and 2D to
3D reconstruction tasks [1]–[4]. One of the most successful
and well-known keypoint-based image search approaches is
the Scale Invariant Feature Transform (SIFT). SIFT detects
keypoints using scale-space derivatives, a technique known
as the Difference of Gaussian (DoG). The detected keypoints
are represented as descriptors utilizing the combination of
gradient orientation and magnitude around each keypoint.
Images can then be compared based on their keypoints; a
larger number of similar keypoints increases the similarity of
the images being compared. If a query image is prepared to
tightly contain a single object inside, the image search task
can be effectively delegated as a known object search task.

Since the successful introduction of SIFT, many simi-
lar approaches have been developed to improve the robust-
ness of keypoint detection [2], [5], [6], [15]–[18]. Among
those, KAZE [15] detects features in a non-linear scale-space
built by the Additive Operator Splitting (AOS) technique,
WADE [17] finds repeatable keypoints based on salient
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symmetries at various scales by using Partial Differential
Equations (PDEs), andMSD [18] uses a relatively wide range
of image patches that are very dissimilar to detect keypoints.

On the other hand, many deep learning-based keypoint
detection methods have been introduced to replace traditional
hand-crafted keypoint detection methods over the past few
years. TILDE [21] is a learning scheme for reliable detection
of keypoints with drastic variations of weather and lighting
conditions. It proposed an effective method of generating
training data to learn a regressor. LIFT [10] is a deep neural
network architecture that includes a feature detector, orienta-
tion estimator and descriptor constructor. It uses the Siamese
architecture with four branches that takes a quadruplet of
patches (i.e., base patch, positive patch, negative patch, and
a patch that contains no distinctive feature point) as inputs
to train keypoint detector and descriptor simultaneously.
Covariant Feature Detectors [20] is a generic framework for
detecting local viewpoint invariant features in images by cast-
ing detection as a regression problem. It can learn corner and
orientation detectors by using a covariance constraint. Quad-
networks [23] is a framework for training a neural network
to rank transformation invariant interest points and only the
top/bottom quantiles of the ranks are chosen as keypoints.
SuperPoint [11] is a self-supervised framework for training
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a feature detector and descriptor constructor. This network
computes pixel-level feature locations and their associated
descriptors on images in a single forward pass. It uses the
domain adaption framework called Homographic Adaption
and obtained state-of-the-art performance on HPatches when
compared to LIFT, SIFT and ORB. LF-Net [12] is another
deep architecture used to learn local features that contains
the entire feature extraction pipeline and does not require
a secondary hand-crafted detector to generate training data.
Given an image pair, LF-Net extracts feature points from the
first image, then it runs on the second image to produce a
clean response map with sharp maxima at the right loca-
tions. Key.Net [22] is a shallow multi-scale architecture for
keypoint detection that uses a combination of handcrafted
and learned CNN filters. They designed a loss function to
maximize the repeatability score and detect robust features
across a range of scales. It is trained with synthetic data
created from ImageNet and evaluated on an HPatches bench-
mark dataset. It outperformed the state-of-the-art detectors in
terms of repeatability, matching performance, and complex-
ity. R2D2 [24] is a framework for jointly learning keypoint
detection and descriptor construction. It avoids ambiguous
areas and increases the reliability of keypoint detections and
descriptions. It outperformed the state-of-the-art detectors
and descriptors on an HPatches dataset.

Even though the research trend in keypoint detection
and descriptor construction is moving toward deep learning-
based methods, traditional keypoint detection methods
(e.g., SIFT) are still an important topic to study. Tradi-
tional keypoint detection methods still perform better than
the deep learning-based methods, especially when there are
large viewpoint or scale changes. Also, some of the traditional
keypoint detectors are used to generate keypoint informa-
tion that can be used to train neural networks. Some deep
learning architectures try to mimic the scale-space opera-
tion of SIFT. Therefore, understanding and improving the
performance of traditional keypoint detection methods can
be beneficial to the study of deep learning-based keypoint
detection.

In this paper, we propose an alternative method to
SIFT or higher order Difference of Gaussian (HDoG) [7],
which shows comparable performance to that of SIFT or
HDoG. The proposed method is based on higher order spatial
derivatives, which can be called higher order Laplacian of
Gaussian (HLoG). Even though the proposed HLoG shows
a close analogy with HDoG, the proposed HLoG scheme is
significantly different from HDoG due to the difference in
the base operators (DoG versus LoG). We briefly review the
keypoint detection methods of SIFT and HDoG and explain
the proposed method in the following sections.

II. PROPOSED METHOD
We first review the basic keypoint detection methods of
DoG and LoG, and then the extended methods of DoG
(HDoG), and the proposed method, which is the extended
LoG or Higher Order LoG (HLoG). The analogy between

HDoG and HLoG is shown using their mathematical
derivations.

A. DIFFERENCE OF GAUSSIAN AND LAPLACIAN OF
GAUSSIAN
The scale-space analysis for keypoint detection was exten-
sively studied in [8] where it was proposed that the scale space
extrema corresponds to local keypoints. However, the first
practical application of the scale-space analysis-based key-
points for image processing tasks was introduced only after
the invention of SIFT in which the DoG was used instead of
the LoG. It is well known that DoG is an approximation of
LoG as in Eq. (1):

∂G/∂σ ≈ σ∇2G (1)

We believe that the success of SIFT was induced due to
the use of DoG as well as the subsequent operations, such
as local extrema detection, keypoint removal on edge, and
robust descriptor construction method. However, DoG or
LoG-based keypoint detection is still the most important step
in the entire keypoint detection process in SIFT. HDoG was
recently introduced with superior performance to conven-
tional DoG in terms of image retrieval [7].

B. HDOG AND HLOG
HDoG [7] was developed based on the observation that DoG
only uses the first order derivative of scale-space (G) with
respect to scale (σ ). HDoG uses the 2nd, 3rd and higher order
scale-space derivatives with respect to σ . Given

G(x, y) = exp(−(x2 + y2)/2σ 2) (2)

as the Gaussian equation by disregarding the leading
coefficient, HDoG up to the 4th degree can be expressed
as Eqs. (3)-(6) by successively differentiating Eq. (2) with
respect to σ as:

∂G/∂σ = (x2 + y2)/σ 3
· exp(−(x2 + y2)/2σ 2) (3)

∂2G/∂σ 2
= (x2 + y2)(x2 + y2 − 3σ 2)/σ 6

· exp(−(x2 + y2)/2σ 2) (4)

∂3G/∂σ 3
= (x2 + y2)(x4 + y4 + 2x2y2 − 9x2σ 2

− 9y2σ 2

+ 12σ 4)/σ 9
· exp(−(x2 + y2)/2σ 2) (5)

∂4G/∂σ 4
= (x2 + y2)(x6 + y6 + 3x4y2 + 3x2y4 − 18x4σ 2

− 18y4σ 2
− 36x2y2σ 2

+ 75x2σ 4
+ 75y2σ 4

− 60σ 6)/σ 12
· exp(−(x2 + y2)/2σ 2) (6)

On the other hand, if we take the derivatives of Eq. (2) with
respect to x and y up to the 8th degree for even orders, we have
Eqs. (7)-(10).

∇
2G = ∂2G/∂x2 + ∂2G/∂y2 = (x2 + y2 − 2σ 2)/σ 4

· exp(−(x2 + y2)/2σ 2) (7)

∇
4G = ∂4G/∂x4 + ∂4G/∂y4 = (x4 + y4 − 6x2σ 2

− 6y2σ 2
+ 6σ 4)/σ 8

· exp(−(x2 + y2)/2σ 2) (8)
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∇
6G = ∂6G/∂x6 + ∂6G/∂y6 = (x6 + y6 − 15x4σ 2

− 15y4σ 2
+ 45x2σ 4

+ 45y2σ 4
− 30σ 6)/σ 12

· exp(−(x2 + y2)/2σ 2) (9)

∇
8G = ∂8G/∂x8 + ∂8G/∂y8 = (x8+y8−28x6σ 2

−28y6σ 2

+ 210x4σ 4
+ 210y4σ 4

− 420x2σ 6
− 420y2σ 6

+ 210σ 8)/σ 16
· exp(−(x2 + y2)/2σ 2) (10)

By comparing Eq. (3) and Eq. (7), we can verify that Eq. (1)
is satisfied. Similarly, by comparing Eqs. (4), (5), and (6)
with Eqs. (8), (9), and (10), respectively, we can find the
relationships between the higher order scale-space derivatives
and the spatial derivatives as Eq. (11)-(13):

∂2G/∂σ 2
≈ σ 2

∇
4G (11)

∂3G/∂σ 3
≈ σ 3

∇
6G (12)

∂4G/∂σ 4
≈ σ 4

∇
8G (13)

This means that the σ -normalized HDoG approximates
HLoG as DoG does LoG. Since the effectiveness of HDoG
was already proven experimentally in [7], we can expect
that HLoG can also be useful for keypoint detection. The
oblique and top view of the graphical representation of HLoG
filters of the 2nd, 4th, 6th and 8th orders are shown in Fig. 1.
As the order increases, the shape of the filters become more
complicated to better catch high frequency signals. Since the
HDoG requires inter-scale subtraction operations that need to
be performed sequentially to obtain higher order DoG spaces,
it has an inherent drawback in parallel processing. However,
HLoG filter kernels can be prepared beforehand and applied
to the input image in parallel to obtain higher order HLoG
spaces all at the same time. Therefore, HLoG provides much
better parallel processing capability compared to HDoG.

III. EXPERIMENTAL RESULTS
We evaluated the proposed method based on four different
tests: i) the repeatability of keypoint detection on dupli-
cate images with various transformations, ii) image retrieval,
iii) panorama stitching and iv) 2D to 3D reconstruction
test. Detailed information on the databases and evaluation
methodologies are presented in the following sections.

A. DATABASE
We used the Mikolajczyk database [9] for the keypoint’s
repeatability test, a subset of the Tattoo image data set
obtained from Michigan State Forensics Laboratory for the
image retrieval test, four sets of images with overlapping
regions captured in our lab for the panorama stitching test,
and a 2D image set for 3D reconstruction [14]. The Mikola-
jczyk database provides eight sets of images with five differ-
ent image variations, that is, blur (two sets), viewpoint (two
sets), zoom+rotation (two sets), light (one set), and JPEG
compression (one set). Each set contains six images and
five homographic transformation matrices. The homography
matrices provide ground truth with which correspondences
of keypoints across transformed images can be decided.

FIGURE 1. Oblique and top views of the HLoG filters for (a) 2nd, (b) 4th,
(c) 6th, and (d) 8th orders.

The homography matrices are generated from the first image
to all five other images in each of the eight sets. In total, there
are 48 images and 40 homography matrices. We consider
that a keypoint detected in the original image is repeatedly
detected in the image after homography transformation, if the
distance between two keypoints after canceling the homo-
graphic transformation is less than one pixel.

We used the same Tattoo image data set used in [7], where
there are 1,000 images with 445 unique tattoos. Therefore,
there are about 2.25 images for each tattoo. We performed the
image retrieval test in leave-one-image-out fashion as in [7]
and compared the performance between HDoG and HLoG.
For the panoramic stitching test, we observed which of
HDoG or HLoG succeeds more in stitching images that were

10418 VOLUME 8, 2020



Y. Cho et al.: Keypoint Detection Using Higher Order LoG

collected in our lab. Typically, a keypoint detector detecting
keypoints with higher repeatability has higher accuracy in
image retrieval and a greater chance to successfully stitch
images with overlapping regions. For the 3D reconstruction
test, we used a well-known 2D image sequence data set
capturing a Hall [14]. The 3D reconstruction operation can
generate a greater number of 3D points if it can find a greater
number of matching keypoints across 2D images. The more
3D points we have, the more detailed information about the
reconstructed 3D object we can generate. The repeatability
test is done to evaluate the performance of the keypoint detec-
tors directly, and the other three tests (i.e., image retrieval,
panoramic stitching 3D reconstruction) evaluate performance
on an application level. In all three major application prob-
lems used in the evaluation, we can say that a larger number
of keypoints provides better performance.

B. PERFORMANCE EVALUATION
1) KEYPOINT REPEATABILITY TEST
We used both DoG and LoG for keypoint detection up to the
4th and 8th degrees of derivatives, respectively. As shown in
Sec. II, the 1st, 2nd, 3rd, and 4th degrees of HDoG correspond
to the 2nd, 4th, 6th, and 8th degrees of HLoG, respectively.
Even though there is no upper limit on the available degrees of
derivatives, we have considered only up to 4th order since we
can obtain enough keypoints in such a configuration. Higher
orders beyond 4 or 8 may not capture normally observable
signals in images and may increase the computational time
without much gain. The descriptor construction andmatching
scheme follow the conventional methods in SIFT [1]. For
those matching keypoints, we verified whether they conform
with the homographic relationship within a distance of less
than one pixel. The number of ‘‘genuine’’ matching keypoints
out of the total keypoints were then used as the measure of
the repeatability of the keypoint detectors, HDoG or HLoG.
Fig. 2 shows example keypoint detection results with an
image from the Mikolajczyk database by HDoG and HLoG
at various orders of derivatives. We can observe the following
points in Fig. 2.

• The keypoints of HLoG appear at similar locations as
those of HDoG at the first order (i.e., DoG and LoG).

• The number of keypoints of HDoG decrease as the
order of derivative increases, whereas the keypoints
of HLoG remain at similar numbers. The numbers of
keypoints for HDoG are 1,260, 865, 224, and 99 at 1st,
2nd, 3rd, and 4th degrees, respectively. The numbers of
keypoints for HLoG are 1,165, 1,419, 821, and 1,220 at
2nd, 4th, 6th, and 8th degrees, respectively.
In general, the number of keypoints are supposed
to decrease at higher derivative orders because the
high frequency components are fewer than the low
frequency components in regular images. However,
we believe that the HLoG filters shown in Fig. 1
somehow interact with the high frequency components
sensitively to generate a large number of keypoints.

FIGURE 2. Example keypoint detection results using HDoG and HLoG at
four different orders.

We will evaluate the effectiveness of the HLoG key-
points in various experimental setups later in this paper.

• Overall, a substantial number of keypoints were differ-
ently detected between HLoG and HDoG.

Experimental results of the repeatability tests are sum-
marized in Fig. 3, where the keypoint repeatabilities are
evaluated in five different image transformations as well as
their average. The x and y axes of the figures in Fig. 3 are
the average number of keypoints for each derivation order
and number of matching keypoints, respectively. Note that
we used an average number of keypoints for each derivation
order in Fig. 3 because we plotted the graphs of the fusions
of multiple derivation orders together with those graphs from
each derivation order. We also showed the fusion of HDoG
and HLoG in the same graph with each derivation order.
We limited the number of detected keypoints according to the
tic values of the x axis in Fig. 3; the keypoints are selected
by the strength of the keypoints in descending order. The
strength of a keypoint is decided by the value of a keypoint
in DoG or LoG space. The number of matching keypoints
is proportional to the total number of detected keypoints.
Therefore, we showed the number of matching keypoints
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FIGURE 3. Comparisons of the repeatabilities of HDoG and HLoG keypoints with respect to various image transformations. (a) blur, (b) viewpoint,
(c) zoom+rotation, (d) light, (e) JPEG compression, and (f) average.
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with respect to the number of detected keypoints up to 300;
a keypoint detector that generates more matching keypoints
out of the same number of keypoints can be considered
to be more robust. Transformations of blur, viewpoint, and
zoom+rotation contain two sets of images in each. Therefore,
we provided the average number of matching keypoints for
those categories (Fig. 3(a), (b), and (c)).
This keypoint repeatability test is comparable to the image

matching test performed in [7]. However, we used the number
of matching keypoints across images under homographic
transformation as the measure of the performance of a key-
point detector rather than image matching accuracy to focus
more on the robustness of a keypoint detector itself. The
image matcher can show different performances depending
on the matching scheme even when the same keypoint detec-
tor is used. For example, the geometric configuration of
the matching keypoints can be used in the image matching
process rather than the simple number of matching keypoints.
We also provide the image retrieval test results in this paper.

The overall performances of HLoG are shown to be slightly
lower than those of HDoG, except for Light (Fig. 3(d)). The
performance of HLoG is lower than that of HDoG with a
large margin for zoom+rotation variation. The performance
of HLoG is slightly better than that of HDoG in the light
variation. In accordance with [7], the HDoG using multi-
ple derivation orders (i.e., 1st to 4th degrees) significantly
increases the number of matching keypoints compared to
those of DoG (i.e., 1st order derivative). Similar behavior is
also seen in HLoG.Moreover, the fusion of HDoG and HLoG
with multiple derivation orders significantly increases the
number of total matching keypoints. Therefore, we can expect
that better performance will be achieved in various keypoint-
related tasks, for example, image matching, panoramic stitch-
ing, or 3D reconstruction, by using the proposed method.

2) IMAGE RETRIEVAL TEST
For the image retrieval test, we followed the same experimen-
tal setup as that of [7]. We chose the number of octaves (O),
number of scales (S), and cutoff threshold values (Tx) as
{3}, {3, 4, 5}, and {0.180, 0.085, 0.070, 0.060}, respec-
tively for the keypoint detection using HLoG. As in [7],
the parameter Tx plays an important role in deciding the
number of keypoints. The parameter Tx is inversely pro-
portional to the number of keypoints detected. Even though
HDoG andHLoG approximate each other, their overall values
fromHDoGorHLoGpyramid appears significantly different.
Therefore, we did not use the same values of Tx’s between
HDoG and HLoG for the comparison. We used the Tx’s of
HLoG to control the number of detected keypoints to a level
similar to that of HDoG. Consequently, we found the series
of Tx’s of HLoG as 0.180, 0.085, 0.070, and 0.060, corre-
sponding to the Tx’s of HDoG, 0.020, 0.010, 0.007, and 0.005.
We followed the same strategies for descriptor construction
andmatching as those in [7]. Therefore, we provide the image
retrieval performance in terms of rank-1 matching accuracies
in four different schemes: 2nd order (i.e., traditional LoG),

FIGURE 4. Example matching results: the first, second, and third columns
correspond to image queries, false mates, and true mates, respectively.
(a)-(c) are examples where HDoG failed, but HLoG succeeded, (d) is an
example where HDoG succeeded, but HLoG failed, and (e) and (f) are
examples where both the HDoG and HLoG succeeded. The values of
parameters O, S, and Ts were chosen as 3, 3, and 0.02 for HDoG and 3, 3,
and 0.18 for HLoG, respectively.

diagonal, all, and off-diagonal. The 2nd order scheme consid-
ers the matching of the keypoints only from LoG filter. The
other schemes, diag., all, or off-diag., differs depending on
whether the keypoints are allowed to match across only the
same orders, all orders, or only different orders of derivatives.
More details of the four different matching schemes are given
in [7].

The average number of keypoints and the rank-1 match-
ing accuracies for four different matching schemes at a few
different parameter settings for HDoG and HLoG are sum-
marized in Table 1 and 2, respectively. The performance of
HDoG is the same as that in [7] and is provided here as
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TABLE 1. Summary of the performance of HDOG.

TABLE 2. Summary of the performance of HLOG.

the baseline. Based on the experimental results summarized
in Table 1 and 2, we can make the following observations:
(i) The best performance of the 1st order derivative of HDoG
(SIFT) and 2nd order derivative of HLoG (LoG) are 91.5%
and 82.5%, respectively, (ii) the use of higher-order deriva-
tives show significantly better matching accuracy compared
to the SIFT or LoG in most of the parameter settings (bold
numbers), where the best matching accuracies of HDoG

and HLG are 94.8% (Diag.) and 93.6% (All), respectively,
(iii) the differences between the best matching accuracies
between SIFT and HDoG, and LoG and HLoG are 3.3% and
11.1%, respectively, and (iv) there are many cases where the
performance of HLoG is better than that of HDoG (marked
with *).

Since the superiority of the performances of HDoG and
HLoG differ for different parameter settings, we performed
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TABLE 3. Summary of the performance of the fusion of HDoG and HLOG.

fusion with HDoG and HLoG. The fusion of multiple detec-
tors is performed at the keypoint level, i.e., we simply com-
bined keypoints from multiple detectors and used them for
the matching. Table 3 shows rank-1 matching accuracies
of the fusions of HDoG and HLoG using Diag. and All
matching schemes. It can be seen that the fusion of HDoG
and HLoG shows consistent performance improvement from
either HDoG or HLoG. Example matching results are shown
in Fig. 4 with a few different cases where HDoG failed but
HLoG succeeded, HDoG succeeded but HLoG failed, and
both HDoG and HLoG succeeded.

The reason for performance improvement with the fusion
of multiple derivation orders in image matching can be
explained in Fig.3; the fusion of multiple derivation orders
increases the number of matching keypoints and hence
improves the image matching accuracy. Also, the fusion of
HDoG and HLoG with multiple derivation orders shows
performance improvement due to the increase in the number
of matching keypoints. More importantly, the performance
improvement of the image retrieval test proves that there are
additional keypoints detected by HLoG and matched cor-
rectly, which were not detected by HDoG. Therefore, we can
expect to achieve better performance in various keypoint-
related tasks, for example, image registration or 3D recon-
struction, with the proposed method.

3) PANORAMIC STITCHING TEST
We performed panoramic stitching experiments to further
support the effectiveness of the proposed method. We fed
the sets of matching keypoints from HDoG, HLoG, and the
fusion of HDoG and HLoG up to the 4th degree. Out of the
four image pairs, we found one pair that could not be stitched
by either HDoG or HLoG, but was successfully stitched by

FIGURE 5. Example images of panoramic stitching: (a), (b) a pair of
images with overlapping regions and (c) stitching results of (a) and (b).

using the fusion of HDoG and HLoG. The stitching results of
Fig. 5(a) and (b) are shown in Fig. 5(c). We used the Open
Source Computer Vision Library (OpenCV, version 2.4.9)
[13] for the panoramic stitching operation.

4) 2D TO 3D RECONSTRUCTION TEST
Finally, we evaluated the application of the proposed method
for 3D reconstruction, which is a well-known problem that
involves keypoint matching of multiple 2D images. We used
a 2D image sequence data set capturing a Hall [14] for the
evaluation. Fig. 6 shows the reconstruction results using only
HDoG or HLoG and both HDoG and HLoG. The number of
reconstructed 3D points are 43,188, 71,099, and 82,612 from
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FIGURE 6. Example results of 3D reconstruction using keypoints from
HDoG, HLoG, and both of HDoG and HLoG.

HDoG, HLoG, and HDoG+HLoG, respectively. As shown
in the previous tests, the increased number of keypoints by
using HLoG also helps in 2D to 3D reconstruction tasks.

IV. CONCLUSION AND FUTURE WORK
In conclusion, we proposed an alternative keypoint detector
based on higher order spatial derivatives, HLoG. We showed
the effectiveness of the proposedmethod based on four differ-
ent experimental evaluations. Firstly, a repeatability test was
performed using a small set of images with known homog-
raphy information. Secondly, an image retrieval test was
performed using a data set with a larger number of images.
Thirdly, a panoramic stitching test was performed to show the
effectiveness of the proposed method in the image alignment
problem. Finally, we performed a 3D reconstruction test and
verified that the proposed method helped in generating a
larger number of 3D points. We have successfully shown
that the proposed HLoG-based keypoint detection method is
advantages when it is used together with HDoG for various
computer vision problems. We believe that the improvement
in performance with the fusion of HDoG and HLoG is due
to the difference between the base operators (i.e., DoG vs.
LoG). The differences between HDoG and HLoG add up in

each derivation order and become significant when multiple
derivation orders are considered.

We will further evaluate HDoG and HLoG to understand
their characteristics and optimal parameter settings. We are
optimizing and trying to apply a normalization technique
to the HLoG filters to stabilize the filter response to high
frequency components. We will also apply HLoG to more
computer vision problems such as 2D or 3D alignments and
evaluate the performance.
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