
SPECIAL SECTION ON ADVANCED DATA MINING METHODS FOR SOCIAL COMPUTING

Received December 12, 2019, accepted December 30, 2019, date of publication January 9, 2020, date of current version January 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965245

Continuous Blood Pressure Measurement
Platform: A Wearable System Based on
Multidimensional Perception Data
ZHONG DONG 1, (Member, IEEE), ZHU YIAN1, (Member, IEEE), WANG LANQING 1,
DUAN JUNHUA1, AND HE JIAXUAN 2
1School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China
2School of Software, Northwestern Polytechnical University, Xi’an 710129, China

Corresponding author: Zhong Dong (dzhong@nwpu.edu.cn)

This work was supported in part by the Key Research and Development Program of Shaanxi Province under Grant 2019ZDLGY03-04,
in part by the Xi’an Science and Technology Plan Project under Grant GXYD19.8, and in part by the National Natural Science Foundation
of China under Grant 61303225.

ABSTRACT The mobile crowd sensing technology in the environment integrating human, machines and
things is an emerging direction in social computing. In kinematics research, continuous blood pressure
monitoring and calibration are the basis for revealing the correlation between athlete motor function and
blood pressure. At the same time, in the field of medical research, hypertension can bemore easily controlled,
thus improving the effectiveness of hypertension treatment. This paper presents the design principle of a
human-machine fusion system based on CrowdOS, a mobile crowd sensing platform. The system innova-
tively establishes the correlation between blood pressure and exercise, improves the accuracy of cuffless
blood pressure measurement, and verifies the feasibility of calibrating continuous cuffless blood pressure
measurement based on exercise information. Using our system and electronic cuff sphygmomanometer,
we measured 65 groups of data in walking, running, sitting and climbing stairs, each group lasting about
10 minutes. Based on these data, we established a regression analysis model for blood pressure measurement
calibration. The accuracy of blood pressure calibration was improved from the original systolic root
mean square error of 13.43mmHg and diastolic root mean square error of 8.35mmHg to 9.76mmHg and
5.56mmHg. The design method proposed in this paper provides a feasible solution for continuous cuffless
blood pressure measurement and calibration, and shows broad application prospects in the fields of athlete
scientific training and medical care.

INDEX TERMS IoT, human-computer interaction, blood pressure calibration, blood pressure monitoring.

I. INTRODUCTION
A. RESEARCH BACKGROUND
Blood pressure is used to measure a person health status.
Hypertension is a major factor in increasing cardiovascular
risk. Nearly one-third of people in the United States have
high blood pressure, the number of patients in China is also
increasing year by year. There are many factors affecting
blood pressure, including some short-term events. Such as
changes in circumstances and emotions, drug intake and exer-
cise training of different intensity. Continuous blood pressure
monitoringmakes it easier for hypertension to be detected and

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaiyu Wan .

controlled in time, which can effectively assist in the hyper-
tension treatment [1]. In addition, in the research of kinemat-
ics, it can also provide support for the research of changes
in athletes physical function during exercise. On August 26,
2014, the IEEE published the IEEE 1708 standard for wear-
able cuffless blood pressure measuring devices [2], based on
which more wearable devices will be used to monitor blood
pressure in the future [3].

Current blood pressure monitoring at home relies on an
oscilloscope-based blood pressure cuff [4]. While this auto-
matic cuff enables non-clinical monitoring without the need
for a professional physician, oscillometric devices are both
cumbersome and inaccurate [5], and hardware inconvenience
limits the number of measurements to once or twice per

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 10147

https://orcid.org/0000-0001-9970-6510
https://orcid.org/0000-0003-2636-5238
https://orcid.org/0000-0002-8008-2354
https://orcid.org/0000-0002-0501-9363

Z. Dong et al.: Continuous Blood Pressure Measurement Platform

day [6]. In addition, cuff-based measurements cannot cap-
ture changes in blood pressure that occur at all points in
everyday life, so incidents that affect blood pressure, such
as exercise or mood changes, cannot be detected in time.
Therefore, there is a need for a reliable and portable device to
increase the frequency and quality of blood pressuremeasure-
ment [7]. At the same time, a system is needed to construct
a user‘s blood pressure statistical analysis model based on
continuous blood pressure data and associated data of a large
number of different users [8], and the model is used for auto-
matic analysis and early warning of the user physical state.
At present, the smart bracelet for measuring blood pressure
has been mass-produced, but most of the smart bracelets
only output sensor measurements at a certain moment when
measuring blood pressure [9], and there are problems such
as discontinuous monitoring, lack of statistical models, and
inability to respond to physical activity. The cloud system
of the bracelet does not have self-learning ability, so it is
impossible to construct a blood pressure statistical analysis
model based on a large amount of user data.

B. RESEARCH GOAL
We propose a scheme for measuring, analyzing and cali-
brating continuous cuffless blood pressure. This scheme is
based on CrowdOS [10], the first crowd sensing operating
system platform released by the School of Computer Sci-
ence of Northwestern Polytechnical University. The platform
is divided into two parts: the sensing and the server end.
The sensing end is responsible for collecting sensing data
such as blood pressure, heart rate and inertial measurement
unit (IMU) data. After being calibrated by the regression
analysis model, the collected data will be uploaded to the
server end by wireless network. The server end is responsible
for managing various access sensing devices, training and
correcting the analysis model according to the sensing data
sent by the sensing end, and further providing the analysis
model trained for the user. It can also build a corresponding
analysis service for the user based on the analysis model. The
services developed on server end generate a RESTful API
interface for the web application to obtain the information
of the devices and send control instructions to the devices.
Users can view the monitoring data and the working status of
the devices through the web application. When the number of
the system users and the historical data measured by the users
reach a certain scale, the system can make decisions based on
the changes in blood pressure and heart rate of different types
of users according to the statistics and analysis results of big
data, and give reasonable suggestions for life and exercise.
Early warning will be given before the dangerous condition
of abnormal blood pressure or heart rate occurs.

The rest of this paper is organized as follows:
Section 2 introduces related work. Section 3 introduces the
principle of system framework. Section 4 introduces the
measurement and calibration mechanisms for continuous
blood pressure. Section 5 gives the verification scheme for
the system. The corresponding experimental results are given

and we discuss and analyze the experimental results in
Section 6.

II. RELATED WORK
A. WEARABLE MONITORING SYSTEMS
McArdle WD et al. showed that different exercise conditions
have different effects on human blood pressure [11]–[14].
The Seismo Watch system developed by Carek AM et al.
is a watch-type blood pressure monitor that measures blood
pressure by simple operation: placing the watch against the
sternum to detect micro-vibration of the chest wall associated
with the heartbeat [15]. However, Seismo Watch allows the
user‘s blood pressure to be measured at rest, but prevents
continuous measurement during exercise.

The Glabella system developed by Holz et al. is a pair of
wearable spectacles that continuously measures blood pres-
sure by monitoring the heart rate of the wearer head [16].
Glabella can achieve continuous blood pressure monitoring,
which is of great significance to us, but Glabella system
measurement results are easily affected by other active noises,
such as phone calls, body movements, etc.

The Naptics system developed by Carek AM and Holz
C is a kind of wearable shorts that continuously monitors
the wearer blood pressure without disturbing the user during
sleep [17]. The Naptics system can be modified to be smaller,
more integrated, and take up less space, making it possible to
perform continuous and unobtrusive 24-hour blood pressure
monitoring.

The Seismo system developed by Wang et al. is based on
smart phones for blood pressure monitoring [18]. The system
uses the accelerometer of a smart phone tomeasure vibrations
caused by heart valve motion, and the camera of the smart
phone measures the pulse at the fingertips [19]. The Seismo
system uses a mobile phone to measure blood pressure, but it
cannot monitor blood pressure continuously [20].

B. UBIQUITOUS COMPUTING SYSTEMS
This section mainly introduces several UCS(Ubiquitous
Computing Systems)for different fields and scenarios [21].
They all have their own unique design perspectives and a
systematic approach to solving domain problems. In the end,
we summarize the commonality and uniqueness of CrowdOS
compared to these UCS [22].

HomeOS is a platform that simplifies the task of manag-
ing and extending technology in the home by providing a
PC-like abstraction for network devices to users and develop-
ers [23]. It uses network devices as peripherals with abstract
interfaces, implements cross-device tasks through applica-
tions written for these interfaces, and provides users with a
management interface designed for the home environment.
HomeOS already has dozens of applications and supports a
variety of devices.

CampusOS is an operating system that manages the net-
work resources of a university campus [24]. It provides flex-
ible support for campus application development through an

10148 VOLUME 8, 2020

Z. Dong et al.: Continuous Blood Pressure Measurement Platform

SDK that includes campus-related APIs. Developers can also
easily extend the OS feature and the SDK.

Terrence et al. are developing an interaction infrastruc-
ture called the Human-Robot Interaction Operating System
(HRI/OS) [25]. The HRI/OS provides a structured software
framework for building human-robot teams, supporting a
variety of user interfaces, enabling humans and robots to par-
ticipate in task-oriented conversations and facilitating robot
integration through extensible APIs.

ROS is an open source robot operating system. It relies on
native OS of heterogeneous computing clusters and provides
a structured communication layer on top of them. In [26],
they discussed how ROS is associated with existing robotic
software frameworks and provides a brief overview of several
available applications that use ROS.

Additionally, Urban OS was proposed as a software
platform to accelerate urban technology development and
equipment deployment [27]. While, BOSS provides a set
of system services to support applications deployed on
distributed physical resources in large commercial build-
ings [28]. It can be seen from the analysis that these operating
systems are designed to solve general problems in their field,
and provide a comprehensive framework and a rich set of
APIs. We have designed and implemented the overall archi-
tecture, important mechanisms and functional components of
CrowdOS, while also taken into account the internal interac-
tion and external callable interface, as well as the stability
and scalability of the system. The blood pressure monitoring
system we proposed is just one application on the CrowdOS.

III. SYSTEM ARCHETACTURE
A. CROWDOS KERNEL
The system architecture adopted in this paper is extended
on the CrowdOS platform. This section mainly introduces
the overall architecture of the system and the mechanism
of the core modules of the system CrowdOS is designed to
comprehensively address versatility.

FIGURE 1. OS kernel architecture.

The OS kernel architecture is presented in figure 1 and
we introduce the relationships between various modules.

CrowdOS not only shields the differences of native OS run-
ning on heterogeneous devices, but also reserves interfaces
of extensible function modules and personalized plugins.
CrowdOS runs between the native operating system and the
upper application. It includes the sensing-end and server-
end. Sensing-end software consists of two types of devices.
The first type is portable smart sensing devices with human-
machine interaction functionalities, such as smart phones
and smart watches [29]. The second type is fixed sensors
deployed in the physical world which do not need to interact
with people directly, such as vehicle sensors, water quality
sensors, air quality sensors. In this paper, the sensing-end
is further extended so that it can be deployed on Raspbian
system. Server-end software provides integratedmanagement
services, which are usually deployed on server clusters, cloud
servers, or edge servers. The core processing mechanisms of
the OS, such as task assignment and scheduling, resource
storage and management, are deployed in server end. Two
ends perform data transfer and behavior control through a set
of communication and interaction protocols we define.

The sensing-end is divided into two layers. The bottom
layer is the system support layer, which is mainly responsible
for the following functions:
• Get device status, such as current device availability,
remaining power, location, etc.

• Unify packaging of sensor interfaces and data transfer
formats.

• Capture available communication types and modes of
device, then store them in structures.

The upper layer is the functional layer, which mainly
completes three types of operations: human-machine(H-M)
interaction, task identification, and data transmission.

Raw tasks can be uploaded to servers by publisher through
the H-M interactive module. Participants can browse and
execute tasks that have been published through smart termi-
nals. However, for sensors without the H-M interaction mod-
ule, once they are activated by the authenticated tasks, they
automatically collect and upload sensor data according to
predetermined rules [30]. We package the continuous blood
pressure data collection module on Raspberry PI and publish
it to server as a task.

Server-end combines multiple modules and innovative
mechanisms. It is mainly responsible for task scheduling and
assignment, resource storage, and management, data process-
ing, and result optimization. Server-end not only handles
tasks in a fine-grained manner, but also builds a unified
knowledge base, while also providing a rich set of com-
ponents as system plugins. Next, we briefly introduce the
function of each module.
• Task pool module performs operations such as parsing,
scheduling, allocation, and fine-tuning on received raw
tasks.

• Resource Management module comprehensively man-
ages the heterogeneous sensing devices, environment
resources, users and task process. We package the mod-
ule responsible for training the data analysis model into

VOLUME 8, 2020 10149

Z. Dong et al.: Continuous Blood Pressure Measurement Platform

task process, which is uniformly managed by Resource
Management module.

• Storage and Query module provides categorized storage
and rapid retrieval of massive amounts of heterogeneous
data.

• System Plugin module provides a wealth of components
such as privacy protection, security, credit evaluation,
and user incentives.

• Task Result Optimization (TRO) framework is primar-
ily designed to optimize results quality, which consists
of deep feedback framework based on human-machine
interaction (DFHMI), quality assessment mechanism
(QAM), shallow-deep inference mechanism (SDIM)
and specific strategies.

• Data Management Center (DMC) is mainly responsible
for managing data that come with tasks, uploaded by
participants, or generated during the execution process.
Most of these heterogeneous multisource multimodal
data are unstructured. Knowledge Base (KB) is the basis
and premise of system to make reasoning. Construct-
ing KB is an efficient way to systemically manage
domain knowledge. Internal and External (I-E) inter-
faces include system internal interface and CrowdAPI,
where the internal interface is a set of protocols used
for system testing and interaction between modules.
CrowdAPI provides a unified call interface for applica-
tion development.

CrowdOS is designed using cloud-edge-side architecture:
sensing-end is deployed on terminals to collect sensing
data and special task solutions; server-end is deployed on a
cloud or edge servers, which is responsible for comprehensive
management of resources and real-time response to system
operations; when deployed on edge servers, the OS is usually
tailored and lightweight.

FIGURE 2. System design principle.

B. SYSTEM DESIGN PRINCIPLE
The system design principle is presented in figure 2. The
software of the system is composed of sensing-end soft-
ware and server-end software. The sensing-end software is
responsible for reading, storing, analyzing and uploading
data to the server. For the sensing-end hardware, we use
Raspberry Pi 3 as the main computing device, and connect the
inertial measurement module LPMS-ME1 DK through the

UART serial port to collect user movement data, and connect
the MKB0803 module to collect blood pressure, heart rate
and wearing status data. Raspberry Pi 3 adopts Raspbian
operating system. The device reads the Euler angle, quater-
nion, and linear acceleration data of the inertial measurement
module LPMS-ME1 DK from the UART serial port through
the LpSensor driver. The read data is converted into JSON
format, then published to the ‘‘imudata’’ topic of the Redis
process through hiredis, and waits for subscriptions from
other processes. The publishing frequency is 1Hz. At the
same time, the device uses the Pyserial driver to read the
heart rate, systolic and diastolic blood pressure data collected
by the MKB0803 sensor from the UART serial port. The
driver is also responsible for sending calibration instructions
to the MKB0803 sensor to reset the heart rate, systolic and
diastolic blood pressure values. A clear command can also
be sent to the MKB0803 sensor to erase the calibration
information. The driver process converts the read data into
JSON format, and publishes it to the ‘‘blooddata’’ topic of
the Redis process through redis-py, waiting for subscriptions
from other processes. The publishing frequency is 1Hz. The
blood pressure and heart rate-driven process will subscribe
to the ‘‘property/set’’ and ‘‘property/clear’’ topics of the
Redis process. When calibration and clearing instructions
are issued, the corresponding tasks will be executed, and the
execution results will be published.

The Server Link process on the sensing-end is devel-
oped based on NodeJS. It connects to the server through
the Server-iot-device-sdk library and listens to downstream
messages from the server [31], including ‘‘connect’’, ‘‘error’’,
and ‘‘property/set’’. After the Server Link process hears the
‘‘property/set’’ message, the program will parse it and post
the analysis result to the ‘‘property/set’’ and ‘‘property/clear’’
topics via node_redis, which are used for the calibration and
clearing of the MKB0803 sensor respectively. The Server
Link process will subscribe to the messages of the topics
‘‘blooddata’’, ‘‘imudata’’, ‘‘calibration’’, ‘‘erase’’ and ‘‘pred-
blooddata’’. The sensing-end system parses the messages to
obtain the current working status of the device, including six
states: reading, wearing error, clearing success, calibrating,
calibration success and calibration failure, and report the
device status, calibrated blood pressure and heart rate data
to the server.

The data collection process of the sensing-end system will
subscribe to the topics ‘‘blooddata’’ and ‘‘imudata’’ of the
Redis process. After each startup of the sensing-end system,
the data collection process will re-create a new list in Redis
for blood pressure, heart rate and IMU data. The name of the
list is based on time information. At the same time, the blood
pressure heart rate list name and the IMU data list name
are stored in the ‘‘imu.blood.relation’’ list for recording the
relationship of the two lists. After the data collection process
receives the data, it set timestamps on the received data and
stores the data in the corresponding list.

The data calibration process will subscribe ‘‘blooddata’’
and ‘‘imudata’’ topic, and input the heart rate,blood pressure

10150 VOLUME 8, 2020

Z. Dong et al.: Continuous Blood Pressure Measurement Platform

and IMU data into regression analysis model for calibra-
tion. Calibration data can be output approximately every
10 seconds, and published in the ‘‘predblooddata’’ topic of
Redis process. The application respectively uses the Bayesian
Ridge regression analysis [32], the AdaBoost based Decision
Tree regression analysis and Support Vector Machine regres-
sion analysis method to calibrate the heart rate [33], systolic
and diastolic blood pressure data [34].

The Redis module is mainly used to solve the data storage
and inter-process communication problems of the sensing-
end system. If the configuration file of Redis is modified
every 5 seconds, it will save the database dump.rdb to the
hard disk to solve the data storage problem. Redis supports
multiple data storage formats, such as keys, strings, hashes,
lists and collections. The publish and subscribe function of
Redis is used to solve the problem of communication between
processes.

The server-end platform we developed based on CrowdOS
supports multiple types of device access, and the device
and server platform can perform stable and reliable two-way
communication. The server platform connects various types
of heterogeneous devices supporting the sensor data collec-
tion, and provides the server platform API for applications.
The instruction of application is sent to the devices through
API calls to achieve remote control. The sensing-end system
uses the LinkJS SDK based on the NodeJS environment to
access the server platform securely. The server platform has
functions such as devicemanagement, data analysis, and rules
engine. The Link Kit SDK based on the NodeJS environment
uses the MQTT protocol for communication. The MQTT
protocol is based on the TCP/IP protocol. We create two
services on the server platform. The calibration service is an
API call service with input parameters. The Web application
calls the service by inputting the values of heart rate, diastolic
and systolic pressure through the API. The erase service is an
API call service without parameters. After the two services
are called by the web application, the server platform will
send the transmitted value to the ‘‘property/set’’ topic of the
sensing-end system for calibration of the blood pressure heart
rate chip. In order to meet the needs of users to view Web
pages from computers and mobile phones, the system devel-
oped two versions of Web applications, desktop and mobile.
The Web application of the system meets the user needs to
check the working state of the equipment, monitor data in
real time, detect data changes within 24 hours or calibrate the
equipment.

IV. CONTINUOUS BLOOD PRESSURE
MEASUREMENT MECHANISM
A. DATA ACQUISITION AND CALIBRATION MECHANISM
Due to slight posture changes or strenuous exercise,
the human blood pressure and the measurement results of the
wearable device could be changed. Therefore, we introduce
an inertial measurement unit in the sensor module to sense
the motion factor.

In order to verify the accuracy of blood pressure mea-
surement and calibration by the system, the standard blood
pressure is measured by an electronic sphygmo-manometer
meeting the medical standard. At the same time, electronic
sphygmomanometer and sensing-end system are used to col-
lect data in different scenarios such as walking, running,
sitting and going up and down stairs, and the data are input
into different regression analysis models for comparison. The
system selects regression analysis models with relatively high
prediction accuracy to integrate into the sensing-end system.

During data acquisition, the wearable device can acquire
continuous values including heart rate, blood pressure and
motion state, and the tester can use the cuff sphygmo-
manometer to measure standard blood pressure for calibra-
tion of the wearable device when the wearable device is
started for acquisition [35]. Ideally, the blood pressure cal-
ibration of wearable devices is a multivariable time series
prediction problem.

FIGURE 3. Idea data acquisition.

The collected data are shown in figure 3. the sensor label
represents the blood pressure data continuously collected by
the blood pressure sensor [36], and the cuff label represents
the blood pressure data collected at intervals by the cuff
sphygmomanometer.

FIGURE 4. Actual data acquisition.

However, when we built the prototype system, the hard-
ware of the sensor-end system was mainly composed of
jumper wire, sensors and Rasberry Pi. The inconvenience of
the hardware made it impossible for testers to measure stan-
dard blood pressure data with cuff sphygmomanometer while
carrying our equipment. The actual measured data are shown
in figure 4. Therefore, we use the method of extracting data in
groups to collect the original data, as shown in the green boxes
in figure 4. A box calibrates a group of data. The red dots
on both sides represent the standard data measured by cuff

VOLUME 8, 2020 10151

Z. Dong et al.: Continuous Blood Pressure Measurement Platform

sphygmomanometer, and the middle blue curve represents
the continuous blood pressure data collected by Sensing-end
system for a period of time.

The first standard value measured by cuff sphygmo-
manometer is used to calibrate the blood pressure and heart
rate sensor chip. The second standard data of the cuff sphyg-
momanometer and the data collected by sensing-end system
are used to build a regression analysis model. During the
construction of regression analysis model, the heart rate,
blood pressure and movement data of sensing-end system are
used to construct training vectors, and the standard data of
cuff sphygmomanometer is used as training values. As shown
in figure 5, the sensing-end system loads the trained regres-
sion analysis models, and constructs a prediction vector input
regression analysis model by using heart rate, blood pressure
and motion data in a period of time to obtain a prediction
value of blood pressure at intervals.

FIGURE 5. Data acquisition and calibration.

The data calibration program subscribes to the blood pres-
sure heart rate raw data ‘‘blooddata’’ and the IMU raw
data ‘‘imudata’’. Then it extracts features and structures
300-dimensional matrix from the subscription data and uses
the trained Bayesian regression, the regression based on
AdaBoost Improved Decision Tree and the Support Vector
Machine regression model to respectively predict heart rate,
systolic and diastolic blood pressure data [37].

When the data calibration program extracts features,
the heart rate, systolic and diastolic blood pressure are filled
into the matrix in each set of data, but the IMU data need
further extraction. The original IMU data has linear acceler-
ation, and the linear acceleration exists in three directions of
the coordinate axis. The velocity can be solved according to
the integral of the linear acceleration in the three directions
of the defined coordinate axes, but the noise of the IMU
is large in the actual work, so the integral solution is not
feasible. Therefore, we calculate the absolute value of the

linear acceleration of each set of data and fill it into thematrix.
The calculation process of the absolute value is as follows:

|a| =
1
3

√
a2x + a2y + a2z (1)

ax represents the acceleration on the x-axis, ay represents
the acceleration on the y-axis and az represents the accel-
eration on the z-axis. To some extent, the absolute value of
the linear acceleration |a| can represent the magnitude of
the change in speed. At the same time, the original IMU
data also includes Euler angles and quaternions. Euler angles
and quaternions represent the pose of the IMU. The Euler
angle is easy to understand but generates a universal lock
problem, the quaternion is easy to program and can avoid
the universal lock. If each quaternion represents a pose in
space, then the inverse cosine of the two quaternion dot
products represents the angle between two quaternion poses.
We calculate the angle between the quaternion of each set of
data and the previous set of data, then fill into the matrix.
The time between each set of data is about 1 second, which
is equivalent to calculating the IMU bit in one second. The
angle change value of the pose, the calculation process of the
angle change value is as follows:

1angle = arccos
(
q pre · qnow

)
×

180
π

(2)

qpre represents the quaternion of the previous set of data,
qnow represents the quaternion of the current set of data,
1angle represents the angular change of the IMU pose
between the two sets of data, The combination of |a| and
1angle can represent the motion of the device. After the
program normalizes the 300-dimensional matrix, enter three
trained models to obtain heart rate, diastolic and systolic
blood pressure prediction values, and publish the blood pres-
sure heart rate prediction value to the ‘‘predblooddata’’ topic
of the Redis process. The data calibration process approxi-
mately publishes forecast data every 10 seconds.

B. DATA ANALYSIS AND MODEL TRAINING
When the data collection process of the sensing-end
runs, the blood pressure heart rate data collected by the
MKB0803 module and the IMU data collected by the
LPMS-ME1 DK module are stored in the list of the Redis
process. The data collection process respectively creates a list
for blood pressure heart rate data and IMU data each time the
data collection process starts.

The ‘‘imu.blood.relation’’ list stores the relationship
between the two lists. TheRedis process checks the data every
5 seconds for changes. If so, saves the data in memory to
disk. When Redis process starts again, loading the data on the
disk can restore the state before the save completely. When
the sensing-end system is offline, start the Redis process
and the format conversion process. The format conversion
process obtains a list of the storage relationship from the
Redis process. The program traverses the storage relationship
list, parses the names of blood pressure heart rate data list and
the IMU data list from each storage relationship. By using

10152 VOLUME 8, 2020

Z. Dong et al.: Continuous Blood Pressure Measurement Platform

two list names, it read two lists from Redis and merges the
data of the two lists. The principle of merging is that the time
difference of the data in the list is less than 1 second. Finally,
the format conversion process will completely convert the
data stored by the Redis process into CSV format data (store
in sensor.csv file), each row stores the group number, time,
heart rate, systolic pressure, diastolic pressure, quaternion,
Euler angle and linear acceleration.

When the data are collected, we will use the OMRON
U30 to collect a set of standard blood pressure heart rate data
for verification before and after collecting data from each
group of devices, and store the two sets of data in the CSV
format data file (cuff.csv). Each row stores the group number,
time, heart rate, systolic pressure, diastolic pressure.

FIGURE 6. Data analysis process.

The data analysis process is shown in figure 6. When the
data analysis program is initialized, the data in the cuff.csv
and sensor.csv files are read and stored in a list. Each element
in the list stores the same set of sensor data and standard blood
pressure heart rate data. The program uses the matplotlib
library to visualize the raw data stored in the list and calculate
the error of the standard blood pressure heart rate data and the
blood pressure heart rate data collected by the sensor. Since
the time to collect one set of data by the OMRONU30 is after
the sensing-end device collected the data, the time cannot
be aligned. Our solution is to calculate the average error by
taking the distance between the last 10 recorded values of
each set of sensor data and the standard data. For example,
the program uses the formula (3) when calculating the origi-
nal error of a set of systolic pressures:

sbperr =
1
10

10∑
i=1

∣∣sbpi − sbpcuff ∣∣ (3)

sbpcuff represents the standard systolic pressure value col-
lected by the OMRON U30 after the data is collected on
the sensing-end device, sbpi represents the i systolic pressure
value of the last 10 elements of the data collected by the
sensing-end device, sbperr represents the systolic pressure

error of the current group. The calculation of heart rate error
and diastolic pressure error for each set of raw data is the same
as the calculation of systolic blood pressure.

Due to the limitation of data volume, we use cross-
validation method in training and verification, and traverse
each group of data in turn, the current group of data is the
test group, the other group of data is the training group.
When constructing the training vector, the program constructs
the independent variable matrix using heart rate, diastolic
pressure, systolic pressure, absolute linear acceleration |a|
and IMU pose angle change 1angle, Use the standard blood
pressure heart rate data collected by the OMRONU30 to con-
struct a dependent variable matrix. In each round of training,
the program trains Bayesian regression model, AdaBoost-
based Decision Tree regression model, K-nearest Neighbor
regression mode and Support Vector Machine regression
model [38], calculate the prediction error of each model.
When calculating the prediction error of the model, the pro-
gram stores the distance between the predicted value of the
model and the standard blood pressure heart rate data mea-
sured for the second time as an error. Finally, the program
calculates the root mean square error of the raw data and each
model, then visualizes the root mean square error. Since we
have obtained raw data and each set of data errors for each
model, the calculation of the root mean square error can be
referred to the formula (4):

RMSD =

√√√√√ n∑
t=1

(
ŷt − yt

)2
n

(4)

For example, when calculating the root mean square error
of the original systolic pressure data, n represents the number
of groups of data, t represents the group ID of the data, and
ŷt − yt is replaced with the t th group systolic pressure error
(sbpterr). Finally, we compare the root mean square error of
the heart rate, systolic and diastolic pressures of the original
data and the corresponding value calculated by each model.
We select a model with relatively high precision to integrate
into the sensing-end system.

V. EXPERIMENTS: DESIGN AND SETUP
The establishment of the experimental environment can be
realized in two parts:
• The Sensing-end System
• The Configuration and Development of Server Platform
As shown in figure 7, the device collects systolic pressure,

diastolic pressure, heart rate, quaternion and linear accelera-
tion data through the UART serial port, then input the data
into the regression analysis model to obtain the calibrated
blood pressure data.

A. SENSING-END SYSTEM
The Sensing-end system device is expected to consist
of the Raspberry Pi 3 Model B+ [39], the pulse sen-
sor chip MKB0803, the inertial measurement module

VOLUME 8, 2020 10153

Z. Dong et al.: Continuous Blood Pressure Measurement Platform

FIGURE 7. Experimental environment.

LPMS-ME1 DK and the Li-ion Battery HAT lithium battery
expansion board. The MKB0803 heart rate blood pressure
module is mainly composed of a YK1801 pulse sensor chip,
an analog front end MN8802 pulse chip and a SFB9712 algo-
rithm chip. The sensor collects the pulse information of
the human body based on PPG [40]. After the informa-
tion being processed, then output blood pressure, heart rate
and other serial signals. The inertial measurement module
LPMS-ME1 DK is a 9-axis inertial measurement unit that
integrates sensors such as three-axis accelerometers, three-
axis gyroscopes and three-axis magnetometers. It provides
information such as Euler angles, quaternions and acceler-
ations. The Li-ion Battery HAT lithium battery expansion
board can be plugged into the Raspberry Pi GPIO interface
for powering the Raspberry Pi. The Raspberry Pi 3 Model
B+ has the support of 1.4GHz quad-core processor, dual-
band 2.4GHz and 5GHz WLAN. We use the UART interface
to transfer data between the Raspberry Pi 3 Model B+ and
the sensor. After the Raspberry Pi 3 Model B+ caches and
processes the sensor data, it uploads the information to the
server platform via the WLAN.

This article uses the OMRON U30 to verify the accuracy
of the device blood pressure measurement and calibration.
The OMRON U30 is an upper arm type electronic
sphygmo-manometer. The measurement method is oscil-
lometric assay, and the measurement accuracy is within
the range of pressure accuracy and pulse accuracy of
±3mmHg (±0.4kPa). The OMRON U30 complies with the
AAMI standard.

TABLE 1. Definition of equipment management container.

B. CONFIGURATION AND DEVELOPMENT
OF SERVER PLATFORM
The Server Link process on the sensing-end system is con-
nected to the server platform by using the activation certifi-
cate and the Server-iot-device-sdk library. After the access,
the container can be used to report the updated attribute value
to the server platform and listen to the downlink information
of the server platform.

The calibration service of server platform is an API service
that can be called by the Web application for the server plat-
form to send a calibration command. TheAPI input parameter
of the calibration service is the systolic blood pressure, dias-
tolic blood pressure and heart rate value that need to be set.
The sensing-end system will transfer the API input parameter
to the Server Link process. After the Server Link process
listen to the calibration message of the server platform, it will
execute the calibration process and report the status of the
execution.

The erase service is also an API service called by the
web application, which has no API entry. When invoked,
the sensing-end system will send a clear command to the
Server Link process. The Server Link process will perform
the clear operation after listening to the clear command of the
server platform and report the results to the server platform.

In server platform, we created a sensing-end device man-
agement container for the server platform system to manage
remote continuous blood pressure measuring devices. The
management container contains five attributes including the
systolic, diastolic, pulse rate, erase and status. pulse rate
attributes are integer and the specified range is from 1 to 250.
The erase attribute is a Boolean type for the web application
to pass the MKB0803 heart rate blood pressure module clear
command. It is required that the command of clear be −1,
successfully clear be−0, the status attribute is enumerated for
6 working states of the sensing-end device, which are reading
−0, clearing −1, calibration success −2, calibration failure
−3, calibrating −4 and wearing error −5. After the device
management container is defined, we will create a new device
and generate its corresponding activation certificate.

10154 VOLUME 8, 2020

Z. Dong et al.: Continuous Blood Pressure Measurement Platform

In order to meet the needs of users for real-time viewing
and recording of monitoring data and working status in the
experiment, we developed Web applications of server plat-
form, including mobile phone version and desktop version.
The three dashboards of the Web application are bound to the
systolic pressure, diastolic pressure and pulse rate of the vir-
tual equipment respectively. when the sensing-end system is
connected to the server platform and reports calibration data,
the data displayed on the dashboards will also be updated.

VI. EXPERIMENTS: RESULTS AND DISCUSSION
A. DATA COLLECTION
The data collection process of each group is as follows: first,
collect the user standard heart rate, diastolic and systolic
blood pressure data by using OMRON U30. Then the user
wears the sensing-end system, and the system is initialized
with the standard data collected for the first time. The data
collection time is about 10 minutes. the system records the
data of the user sitting, walking, running, and going up and
down the stairs. Finally, we used the OMRON U30 to collect
the user’s second data. According to the data collection pro-
cess, we collected a total of 65 sets of data. After the data is
collected, run the format conversion program to convert the
data stored in Redis to a CSV format file. The data analysis
program reads the CSV file and visualizes the raw data.

The figure 8 show the data collected by group 8. The
subgraph titled pulserate in figure 8(a) represents the heart
rate record value, the sensor tag records the heart rate value
collected by the MKB0803 heart rate blood pressure module
of the sensing-end system, and the cuff tag records the heart
rate value collected by the OMRONU30. The subgraph titled
blood pressure represents the blood pressure record value,
the sensor.sbp and sensor.dbp tags respectively record the
systolic and diastolic blood pressure values collected by the
MKB0803 heart rate blood pressure module of the sensing-
end system, and the cuff.sbp and cuff.dbp tags respectively
record the systolic and diastolic blood pressure values col-
lected by the OMRON U30.

The subgraph titled acceleration absolute in figure 8(b)
represents the absolute value of the linear acceleration,
which is calculated by the linear acceleration value acquired
by the LPMS-ME1 DK at the sensing-end device and the
formula (1).

The subgraph titled angle change represents the angle
change value, which is calculated by the quaternion value
collected by the LPMS-ME1 DK on the sensing-end device
and the formula (2).

B. EXPERIMENTS DATA ANALYSIS
After the data analysis program reads the CSV format file,
the original error of each set of data is calculated according to
the formula (3). The graph titled original error shows the error
between diastolic and systolic blood pressure data collected
by each set of devices and OMRONU30. The label systolicbp
represents the original systolic pressure error, and the label
diastolicbp represents the diastolic pressure original error.

FIGURE 8. Data collected by group 8.

Based on the formula (4) and the original error of each set of
data, the systolic root mean square error of the original data
is 13.43 mmHg and the diastolic pressure root mean square
error is 8.35 mmHg.

The data analysis program uses heart rate, diastolic blood
pressure, systolic blood pressure, |a|, 1angle data training
Bayesian regression, AdaBoost-based Decision Tree regres-
sion, K-nearest Neighbor regression, and Support Vector
Machine regression model, use cross-validation to verify the
model. Finally, the program enters the error of each model
on each set of data based on formula (4) to obtain the root
mean square error of each model. The original data and the
root mean square error of each model are shown in the graph
titled RMSD. The decision tree regression model based on
AdaBoost promotion raised the root mean square error of
systolic blood pressure to 9.76mmHg, and the Support Vector
Machine regression model raised the square root error of
diastolic pressure to 5.56mmHg. These two models predict

VOLUME 8, 2020 10155

Z. Dong et al.: Continuous Blood Pressure Measurement Platform

FIGURE 9. Data error of each group.

FIGURE 10. Comparison of model mean square error.

better rms error in diastolic and systolic blood pressure,
respectively. Therefore, we integrate the two models into the
sensing-end system. The regression model training requires
multiple adjustments to achieve the best results. The Deci-
sion Tree regression model based on AdaBoost promotion
performs better in systolic blood pressure prediction with a
maximum depth of 5 for the tree and a maximum number of
estimators for termination promotion of 900.

The Support Vector Machine regression model and the
grid search hyperparameter optimizationmethod combine the
options of setting the penalty coefficient C to 1, 10, 100, and
1000. The options of the kernel coefficient gamma are 10−2,
10−1, 100, 101 and 102, and the predicting result of diastolic
blood pressure is better when the kernel function is RBF.

VII. CONCLUSION AND FUTURE WORK
A. WORK SUMMARY
This article builds the blood pressure measurement and cali-
bration system based on the CrowdOS platform. The system
can continuously collect the wearer blood pressure and use
the regressionmodel to calibrate the collected blood pressure.
The wearer can view the calibrated blood pressure value

through the web page and manage devices. The system con-
sists of Sensing-end and Server-end. Sensing-end is respon-
sible for collecting heart rate, blood pressure, quaternion
and linear acceleration data and inputting the collected data
into the trained regression model to obtain the calibrated
blood pressure value. The sensing-end system accesses the
server platform to report calibration data and receives control
commands from the platform.

After the system is built and tested, we collects 65 sets
of data under the condition of sitting, walking, running and
going up and down stairs based on our system and OMRON
U30 electronic cuff sphygmomanometer (pressure accuracy:
±3mmHg), each group of data is about 10 minutes long. The
server data analysis program uses 65 sets of data to train the
regression analysis model by cross-validation method. Based
on the AdaBoost-enhanced Decision Tree regression model,
the systolic pressure root mean square error of the original
data is raised from 13.43mmHg to 9.76 mmHg, and the
Support Vector Machine regression model raises the diastolic
pressure root mean square error of the original data from
8.35mmHg to 5.56 mmHg.

B. FUTURE WORK
The system in this article innovatively combines continuous
blood pressure monitoring with exercise data to improve
the accuracy of blood pressure measurements. At this stage,
the commercialized smart bracelet is still unable to contin-
uously monitor blood pressure values, but our system can
continuously measure and calibrate. However, there is still
much work to be done on our research:

(1) In terms of system construction, since the Raspberry Pi
3Model B+ is a relatively high-performance edge computing
device, and the Li-ion Battery HAT lithium battery expansion
board uses 5V lithium battery, the running time of the whole
system is about 20 minutes, so the time is short. At the
same time, the Raspberry Pi 3 Model B+ and the sensor are
relatively large in size, which is inconvenient for the wearer
to collect data. The system upgrade and retrofit can focus on
miniaturization, convenience and long life in next phase.

(2) In terms of experimental setup, each set of collected
data is isolated due to the limitation of system running time.
The sensing-end hardware system is too large for our device
and OMRON U30 to measure data at the same time, only to
force the division of time series data into a set of 60 elements.
In the future, with the improvement of the prototype system,
the data acquisition method can be further improved.

(3) In terms of analysis model, regression analysis model
has not yet involved time and scene information. In the
next stage, long-term and short-term memory networks can
be considered to reestablish the models between motion
information, time information, scene information and blood
pressure data. Therefore, how to combine time and scene
information to improve blood pressure prediction accuracy
and user behavior reasoning ability can still be further
developed.

10156 VOLUME 8, 2020

Z. Dong et al.: Continuous Blood Pressure Measurement Platform

In summary, continuous and accurate blood pressure mon-
itoring is of great significance in the fields of disease preven-
tion and sports training. The system discussed in this article
has the significance of further research and wide commercial
application value.

REFERENCES
[1] E. Altintas, K. Takoh, Y. Ohno, K. Abe, T. Akagawa, T. Ariyama,M. Kubo,

K. Tsuda, and O. Tochikubo, ‘‘Wearable and low-stress ambulatory blood
pressure monitoring technology for hypertension diagnosis,’’ in Proc. 37th
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2015, pp. 4962–
4965.

[2] IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices,
Standard IEEE P1708/D04, June 2014, pp. 1–32.

[3] R. S. H. Andrew, ‘‘Non-invasive continuous blood pressure monitoring
systems: Current and proposed technology issues and challenges,’’ Aus-
tralas. Phys. Eng. Sci.Med.,Washington, DC,USA, Tech. Rep., Nov. 2019.

[4] Y. Imai, K. Asayama, S. Fujiwara, K. Saito, H. Sato, T. Haga, M. Satoh,
T. Murakami, H. Metoki, M. Kikuya, T. Obara, R. Inoue, and T. Ohkubo,
‘‘Development and evaluation of a home nocturnal blood pressure moni-
toring system using a wrist-cuff device,’’ Blood Pressure Monitor., vol. 23,
no. 6, pp. 318–326, Dec. 2018.

[5] P. A. Ogink, J. M. De Jong, M. Koeneman, M. Weenk, L. J. Engelen,
H. Van Goor, T. H. Van De Belt, and S. J. Bredie, ‘‘Feasibility of a new
cuffless device for ambulatory blood pressuremeasurement in patients with
hypertension: Mixed methods study,’’ J. Med. Internet Res., vol. 21, no. 6,
Apr. 2019, Art. no. e11164.

[6] J. Liu, B. P. Yan, Y.-T. Zhang, X.-R. Ding, P. Su, and N. Zhao, ‘‘Multi-
wavelength photoplethysmography enabling continuous blood pressure
measurement with compact wearable electronics,’’ IEEE Trans. Biomed.
Eng., vol. 66, no. 6, pp. 1514–1525, Jun. 2019.

[7] T. Zhang, B. Li, C. Xu, and J. Wang, ‘‘Research on general wearable
technology based on embedded operating system,’’ in Proc. Int. Conf.
Cyber Secur. Intell. Anal., 2020, pp. 1200–1204.

[8] V. P. Rachim and W.-Y. Chung, ‘‘Multimodal wrist biosensor for wear-
able cuff-less blood pressure monitoring system,’’ Sci. Rep. vol. 9, no. 1,
May 2019, Art. no. 7947.

[9] B. W. An, ‘‘Smart sensor systems for wearable electronic devices,’’ Poly-
mers, vol. 9, no. 8, 2017, Art. no. 303.

[10] [Online]. Available: https://www.crowdos.cn/
[11] W. D. McArdle, F. T. Katch, and V. L. Katch, Essentials of Exercise

Physiology. 3rd ed. 2006, pp. 270–335.
[12] V. A. Cornelissen andA. Neil Smart, ‘‘Exercise training for blood pressure:

A systematic review and meta-analysis,’’ J. Amer. Heart Assoc., vol. 2,
no. 1, 2013, Art. no. e004473.

[13] J. Pineda-Gutierrez, L. Miro-Amarante, M. Hernandez-Velazquez,
F. Sivianes-Castillo, and M. Dominguez-Morales, ‘‘Designing a wearable
device for step analyzing,’’ in Proc. IEEE 32nd Int. Symp. Comput.-Based
Med. Syst. (CBMS), Cordoba, Spain, Jun. 2019, pp. 259–262.

[14] Q. Xin and J. Wu, ‘‘A novel wearable device for continuous, non-invasion
blood pressure measurement,’’ Comput. Biol. Chem., vol. 69, pp. 134–137,
Aug. 2017.

[15] A. M. Carek, J. Conant, A. Joshi, H. Kang, and O. T. Inan, ‘‘SeismoWatch:
Wearable cuffless blood pressure monitoring using pulse transit time,’’
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 1, no. 3,
pp. 1–16, Sep. 2017.

[16] C. Holz and E. J. Wang, ‘‘Glabella: Continuously sensing blood pressure
behavior using an unobtrusive wearable device,’’ ACM Interact. Mob.
Wearable Ubiquitous Technol., vol. 1, no. 3, pp. 1–23, Sep. 2017.

[17] A. Carek and C. Holz, ‘‘Naptics: Convenient and continuous blood pres-
sure monitoring during sleep,’’ ACM Interact. Mob. Wearable Ubiquitous
Technol., vol. 2, no. 3, pp. 1–22, Sep. 2018.

[18] E. J. Wang, J. Zhu, M. Jain, T.-J. Lee, E. Saba, L. Nachman, and
S. N. Patel, ‘‘Seismo: Blood pressure monitoring using built-in smartphone
accelerometer and camera,’’ in Proc. CHI Conf. Hum. Factors Comput.
Syst. (CHI), Apr. 2018, p. 425.

[19] K. Liu, C. Mu, C. Wang, and Y. Cheng, ‘‘Design of wearable system for
hand function monitoring,’’ in Proc. 3rd Int. Forum Energy, Environ. Sci.
Mater. (IFEESM), Feb. 2018.

[20] F. Miao, Y. Cheng, Y. He, Q. He, and Y. Li, ‘‘A wearable context-aware
ecg monitoring system integrated with built-in kinematic sensors of the
smartphone,’’ Sensors, vol. 15, no. 5, pp. 11465–11484, May 2015.

[21] H. Mei and Y. Guo, ‘‘Toward ubiquitous operating systems:
A software-defined perspective,’’ Computer, vol. 51, no. 1, pp. 50–56,
Jan. 2018.

[22] A. P. Kesavan, N. Prakasam, A. Hegde, and B. Lagesse, ‘‘Enabling crowd
sensing for non-experts,’’ in Proc. IEEE Int. Conf. Pervasive Comput.
Commun. Workshops, Mar. 2018, pp. 442–444.

[23] H. Mei and Y. Guo, ‘‘Operating systems for Internetware: Challenges and
future directions,’’ in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Vienna, Austria, Jul. 2018, pp. 1377–1384.

[24] P. Yuan, Y. Guo, and X. Chen, ‘‘Towards an operating system for the
campus,’’ in Proc. 5th Asia–Pacific Symp. Internetware, 2013, Art. no. 24.

[25] M. Mohan and K. J. Kuchenbecker, ‘‘A design tool for therapeutic
social-physical human-robot interactions,’’ in Proc. 14th ACM/IEEE Int.
Conf. Hum.-Robot Interact. (HRI), Mar. 2019, Daegu, Korea, Mar. 2019,
pp. 727–729.

[26] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, ‘‘ROS: An open-source robot operating system,’’ in Proc.
ICRA Workshop Open Sour. Softw. Kobe, Japan, vol. 3, May 2009, p. 5.

[27] L. P. SA. The Urban Operating System. Accessed: Jul. 30, 2019. [Online].
Available: http://living-planit.com/

[28] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro,
N. Kitaev, and D. Culler, ‘‘BOSS: Building operating system ser-
vices,’’ in Proc. Symp. Netw. Syst. Des. Implement. (NSDI), 2013,
pp. 443–457.

[29] M. Kuwabara, K. Harada, Y. Hishiki, and K. Kario, ‘‘Validation
of two watch-type wearable blood pressure monitors according to
the ANSI/AAMI/ISO81060-2:2013 guidelines: Omron HEM-6410T-
ZM and HEM-6410T-ZL,’’ J. Clin. Hypertension, vol. 21, no. 6,
pp. 853–858, Jun. 2019.

[30] S. Din and A. Paul, ‘‘Smart health monitoring and management system:
Toward autonomous wearable sensing for Internet of Things using big data
analytics,’’ Future Gener. Comput. Syst., vol. 91, pp. 611–619, Feb. 2019.

[31] F. Lacerda, M. Lima-Marques, and A. Resmini, ‘‘An information architec-
ture framework for the Internet of Things,’’ Philos. Technol., vol. 32, no. 4,
pp. 727–744, Dec. 2019.

[32] D. J. C. MacKay, ‘‘Bayesian interpolation,’’ Neural Comput. vol. 4, no. 3,
pp. 415–447, 1992.

[33] H. Drucker, ‘‘Improving regressors using boosting techniques,’’ in Proc.
ICML, vol. 97, Jul. 1997, pp. 107–115.

[34] C.-C. Chang and C.-J. Lin, ‘‘LIBSVM: A library for support vec-
tor machines,’’ TISTACM Trans. Intell. Syst. Technol., vol. 2, no. 3,
pp. 1–27, Apr. 2011.

[35] B. M. G. Rosa and G. Z. Yang, ‘‘A flexible wearable device for measure-
ment of cardiac, electrodermal, andmotion parameters inmental healthcare
applications,’’ IEEE J. Biomed. Health Inform., vol. 23, no. 6, pp. 2276–
2285, Nov. 2019.

[36] J. Jiang, J. Xu, H. Zhou, and Z. Yan, ‘‘Wearable device for non-invasive
continuously blood pressure monitoring,’’ Chin. J. Med. Instrum., vol. 42,
pp. 400–404, Nov. 2018.

[37] E. Lee, Y.-D. Seo, and Y.-G. Kim, ‘‘Self-adaptive framework based on
MAPE loop for Internet of Things,’’ Sensors, vol. 19, no. 13, p. 2996,
Jul. 2019.

[38] N. S. Altman, ‘‘An introduction to kernel and nearest-neighbor nonpara-
metric regression,’’ Amer. Stat., vol. 46, no. 3, pp. 175–185, Aug. 1992.

[39] B. Mohebali, ‘‘A scalable communication abstraction framework for Inter-
net of Things applications using raspberry pi,’’ Proc. SPIE Disruptive
Technol. Inf. Sci., vol. 10652, May 2018, Art. no. 1065205.

[40] L. Meili and L. Zhen, ‘‘Real-time monitoring system of human physiolog-
ical parameters based on SON308,’’ Techn. Automat. Appl. vol. 12, p. 37,
2018.

ZHONG DONG (Member, IEEE) received the
B.Eng. degree in information security, the M.Eng.
degree in software engineering, and the Ph.D.
degree in computer science and technology engi-
neering from Northwestern Polytechnic Univer-
sity, China, in 2002, 2005, and 2010, respectively,
where he is currently an Associate Professor with
the School of Computer Science. His research
interests include machine learning, artificial intel-
ligence, and the Internet of Things. He is a member
of the ACM and CCF.

VOLUME 8, 2020 10157

Z. Dong et al.: Continuous Blood Pressure Measurement Platform

ZHU YIAN (Member, IEEE) received the Ph.D.
degree in computer science and technology
from Northwestern Polytechnic University, China,
in 1994, where he is currently a Professor. He has
published more than 80 articles. His research
interests include mobile computing, parallel com-
puting, embedded systems, aeronautical ad hoc
networks, and the Internet of Things. He is a mem-
ber of the ACM and CCF.

WANG LANQING received the bachelor’s degree
in computer science and technology from North-
west University, in June 2019. She is currently
pursuing the degree with the School of Com-
puter Science, Northwestern Polytechnic Univer-
sity, China. Her research interests include machine
learning and computer system architecture.

DUAN JUNHUA received the B.Eng. degree in
mathematics and computer science from Shanxi
Normal University, in 2002, and the M.Eng. and
Ph.D. degrees in computer science and technology
from Northwestern Polytechnic University, China,
in 2005 and 2015, respectively, China. She is cur-
rently a Lecturer with the School of Computer Sci-
ence, Northwestern Polytechnic University. Her
research interests include machine learning, arti-
ficial intelligence, and embedded systems.

HE JIAXUAN received the bachelor’s degree
in microelectronics from Northwestern Polytech-
nic University, China, in July 2018, where he
is currently pursuing the master’s degree with
the Department of Software Engineering. His
research interests include artificial intelligence and
machine learning.

10158 VOLUME 8, 2020

	INTRODUCTION
	RESEARCH BACKGROUND
	RESEARCH GOAL

	RELATED WORK
	WEARABLE MONITORING SYSTEMS
	UBIQUITOUS COMPUTING SYSTEMS

	SYSTEM ARCHETACTURE
	CROWDOS KERNEL
	SYSTEM DESIGN PRINCIPLE

	CONTINUOUS BLOOD PRESSURE MEASUREMENT MECHANISM
	DATA ACQUISITION AND CALIBRATION MECHANISM
	DATA ANALYSIS AND MODEL TRAINING

	EXPERIMENTS: DESIGN AND SETUP
	SENSING-END SYSTEM
	CONFIGURATION AND DEVELOPMENT OF SERVER PLATFORM

	EXPERIMENTS: RESULTS AND DISCUSSION
	DATA COLLECTION
	EXPERIMENTS DATA ANALYSIS

	CONCLUSION AND FUTURE WORK
	WORK SUMMARY
	FUTURE WORK

	REFERENCES
	Biographies
	ZHONG DONG
	ZHU YIAN
	WANG LANQING
	DUAN JUNHUA
	HE JIAXUAN

