IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 13, 2019, accepted December 29, 2019, date of publication January 9, 2020, date of current version January 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965147

Survey: Sharding in Blockchains

GUANGSHENG YU“''2, XU WANG 12, KAN YU 3, WEI NI**4, (Senior Member, IEEE),
J. ANDREW ZHANG "', (Senior Member, IEEE), AND REN PING LIU"'2, (Senior Member, IEEE)

! Global Big Data Technologies Centre, University of Technology Sydney, Ultimo, NSW 2007, Australia

2Food Agility CRC Ltd., Ultimo, NSW 2007, Australia

3Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia

4Data61, CSIRO, Marsfield, NSW 2122, Australia
Corresponding author: Guangsheng Yu (guangsheng.yu@uts.edu.au)

This work was supported in part by the Food Agility CRC Ltd., through the Commonwealth Government CRC Program, and in part by the

UCOT Australia Pty Ltd.

ABSTRACT The Blockchain technology, featured with its decentralized tamper-resistance based on a
Peer-to-Peer network, has been widely applied in financial applications, and even further been extended to
industrial applications. However, the weak scalability of traditional Blockchain technology severely affects
the wide adoption due to the well-known trillema of decentralization-security-scalability in Blockchains.
In regards to this issue, a number of solutions have been proposed, targeting to boost the scalability while
preserving the decentralization and security. They range from modifying the on-chain data structure and
consensus algorithms to adding the off-chain technologies. Therein, one of the most practical methods to
achieve horizontal scalability along with the increasing network size is sharding, by partitioning network
into multiple shards so that the overhead of duplicating communication, storage, and computation in each
full node can be avoided. This paper presents a survey focusing on sharding in Blockchains in a systematic
and comprehensive way. We provide detailed comparison and quantitative evaluation of major sharding
mechanisms, along with our insights analyzing the features and restrictions of the existing solutions. We also
provide theoretical upper-bound of the throughput for each considered sharding mechanism. The remaining
challenges and future research directions are also reviewed.

INDEX TERMS Blockchain, scalability, throughput, scale-out mechanism, sharding, survey.

I. INTRODUCTION
Working as distributed, incorruptible, and tamper-resistant
ledgers, Blockchain technology has shown its great potential
to tackle critical security and trust challenges in various appli-
cations, e.g., cryptocurrency, Internet-of-Things, and edge
computing [1]-[3]. Running over a peer-to-peer network,
Blockchain processes application requests in the form of
Blockchain transactions [4]. The transactions are mined into
blocks by Blockchain miners following consensus protocols,
e.g., Proof-of-Work (PoW) for permissionless Blockchains
and the Practical Byzantine Fault Tolerance (PBFT) for per-
missioned Blockchains [5], and the blocks are chained with
their hash values [1].

The throughput of a Blockchain system, defined as
the number of processed transactions per second of the
Blockchain, is far from practical requirements and has

The associate editor coordinating the review of this manuscript and

approving it for publication was Nicola Andriolli

VOLUME 8, 2020

become a crucial limitation stopping Blockchain from being
widely adopted [6]. For example, Bitcoin can only handle
up to approximately 10 transactions per second with its
maximum block size of IMB and average 10 minutes block
period [7], which severely hinders the use of Blockchains
in the high-frequency trading. To handle a great number of
transactions, Blockchain has been considered as a secure
base-layer (or a settlement center for cryptocurrencies) where
transactions are processed off-chain and then settled in the
Blockchain. For example, Lightning network and Raiden
network (referring to the state-channel technology) sup-
port off-chain payments and broadcast a summary of a
batch of off-chain payments to the Blockchain [8], [9].
Plasma (referring to the sidechain technology) builds var-
ious applications on the top of Ethereum [10]. These
methods, known as the Layer-2 scaling, minimize the inter-
action with the Blockchain to reduce the latency from the
users’ perspective but do not improve the throughput of
Blockchains [11].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 14155

https://orcid.org/0000-0002-6111-1607
https://orcid.org/0000-0001-9439-6437
https://orcid.org/0000-0002-6777-8197
https://orcid.org/0000-0002-4933-594X
https://orcid.org/0000-0002-6102-3762
https://orcid.org/0000-0001-7001-6305
https://orcid.org/0000-0001-8322-6854

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

In contrast, the Layer-1 scaling is designed for improving
the throughput of Blockchains from the systematic perspec-
tive. A Blockchain system can be optimized in the following
ways to handle a growing amount of work.

« reducing the communication and computation overhead;

« adding resources to a single node, i.e., vertical scaling;

« adding more nodes to the Blockchain, i.e., horizontal
scaling [12].

Reducing Overhead: New Blockchain consensus proto-
cols have been developed for high Blockchain throughput
by reducing the overhead. For example, every PoW winner
(i.e., aminer) is eligible for several blocks rather than a single
block in Bitcoin-NG [13] and its variations [14], [15]. The
traditional PBFT consensus protocol has been developed and
optimized to reduce the communication overhead and achieve
high throughput in large-scale networks [16]-[19]. However,
O(n) (n is the number of participating miners) is the lower
bound that this type of technologies can reduce the overhead
at most, as every participating miners have to exchange and
store messages during every consensus round regardless of
the route of transactions.

Vertical Scaling: Bitcoin tried to improve throughput by
vertical scaling methods. For example, increasing the number
of allowed transactions in a single block and/or reducing
the block period can improve the throughput of Bitcoin but
consume more resources, e.g., storage, computation, and
bandwidth, of Bitcoin nodes [20]-[23]. Beyond this, The
Greedy Heaviest Observed Subtree (GHOST) [24] is imple-
mented by Ethereum to organize blocks in a tree instead
of a chain of blocks and obtain a higher throughput [4].
The GHOST is subsequently extended to the directed acyclic
graph (DAG). The DAG is adopted to organize transactions
where every transaction contains hash values pointing to
existing transactions [25]-[30]. The DAG structure allows
transactions to be confirmed in parallel and thus improves
the network utilization ratio given the resources of a node,
which improves the throughput of the entire distributed sys-
tem. However, the vertical scaling methods cannot infinitely
improve the throughput, as a Blockchain system is designed
to run in a decentralized and homogeneous network where
the security is closely dependent on the consensus across
the entire network. The larger-scale the network is, the more
bandwidth is needed to achieve the network synchronization,
while the bandwidth is the resource that cannot be indefinitely
added [20]. This leads to the vertical scaling being compro-
mised to the throughput of resources-limited nodes.

Horizontal Scaling: Sharding technology, dividing a whole
Blockchain into multiple shards and allowing participating
nodes to process and store transactions of a few shards
(i.e., only parts of the Blockchain), holds the key to hor-
izontal scaling, also known as the scale-out technology.
By taking advantage of the sharding technology that allows
partial transactions processing and storage on a single node,
the whole Blockchain can achieve a linearly increasing
throughput with the growing number of nodes. This is

14156

important for the adoption of Blockchains providing high
quantity and quality of services to the public in large-scale
networks with infinite growth, which has attracted the interest
of researches regarding the improvement of the Blockchain
scalability.

A number of studies have proposed new sharding mech-
anisms. Surveys of Blockchain scalability which used to
only focus on Reducing overhead and Vertical scaling have
been gradually taking the sharding technology into account.
However, none of them was able to focus on sharding and
systematically introduce the challenges of sharding, features
and restrictions of the existing solutions, and the future trends.

A. OUR CONTRIBUTIONS

We provide a more systematic introduction of sharding mech-
anisms than existing surveys and papers. The key contribu-
tions are highlighted as follows.

1) Our work, for the first time, provides an introduction
of state-of-the-art sharding mechanisms ranged from
BFT-based to Nakamoto-based sharding mechanisms,
while the latter has never been systematized in any of
the existing surveys at the time of writing.

2) We gain our own insights analyzing the features
and restrictions into the existing solutions to the
intra-consensus-safety, atomicity of cross-shard trans-
actions, and general challenges and improvements
proposed by the considered sharding mechanisms.

3) We also provide a calculation to obtain the theoretical
upper-bound of throughput for each considered shard-
ing mechanism. Based on the result and the insights of
the features and restrictions of each existing sharding
solution, a comprehensive comparison is proposed.

4) Finally, we point out the current remaining challenges
of sharding mechanisms, followed by suggestions for
the future trend of designing reliable sharding mecha-
nisms.

B. RELATED WORK

The relationship between the existing studies and our work
is discussed. Note that, all the considered previous studies
highlight the trend of scalability in the future of Blockchains,
and intend to accommodate the existing solutions to scale
Blockchain systems. These solutions include but not limited
to upgrading Bitcoin (increasing block size or conducting
Segregated Witness), scalable consensus algorithms, state-
channels, and multiple sidechains structure.

Previous surveys including [31]-[38] discuss the afore-
mentioned solutions, but involve no information about the
sharding which has been realized to be the most practical
solution so far for a scale-out Blockchain system. Thus, there
have been several recent studies presenting their own shard-
ing mechanisms, as well as surveys that manage to summarize
them and propose new benchmarks [4], [3], [33], [39]-[51].
However, all of these studies compare the sharding with other
kinds of solutions by either presenting a vague introduction of

VOLUME 8, 2020

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

-~ Shard 1 .

~» Shard 2 [T}

» Shard 3 . Trasr\es:tc::)tn::re

WV destination for

cross-validation.
< shard 4 [—I—E—10 —

Cross-shard
communication

X

tx

t

&
X

tx

Interaction.

I
B 0O N
B O 5

FIGURE 1. The sharding technology partitions the network into different groups, while each of the groups maintains its own ledger and processes and
stores a disjoint set of transactions. By implementing a secure cross-shard communication protocol, such disjoint transaction sets that could not have
been interacted become securely verifiable and interactively executable in parallel. Note that, nodes in some sharding mechanisms (e.g., Monoxide) can
choose to participate in the processing of multiple shards and maintain their ledgers, as illustrated by the multicolored circles, while the unicolored
circles denote the nodes only participating in a single shard to which they are assigned in terms of the color.

only one or two sharding mechanisms, or lacking the insights
for evaluation, except [3], [39], [48], [49], [51] putting more
efforts on introducing sharding. Reference [39] makes use
of the scale cube architecture, highlighting that the hori-
zontal scalability should only be improved by partitioning
the data and consensus. However, it only provides a vague
introduction of Ethereum 2.0, and the same problem exists
in [3] where the consensus layer is decoupled from the ledger
topology layer (which is inappropriate due to the importance
of intra-consensus in a sharding system). Reference [48]
presents an analytic model in a game-theoretical way that
is designed to benchmark the existing sharding mechanisms,
and aim for design guidance for future solutions. However,
sharding can be thought as the “multiple committees” upon
the traditional Byzantine-Faulty-Tolerance (BFT)-based con-
sensus, as stated in [46], [48], has been outdated as [52] pro-
poses a Nakamoto-based sharding mechanism (Monoxide).
A unified comparison between such Nakamoto-based shard-
ing mechanisms and the BFT-based sharding mechanisms is
also absent in [49] and the most closely related survey [51]
(where the BFT-based sharding mechanisms are focused,
as well as the corresponding randomness generators).

To the best of our knowledge, our work outweighs all
the existing surveys in a more systematic way, in regards
to the key concept of various sharding mechanisms, and a
comprehensive comparison for practitioners based on our
insights.

C. PAPER OUTLINE

The rest of the paper is organized as follows. Section II briefly
presents an overview of sharding technology and introduces
the survey methodology. Section III presents an introduction
of the considered sharding mechanisms, upon which the com-
parison and discussion are presented in Section I'V. Section V
concludes the survey.

Il. SHARDING REVIEW AND SURVEY METHODOLOGY

A. OVERVIEW OF THE SHARDING TECHNOLOGY

Sharding is first proposed by [53] and commonly used in
distributed databases and cloud infrastructure. Based on the

VOLUME 8, 2020

TABLE 1. Notation definition.

Notation | Definition

[-] Size of the items

Cp Blockchain with a block height of h within a single shard

(?; Headerchain with a block height of A within a single shard

B Block, including H, Txs, and Sigs. Note that, || and
| Sigs| are negligible for |B|.

H Block header

Tx Transaction

Sig Signature

T Block period

Ek k-th epoch

E Epoch length

n The number of shards

m Size of each shard

h Expected block height of chains among all the shards

pioneering proposals [54], [55] integrating sharding with
permissioned and permissionless Blockchain, respectively,
the sharding technology is thought to be able to partition the
network into different groups (shards), so that the compulsory
duplication of three resources (i.e., the communication, data
storage, and computation overhead) can be avoided for each
participating node, while these overheads must be incurred by
all full nodes in traditional non-sharded-Blockchains. This
partition is essential because the restriction incurred by the
three resources owned by a single node may make the system
unable to take full advantage of a scalable consensus algo-
rithm. Sharding is so far one of the most practical solutions
to achieve a scale-out system where the processing, storage,
and computing can be conducted in parallel, as illustrated
in Fig. 1. As such, the capacity and throughput being linearly
proportional to the number of participating nodes or the
number of shards become possible, while preserving
decentralization and security. However, sharding poses
new challenges to Blockchains, i.e., the intra-consensus-
safety, cross-shard-atomicity, and the general improvements

14157

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

regarding the storage, latency, etc, where the detail is our
concentration and is described starting from Section III.

There have been a few studies working on these challenges
regarding the sharding in permissionless Blockchains [52],
[55]-[59], prior to which [54] proposes a sharded permis-
sioned Blockchain that will not be discussed in this survey
due to its forfeit of permissionless decentralization. Rather,
the sharding in permissionless Blockchains is focused.

B. SURVEY METHODOLOGY

This survey focuses on sharding in permissionless
Blockchains (as permissioned Blockchains do not take full
advantage of the sharding technology due to the smaller
network size and its forfeit of permissionless decentraliza-
tion), and is based on the published research papers and
other research references of Monoxide [52], Elastico [55],
OmniLedger [56], Rapidchain [57], Chainspace [58], and
Ethereum 2.0 [59]. Our methodology can be characterized
as follows.

1) We clarify the demand for high scalability in Section I,
based on the well-known trillema of decentralization-
security-scalability in Blockchains. We discuss the
potential solutions ranged from the Layer-1 scaling
(on-chain scaling) to Layer-2 scaling (off-chain scal-
ing), with the former being focused in order to address
the throughput issue. Upon this, we elaborate on the
importance of the scale-out technology of Layer-1 scal-
ing, i.e., sharding, which is thought to be orthogonal
to any other scalable technologies, and so far the most
practical solution to achieve horizontal scalability in
large-scale Blockchain networks.

2) We summarize six of the most well-known and typi-
cal sharding mechanisms in large-scale permissionless
Blockchains, i.e., Monoxide, Elastico, OmniLedger,
Rapidchain, Chainspace, and Ethereum 2.0, which are
characterized in intra-consensus-safety, cross-shard-
atomicity, and general improvements, respectively pre-
sented in Section I1I-A, Section III-B and Section I1I-C.

3) Based on the previous description of the considered
sharding mechanisms, we provide our own insights in
regards to each of the features, 1) what issues in a
sharding system the features have addressed; and 2) the
restrictions of these features. Besides, we provide a
comparison, based on the insights and our calculation,
as shown in Section IV-A, among the considered shard-
ing mechanisms. Finally the result is characterized
in Tables 2 and 3.

1Il. DESCRIPTION

As a Layer-1 solution to the scalabilty issue of Blockchain
systems, and the most practical solution to push Blockchain
systems to scale-out in terms of communication bandwidth,
disk storage, and computation (i.e., full-sharded), there are
two significant issues each sharding mechanism needs to
resolve.

14158

Intra-Consensus-Safety: how to secure the consensus algo-
rithm inside a shard away from both the Nakamoto-based and
BFT-based 1% attack [59] in a scalable way, while the latter
can also be corresponding to a secure randomness generation
process, as discussed in Section III-A; note that 1% attack
is an attack strategy in sharded networks where attackers
can dominate a single shard more easily than dominating the
whole network;

Cross-Shard-Atomicity: how to support the cross-
verification, and guarantee the Aromicity [60], [61] of
cross-shard transactions for both unconditional transactions
(simple payment) and conditional contract-oriented trans-
actions in an efficient way (inefficient if the latency and
overhead for achieving atomic-safe cross-shard transactions
are higher than O(n); n denotes the number of shards being
partitioned or the number of participating nodes), as dis-
cussed in Section I1I-B;

General Improvements: based on the intra-consensus-
safety and cross-shard-atomicity, we focus on the improving
factor AV regarding the multiple of optimized global through-
put for each considered sharding mechanism, while A is sub-
ject to the linear order O(n). On the other hand, the additional
latency and overhead originated from the proposed solutions
also reveal the new problems that sharding brings to us.
In regard to this, some general improvements are discussed
in Section III-C.

A. INTRA-CONSENSUS PROTOCOL

Sharding significantly increases the throughput in O(n), but
sacrificing security in intra-consensus protocols, i.e., the per-
zone security or 1% attack [52], [59]. Concretely, it is cate-
gorized into the Nakamoto-based 1% attack and BFT-based
1% attack.

The total amount of mining power among the network,
i.e., P, guarantees the low probability for a single entity to
dominate over 50% mining power. By purposely dividing the
network into n partitions (shards), we can greatly increase
the throughput in O(n), where rational miners tend to ideally
distribute their mining power in multiple shards (at most n
shards) in order for the maximum rewards. However, this
also decreases the security of PoW in each shard in O(1/n).
Such a system can be more prone to double-spend attack by
a malicious miner that only needs to own the mining power
P > P/nx50% due to the smaller shard size compared to the
entire network size. This issue deteriorates as n increases in
order for a larger throughput, which becomes the most serious
barrier to PoW being implemented for the intra-consensus
protocol of a sharding mechanism.

On the other hand, BFT-based consensus algorithms are
considered instead of PoW in order to solve the security
challenge, as discussed above. However, such designs intro-
duce another kind of vulnerabilities other than that of the

PoW-based one, as discussed in the following.
o It is of importance to carefully design a scheme to

generate an unpredictable and unbiasable randomness
without any third-parties in permissionless Blockchains.

VOLUME 8, 2020

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

TABLE 2. A comparison regarding the protocols (ranged from the settings of intra-consensus to the design of cross-shard atomicity, as well as the
corresponding overhead) among the discussed sharding mechanisms in this paper is elaborated.

Identical targets: Yes

beacon chain

Monoxide Elastico OmniLedger RapidChain Ethereum 2.0 Chainspace
Intra Sync
Network model Partial-sync Partial-sync Partial-sync Partial-sync Partial-sync
Partial-
Total
sync
Attackers behave Attackers behave Attackers behave i - Attackers behave
L - - Attackers behave arbitrarily, Attackers behave arbitrarily, o
Threat model arbitrarily, arbitrarily, slowly arbitrarily, slowly . . Lo arbitrarily,
. . X X slowly adaptive Uncoordinated majority . .
Uncoordinated majority adaptive adaptive Uncoordinated majority
Security model
Intra 50% 33% 33% 50% 33% 33%
FT
Total 50% 25% 25% 33% 33% 25%
PoW-based Chu-ko-1 MoOD-SMART
Intra-Consensus Protocol oW-based Hhu-ko-nu PBFT ByzCoinX 50% BET BFT-based PoS , VAR
mining implementation of PBFT
Yes. The R ;4.1 is
Yes. Rit1 is generated generated by using Yes. Rit1 is generated Yes. Each R is generated
Randomness Existence No by the final committee at RandHound + VRF in by the reference committee by using RANDAO + VDF Unknown
(R) the end of epoch i the beginning of epoch at the end of epoch i on the beacon chain
i+l
. 1. Select the proposer of
1. Select the leader and 1. The seed of PoW puzzle h shard
each shard;
1. The seed of PoW the sub-group allocation for the next epoch;
N L) 2. Select the attesters for
puzzle for the next during intra-consensus; 2. Select the leader during h shard:
each shard;
Use N/A epoch; 2. Epoch reconfiguration; intra-consensus; . Unknown
o . 3. Select the validators
2. Select the leader 3. trust-but-verify 3. Decentralized .
- . A . responsible for
during intra-consensus transaction validation bootstrapping; .
N . checkpointing from the
scheme 4. Epoch reconfiguration
global pool.
One-off allocation based Allocation based on the
. ne-o . & O.Cd fon base Dca.m“. N ase (?n © . Allocation based on the . One-off allocation based
Allocation on the identity (address) least-significant bits of Allocation based on R Allocation based on R .
Members . result of PoW puzzles on objects
of nodes the result of POW puzzles
Safe Y . .
es, swapping-out .
Epoch Yes, swapping-out a
P N N/A Unsafe bounded by 2/3 at a Swapping-ou Yes N/A
reconfigu- B . constant number of node
. given time
ration
Mixed targets: No Yes, the mainnet and
Additional global Blockchain e &¢ Yes, a global ledger Yes, identity Blockchain Yes, reference Blockchain e, e maimnet an No

Object-driven,

Transaction structure Account UTXO UTXO UTXO Account
contract-sharded
Support Yes No Yes Yes Yes Yes
C hard Tx
Method Async, Lock-free N/A Sync, Lock/Unlock Sync, Lock/Unlock Sync, Lock/Unlock Sync, Lock/Unlock
} . Mixed PoW targets:
Communi- O(m + nlogy n)
m log:
" 82 O(m?2 +n) O (logy m + n) O(m? + mlogy n) O(m? 4 n) O(m? 4 n)
. . Identical PoW targets:
Complexity cation
O(m +n)
Qcen QCl+nlH| +1CgD)
Storage ~ O(icl) Ooqcn Ooqcl+1crh ~ Odcl+1C,uD
O(c| + niCyD OiC|+|cg))

Features and Restrictions

Insight 1, Insight 9,
Insight 15

Insight 2, Insight 3,
Insight 15

Insight 4, Insight 5,
Insight 10, Insight 11,
Insight 14, Insight 16

Insight 6, Insight 12

Insight 7, Insight 8, Insight
13, Insight 15

Insight 2, Insight 11,
Insight 17

The randomness can be used to 1) allocate validators
(an alias for nodes participating in the intra-consensus
process in the context of BFT-based systems) into dif-
ferent shards at the beginning phase and every recon-
figuration phase; 2) select the leader of each shard;
and 3) decide which shards a cross-shard transaction
should broadcast to, etc. Without such a strictly-chosen
randomness, malicious validators may be able to bias
the allocation and control the elections at will, such
as collusion within a shard (with a small number of
validators due to the weak scalability of traditional
BFT-based consensus algorithms [62], e.g., PBFT [5]).
Then it ends up encountering the dilemma of
BFT-based 1% attack that the weak scalability of
BFT-based consensus algorithm restricts the shard size,

VOLUME 8, 2020

i.e., the number of members in a shard, while too small
a size can potentially decrease the security of the intra-
consensus with a strict fault-tolerance (FT), as described
by the following cumulative binomial distribution,

c
m —
stkom,p) = PIX <l =) () —p"™,
k=0

f(kamvp) =1- s(kvm$p)v (])

where X is the random variable that represents the num-
ber of times a malicious miner is picked [13], [55],
[56], [63]; m denotes the shard size; ¢ denotes the
number of malicious members within a shard; and p
denotes the total FT among the entire network. It is
strongly suggested that s(k, m, p) should be greater than

14159

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

TABLE 3. A comparison (regarding the results of throughput and cost calculated in Section IV-A) among the discussed sharding mechanisms in this paper

is elaborated. Based on the result, the latency is also obtained and shown. Note that, we consider cloud servers with outbound bandwidth 25MB/s,
4vCPU of Turbo boost, and 1TB basic disk storage space (N/A: not available).

Monoxide Elastico OmniLedger RapidChain Ethereum 2.0 Chainspace
Number of 210,918 <102 <26 <08 <2° <102
Shards’ settings shards (n)
Sh"‘('r:)s"e 102~ 10% <102 22,210 (22 - 1)~28 <102 <102
Epoch length N/A ~10min >one da <one da one week Exists, details not
“P 2 = Y = Y provided
Transaction
confirma- 23s <900s ~100s 70s 6s~8s [95] 2s
Latency tion
Epoch
reconfigu- N/A N/A 1000s 200~-350s Unknown Unknown
ration
Improving
factor (A) n/2 n 1~n/2 n/2 n/3 1~n/2
Upper-bound
Throughput 1.23~2.56Mtps 48ktps 28.8ktps 128ktps 134ktps <400tps
Cost 30~80 USD/hour 30~35 USD/hour 0.2~0.3 USD/hour 0.2~0.3 USD/hour 0.4~0.45 USD/hour N/A

99% [63], while only m 2 144 can satisfy, of which
the traditional BFT-based consensus algorithm cannot
be capable!. In order to resolve this, highly scalable
BFT-based consensus algorithms with large shard size

require more attractions.

In this section, we compare and discuss the intra-
consensus protocols of the considered sharding mechanisms,
i.e., Monoxide, Elastico, Chainspace, OmniLedger, Rapid-
Chain, and Ethereum 2.0. Note that the Shasper used in
Ethereum 2.0 features its novel and engineering-oriented
design that combines the two major issues (intra-consensus-
safety and cross-shard-atomicity) and kills two birds with one
store. Elastico and Chainspace use PBFT for intra-consensus
that are not discussed in detail in this section, while the
randomness generator of Chainspace is not discussed as the
detail is not provided in [58].

Also note that, a threat model where the attackers can
refuse to participate or collude others (behave arbitrar-
ily) takes effect in all discussed sharding mechanisms in
this survey. Also, Elastico [55], OmnilLedger [56], and
RapidChain [57] assume the slowly adaptive attackers (who
can only succeed to attack in a long time), while Monox-
ide [52], Ethereum 2.0 [59], and Chainspace [58] assume
a model of uncoordinated majority where all participators
are game-theoretically rational, i.e., egoism (with an upper-
bounded fraction that can coordinate the majority). Therein
Chainspace [58] also introduces an audit scheme to prevent
attacks from dishonest shards.

IA few sharding mechanisms are incurring a total 25% FT based on the
33% FT in each shard, e.g., Elastico, OmniLedger, and Chainspace. This
can be a BFT-based 1% attack, by dispersing validators into as many shards
as possible to maximize the possibility to control some shards. Elastico and
Chainspace suffer from this security issue, while OmniLedger implements a
scalable BFT-based consensus algorithm to address this issue.

14160

1) NAKAMOTO-BASED-MONOXIDE - CHU-KO-NU MINING
Monoxide is the first sharding mechanism that eliminates the
need for generating randomness, and implements Nakamoto
consensus algorithm for its intra-consensus. It introduces a
one-off bootstrapping in the beginning, to allocate each node
(including miners and non-miners) into different shards based
on their identity addresses. By using the proposed Chu-ko-nu
mining, Monoxide can achieve a large-scale network with a
huge number of shards and a flexible shard size. It involves
a Merkle Patricia Tree (MPT) [64] root consisting of all
proposed blocks among multiple shards, thus the P/n can be
multiplied by a factor k (k denotes the number of shards a par-
ticular miner manage to mine on). Consequently, dispersing
mining power can be re-aggregated to solve the 1% attack.
Chu-ko-nu mining is inspired by the merged mining first
proposed in [65] and discussed in [66]. Merged mining shares
the mining power among a parent chain and multiple auxiliary
chains based on the same kind of PoW algorithms being
run. As such, those auxiliary chains with relatively smaller
mining power can be protected by the total mining power of
the parent chain. Likewise, Monoxide shares a similar idea
but conducting the mining process across multiple parallel
shards without any hierarchy. By involving an MPT root
consisting of all proposed blocks among the shards that a
specific miner cares about, the effective mining power can
be amplified by a factor of k. Defined in [52], the effective
mining power differs from the physical mining power, in the
sense that the physical mining power is calculated in hashrate
(the number of hash values that a miner can probe the nonce
per second) which directly corresponds to the total mining
power PP, and the hardware performance (e.g, CPU or GPU),
while the effective mining power is indirectly obtained by
observing the block period and difficulty. They are expected
to be equaled in a non-sharded system, while with Chu-ko-
nu mining, the normal block can be replaced by a batch-
chaining-block (containing the information of the involved
shards, e.g., 1) the identity of each shard; 2) from/to which

VOLUME 8, 2020

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

shard the proposed block is received/sent; and 3) the MPT
proof of the proposed new block of the local shard associated
with the given MPT root, etc), so that a one-off physical
mining can be done to meet the different (or identical) dif-
ficulties associated with its shard. Thus, the similar block
periods among the shards contribute to an effective mining
power of Pk/n ~ P as k — n, hence addressing the 1%
attack.

To be specific, the PoW expression for a miner conducting
Chu-ko-nu mining is described as (2),

H(n || Hx || MPTy)) < v, @

where y denotes the PoW target corresponding to a certain
difficulty; H denotes the hash function; n denotes the nonce
that fulfills (2); x denotes the header content, including the
aforementioned information of the involved shards and the
other fields defined in the normal PoW, as well as the inbound
and outbound relay transactions in regards to the cross-
shard communication (discussed in Section III-B.1); MPT),
denotes the MPT root consisting of all proposed blocks of
each involved shard, i.e., [By, By, ..., B,—1] if k = n, where
each proposed block excludes its i, and contains its identity
and the list of relay transactions.

Thus, the miner can subsequently send the finalized block
to its corresponding shard with a satisfied 7, as well as a proof,

[MPTy, 1, Bi, i, 3

where 7; denotes the MPT proof of ; in the given MPT
with a root of MPTy;. Any node can verify 5; with 7;, and
malicious miners have to revert the history in all involved
shards, i.e., from O to n — 1 in this case, to double-spend the
transactions because of MPT), being already updated with
the change of leaves. Thus, the effective mining power is
amplified by a factor of n.

Note that, Chu-ko-nu mining can handle both the mixed
and identical PoW targets of shards in one batch.

o In the case of mixed PoW targets, a miner is allowed
to finalize blocks and send them to any shards i to j
whose PoW targets have been fulfilled by the current
given 7, with the rest of shards whose targets have yet
to be satisfied. After that, the mining process resumes,
while MPT); is updated because of the just finalized
blocks from shards i to j.

« In the case of identical PoW targets, a miner can also
finalize blocks and send them to all shards regardless
of whether the given n fulfills the PoW targets or not
(assume the PoW targets are asymptotically equal®, and
there must be some shards accepting its block and some
rejecting). In addition to this, a global subnet main-
taining and broadcasting headers from all shards where
all miners must participate can significantly reduce the
communication overhead, by eliminating the need of 7;.

2Rational miners tend to mine on as many shards as possible so that the
PoW difficulties will be self-adapted to be identical.

VOLUME 8, 2020

Having known these two modes, it is observed that accept-
ing/rejecting a block of a single shard is independent
of the decisions from other shards, i.e., asynchronization.
Such a feature greatly promotes the throughput of Monox-
ide in a secure way, and also allows the cross-shard-
atomicity in Monoxide, i.e., Relay transactions, as discussed
in Section III-B.1.

However, in order to meet the requirement of Pk/n >~ P,
Monoxide needs most of miners to conduct Chu-ko-nu min-
ing across as many shards as possible, i.e., k = n in the best
case. However, this implies the fact that if miners only mine
on k out of n shards, i.e., Pk/n, where k < n, the factor
expected to amplify the effective mining power will be too
small to secure the mining process, hence reducing the attack
cost. On the other hand, rational miners tend to mine on
all n shards to reap the maximum profit, which may also
result in the power centralization due to the huge cost of
bandwidth, disk storage, and computing processors that only
the professional mining facilities can afford.

Insight 1: The amplification to the effective mining power
relies on an incentive scheme that should encourage miners
to mine across k — n shards in Chu-ko-nu mining. This
also poses the issue of power centralization and additional
overhead to Monoxide.

2) BFT-BASED-ELASTICO

Using BFT-based algorithms for the intra-consensus is an
alternative to bypass the vulnerability of
Nakamoto-based algorithm (Insight 1). Thus, includ-
ing but not limited to Elastico, OmnilLedger, Rapid-
Chain, Chainspace, and Ethereum 2.0 choose to implement
BFT-based algorithm. Therein, Elastico uniformly (re)
allocates potential validators in terms of the different least-
significant bits of the unpredictable PoW solutions at the
beginning of each epoch, followed by running PBFT for the
intra-consensus. The randomness used during the mining is
generated by a proposed distributed commit-and-xor scheme.
Consensus Algorithm - PBFT’s Restrictions in Sharding

Due to the weak scalaibilty of PBFT, Elastico incurs an
unacceptable failure probability of 8% with f(k, m,p) =
f(6, 16, 0.25) based on the result of [62], while it still incurs
2.76% with f (k, m, p) = f(34, 100, 0.25) even extending to
a larger-scale network of m = 100 (which can be the bottle-
neck [56]) by running powerful servers in cloud. This security
issue has been hindering Elastico to be practically used,
which are greatly resolved and improved by OmnilLedger and
RapidChain.

Insight 2: The traditional non-scalable PBFT incurs unac-
ceptably high failure probability with total FT of only 25%,
unless increasing the size of the consensus group, which leads
to a chicken-and-egg problem due to huge communication
overhead.

Generating Randomness - Distributed Commit-And-Xor
Scheme

The distributed commit-and-xor scheme is implemented
for the randomness generation in Elastico. It can be

14161

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

categorized into the commit-and-then-reveal scheme [67],
with an exception that the final result (randomness) varies
depending on the different combinations of seeds A; every
validator chooses. Concretely, the randomness generation is
conducted by a global subset, i.e., the final committee, and it
follows the procedures shown as below.

1) Each member of the final committee chooses a ran-
dom seed A; in secret, and broadcasts Hash(A;) to any
other members in the final committee. After that, mem-
bers in the final committee agree on a single set of
hash values S [68], with numbers of Hash(};) ranging
from [2m/3,3m/2] (m denotes the size of the final
committee)>.

2) Only if S collects at least 2m/3 signatures, every val-
idator in the final committee reveals their own seed A;
to the public. By collecting and verifying all 2m/3 (or
m/2 + 1) pairs of (A;, Hash(A;)), the final randomness
can be finalized by taking an XOR operation among
them. Note that, in the case of 3m/2 pairs are received,
the chosen A; values need to be attached with the PoW
solution in order to verify if the randomness is matched.
This is because the combination of the seeds chosen by
a validator can vary (m/2 + 1 out of 3m/2).

This design, however, is not perfectly unbiased. It is expo-
nential biased and bounded by the size of A;, i.e., |A;|, and m.
In order to prevent the attacks from biasing the randomness
by deliberately choosing a specific set of m/2+ 1 values of };
in his favor, |A;| should be large enough as m also increases.
This incurs large communication overhead, in addition to the
overhead of the extra verification during PoW process. In the
case of only 2m/3 values of (A;, Hash(};)) being received,
the lack of Verifiable Secret Sharing (VSS) [69]-[73] forces
all senders of these 2m/3 values to be online all the time with
no network outage or delay.

Insight 3: The distributed commit-and-xor scheme of Elas-
tico has weak availability and robustness, and it is not a
perfectly unbiased randomness generator unless paying more
for the communication overhead.

3) BFT-BASED-CHAINSPACE

Chainspace uses an optimal implementation of PBFT, Mod-
SMaRt [74], which accounts for the intra-part of the
S-BAC protocol proposed by Chainspace. However, Mod-
SMaRt does not scale PBFT to address the issue of 1%
attack. It decouples the communication and consensus prim-
itives, while it only reduces the overhead of the latter with
an unchanged overhead of O(n?) by replacing the process
with the Validated and Provable Consensus (VP-Consensus).
In addition, the high failure probability of the intra-consensus
in Elastico also takes effects in Chainspace, which restricts

3n fact, Elastico takes the discrepancies into account, where there can be
3m/2 messages received by a validator while there are only m validators in
the shard due to the network delay. In this case, other validators can choose
only 3m/2) x (1/3) + 1 = m/2 + 1 values of Hash(};) to generate their
own randomness. In contrast, validators receiving only 2m/3 values need to
choose all 2m/3 values of Hash(A;) to generate their own randomness

14162

[—:F—ql—l [—[? Fl—l r’j ' rmﬁl] (Jj

ByzCoin ByzCoinX

FIGURE 2. (Left) ByzCoin implements a tree with a fixed branching factor
and an increasing depth. (Right) ByzCoinX implements a shadow tree
with a fixed depth and an increasing branching factor.

the use of Chainspace in a large-scale network. Note that,
the stages of Propose and View change take as input the
elected leader, while the detail of randomness generator is not
provided in [58].

4) BFT-BASED-OMNILEDGER

OmniLedger combines RandHound [75] and Algorand-based
Verifiable Random Function (VRF) [19] to produce an unpre-
dictable and unbiasable randomness under a 25% FT for
re-allocation and leader-election of each shard and sub-
group. Also, a new scalable BFT-based consensus algorithm,
ByzCoinX, is proposed by optimizing ByzCoin [63], which
resolves the dilemma of BFT-based 1% attack in sharding,
by increasing the shard size to hundreds and up to a thousand.

Consensus Algorithm - ByzCoinX

Initially, ByzCoin [63] was the first scalable consensus
protocol that combines PoW and BFT algorithms in a tree-
based structure, by means of scalable collective signing
(CoSi) [76], [77].

ByzCoinX* optimizes ByzCoin in terms of the better
latency and more robust FT for a shard with hundreds of
validators. Concretely, ByzCoinX implements a shallow tree
with a fixed depth-3 and an increasing branching factor; see
Fig. 2. Based on the shard size, each group leader is respon-
sible for a group forming a sub-tree with a fixed number
of group members. Note that, unlike ByzCoin implementing
PoW to elect the group leader within a shifting window,
ByzCoinX elects each group leader by the randomness gener-
ated at the beginning of the current epoch, followed by evenly
allocating the rest of the validators into each group (thus
the validators account for the leaves of each sub-tree). Also,
the group leaders maintain their roles until a view change
phase occurs, which eliminates the shifting window, as well
as the difference of keyblocks and microblocks, as defined
in ByzCoin. The leaders of each sub-tree aggregate at least
2/3 signatures from its children (leaves), followed by the
signature regarding each group being sent to the root (pro-
tocol leader). The decision can be finalized whenever the
root receives at least 2/3 signatures from its children (group
leaders).

By using such a new tree-based structure, ByzCoinX can
outperform ByzCoin by a better latency for a shard with
hundreds of validators due to the shorter path from leaves
to the root with a fixed depth, and a robust fault-tolerance
due to the increasing branching factor. When the number of
validators goes above a threshold, the latency of ByzCoin

4https ://github.com/dedis/cothority/tree/master/byzcoinx

VOLUME 8, 2020

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

outperforms that of ByzCoinX due to the increasing branch-
ing factor. On the other hand, ByzCoinX can achieve a failure
probability around 1.5% with f(k, m, p) = f(48, 144, 0.25),
and even 1% with (342, 1024, 0.3) at the cost of latency,
as shown in Fig. 10 of [56].

Insight 4: ByzCoinX improves the scalability with a lower
failure probability for the intra-consensus of OmniLedger,
by sacrificing the transaction latency in large-scale networks.

Generating Randomness - Combination of RandHound
and VRF

In order to address the issue of Insight 3, OmniLedger
implements a scalable bias-resistant distributed randomness
generator, RandHound [75], combined with a VRF-based
leader election algorithm proposed by Algorand [19].

RandHound takes advantage of the following technologies
to achieve an unbiasable and unpredictable randomness gen-
erator,

o Publicly VSS (PVSS) [71] that allows participating val-
idators to be offline during the reveal phase (as opposed
to the traditional commit-and-then-reveal scheme used
in Elastico), by broadcasting the secret shares of the
original X; in advanced;

o Schnorr Signature [78] that is the foundation of
CoSi [76], [77] used in ByzCoinX and the threshold
signatures [79]—-[83],

so that the communication complexity can be reduced to
O(cm?) from O(m?) (m denotes the total number of partici-
pating validators; ¢ denotes the size of sub-group).

Several sub-groups are created by dividing the entire group
of the participating validators, with ¢ validators conducting
PVSS within their sub-groups, respectively. Thus, a client
(the leader randomly elected by the VRF) can receive the
secret shares based on his choice from the corresponding sub-
groups in a global run of CoSi. Consequently, the client can
construct collective randomness by recovering the received
secret shards. Meanwhile, a proof to verify the produced
randomness is also recorded for third-party verifications.

OmnilLedger implements a VRF-based election in order
to randomly choose such a leader as the client among these
participating validators. To be specific,

Rf,view,is TTE view,i = VRF(configgHview, sk;),)

where confige denotes the settings pre-defined by a third-
party; sk; denotes the private key of a validator-i; view denotes
a view number related to a timeout A; Rg yiew,i and 7g yiew,i
denote the final randomness and its proof with specific epoch
& and view for validator-i. By default, the validator with
the smallest R¢ i ; 18 selected to be the leader, and view
increases if this round of RandHound is timeout. In the case
of view > 5 (proven < 1% by [56]), the RandHound is
replaced by a coin-tossing scheme inspired by [84] that only
implements a typical PVSS [72] in a poor complexity of
order O(m?). On the other hand, this protocol still relies on
third-party settings confige pre-defined in the genesis block
to prevent the attackers from biasing the result by secretly
rerunning the protocol.

VOLUME 8, 2020

Iteration i+2
(H i+1r H i+2)

Iteration i Iteration i+1
(H) (Hisa)

(
[PROPDSEl ECHO | ACCEPT] [PRDPOSEl ECHO | PENDINGl ACCEPT] 1

. 2 [——

PROPOSE ECHO ACCEPT

" PROPOSE! ECHO ACCEPT PROPOSE | ECHO | PENDING | ACCEPT PROPOSE | ECHO | ACCEPT
Node 0 -

Hisy, Hlis, H'y, oo

Node 1 -

Node 2 -

Node 3 T -

Iteration i+2
(Leader: Node 2)

Iteration i Iteration i+1
(Leader: Node 0) (Leader: Node 3)

FIGURE 3. RapidChain implements a synchronous BFT-based consensus
protocol by pre-scheduling the timeout, based on which the consensus
speed can be adjusted by the system, hence achieving FT of 50%.

In addition, RapidChain significantly improves the throughput by
pipelining the conseusus process, i.e., re-proposing the previous pending
blocks while agreeing on the current proposed block. The dark red arrows
denote that the leader gossips more than one version of H; ;, while the
yellow arrows denote pending associated with the proposed header of
iteration 7 + 1.

Insight 5: The combination of RandHound and VRF suf-
fers from the reliance on a third-party initial randomness
pre-defined in the genesis block. A falling-back to an inef-
ficient scheme occurs in the context of asynchronous net-
works, which limits the salability that RandHound could have
guaranteed.

5) BFT-BASED-RAPIDCHAIN

RapidChain [57] implements a VSS-based [69] distributed
random generation (DRG) protocol to agree on an unbi-
ased randomness. On top of the DRG protocol, RapidChain
addresses Insight 5 by introducing a deterministic random
graph where a certain fraction (50% with high probabil-
ity [57]) of the number of malicious validators can be guar-
anteed in the initial set (the reference committee, similar to
the final committee in Elastico), which will be discussed in
Section III-C.4. Inspired by [85], in addition, RapidChain
resolves the dilemma of BFT-based consensus algorithm in
sharding, by increasing the FT of the intra-consensus protocol
up to 50%.

Consensus Algorithm - 50% BFT With Pipelining

RapidChain aims for higher FT (50% BFT) of the intra-
consensus protocol to address the dilemma of BFT-based
1% attack for sharding mechanisms with a small shard
size. To be specific, RapidChain runs an autonomous pre-
scheduled scheme within a shard to agree on a timeout A,
based on which the consensus speed can be adjusted by the
system to prevent the asynchronization. This ensures a syn-
chronous network in the long-term, in which a non-responsive
synchronous (with constant rounds) BFT-based consensus
protocol with FT of 50% can be used.

However, re-proposing the pending block by the new
leader in the next iteration greatly reduces the throughput
by roughly half, while the current leader that is corrupted
equivocates the consensus (if based on the original version
of [85]). In order to address this issue, the pipelining is used

14163

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

where pending blocks can be re-proposed along with the new
block that is considered safe; see Fig. 3, (Hiy1, Hiy2) are
proposed during iteration i 4+ 2. Note that, a new proposed
block is considered safe so long as it points to a pending block
that has been collected m/2 4 1 votes. Also note that, a valid
vote can be either,

o Temporary Vote: an echo associated with the proposed
header, H; of iteration i; or,

o Permanent Vote: an accept associated with the proposed
header, H; of iteration i (if and only if there is only one
version of header H; received from the leader, and at
least m/2+1 echoes of the same H; received from others,
tagging the header as pending otherwise).

As there exist multiple versions of headers associated with a
specific iteration, e.g., [Hiy1, H] 1 Hi”+1 ...] of iteration i+ 1,
only one version is selected by the leader of iteration i+2 to be
re-proposed along with H; 5. Here, H;1, is considered safe
as H;1 has been collected m/2 + 1 echoes serving as a proof
in iteration i 4+ 1. Consequently, (H;11, Hi4+2) are accepted if
any nodes have received at least m/2 + 1 echoes associated
with both Hi 1 and H;4.

Referring to (1), the design of 50% BFT achieves a failure
probability around 1.5% with f(k, m, p) = f(17,32,0.33),
and even 1% with (51, 100, 0.39) at a cost of communication
overhead.

Insight 6: Differing from ByzCoinX in OmnilLedger,
the 50% BFT of RapidChain solves the BFT-based 1% attack
by increasing the FT of intra-consensus protocol, neverthe-
less, this can only suit small-sized shards (not scalable with
communication overhead of O(nz)). In addition, the pre-
scheduled scheme defining the timeout is not conceivably
proved synchronous enough to run the pipelining 50% BFT.

Generating Randomness - VSS-Based DRG Protocol

The proposed DRG protocol by RapidChain, in fact, only
implements a basic VSS-shares scheme, where all participat-
ing validators can reconstruct the final randomness r by the
share of r (the share equals to) ;. pj; calculated by other
validators except validator-j) received from other validators.
Note that, p € I, denoting a finite field of prime order p,
and m denotes the size of the reference committee. As a result,
the DRG protocol encounters a similar issue to that of any
other typical VSS scheme, i.e., non-scalable (even though it
suits with the 50% BFT in small-sized shards).

6) BFT-BASED POS-ETHEREUM 2.0

Ethereum has been running publicly as the first decentralized
Blockchain platform (Blockchain 2.0 [86], [87]) that imple-
ments a Turing-complete programming language to develop
smart contracts for the first time since 2014 [64]. With the
gradually rising demands of high throughput, Casper-FFG
with sharding (Shasper) is proposed [59] to allow the current
Ethereum mainnet (a PoW-based single chain, also referred
to Ethereum 1.0) to migrate to the new architecture stably
and securely. Note that, we mainly focus on Shasper that
has been running on testnet at the time of writing (referred

14164

to Ethereum 2.0), rather than the still-up-in-the-air Casper-
CBC [88], based on which Ethereum plans to end up imple-
menting a PoW-free Proof-of-Stake (PoS)-based sharded
structure. Note that, only the intra-consensus protocol and
cross-shard transactions of Shasper (referring to Phases 0-1,
and Phase 4 in [89]) are discussed in this paper, because the
other subprotocols have not yet been finalized based on the
description in [59].

Consensus Algorithm - Solving the Intra-Consensus in a
Global Way

Shasper also chooses to use the second method (pre-
sented in Section I1I-A), a BFT-based consensus algorithm,
to solve the 1% attack issue of intra-consensus. Concretely,
the Casper-FFG of Shasper can be regarded as a vari-
ation of BFT-based PoS consensus algorithms [15], [19]
with careful designs for generating randomness, as opposed
to the virtual-mining PoS consensus algorithms [90]-[92].
Note that, we assume a scalable BFT algorithm similar to
ByzCoin [63] and ByzCoinX of OmnilLedger is used in
Shasper.

Shasper decouples the member allocation and consensus
process, which leads to the fact that the intra-consensus
within a shard also involves those validators from other shards
being the attesters. The members of attesters group associ-
ated with a specific shard can be updated every slot. This
also implies that an eligible validator in Shasper should at
least store all block headers (headers is called collations in
Shasper) of all shards regardless of which shard this validator
is allocated at the beginning of every epoch. The procedures
are summarized as follows.

1) To become a validator, a node needs to deposit a certain
amount of ETH (currently it is set to 32ETH [93], [94])
in an official smart contract>on the original PoW-based
mainnet. Having known the deposit, the system regis-
ters this node as a valid validator on a new individual
chain, i.e., the beacon chain, while the beacon chain
takes the role of a coordination device of the whole
Shasper protocol in regards to managing the global
validator pool, randomness generation, incentive, and
message exchange.

2) An infrequent shuffling for the global validator pool is
executed to re-allocate all validators to different shards
based on the generated randomness. Such an epoch is
currently set to 6.4mins [93], [95]. During each epoch,
a proposer is elected based on the randomness from the
local validator pool in each shard every 8s slot [93].
A proposed collation containing transactions of each
shard is broadcast to all attesters assigned to the same
shard, followed by a finalized collation being stored in
the local ledger if the consensus process succeeds.

3) In addition to the hash value of each block on
the PoW-based mainnet required to be stored on
the beacon chain, a checkpoint is finalized by

5 https://github.com/ethereum/eth2.0-specs/blob/dev/specs/core/0_
deposit-contract.md

VOLUME 8, 2020

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

Ay A—vy A—vy Ay
- - - W
Validator 1: VDF(A,) + Deposit ,[D function Commit()

Validator 2: VDF(A,) + Deposit
Validator 3: VDF(A;) + Deposit

[z] function Reveal()

: function Generate|() [—- = .
Validator k-1: VDF(), ;) + Deposit E] 0 R Z Az
Validator k: VDF(A,) + Deposit i=1

FIGURE 4. Ethereum 2.0 implements RANDAO and Verifiable Delay
Function to generate randomness.

400 validators randomly selected from the global val-
idator pool for each shard every 100 collations [96].
After that, these selected validators aggregate all check-
points and upload them to the beacon chain. By stor-
ing the checkpoints as well as the collation headers
of all shards, the beacon chain is able to obtain the
local state and a group of finalized transactions (and
its corresponding receipts) of each shard, referring to
the State root and Txgroup root fields in the beacon
chain headers, respectively. As a result, the determin-
istic finality can be achieved rather than a probabilistic
one that Ethereum 1.0 used to rely on.

It is worth noting that the members (attesters) participating
in the intra-consensus of a shard are, in fact, not limited
to the indigenous validators (who have been allocated in a
shard at the beginning of the epoch, and randomly selected by
the generated randomness from the global pool). The group
of attesters can be re-allocated for each proposed collation
in a times slot, which provides the strongest security but
incurs huge overhead when, 1) each shard conducts the con-
sensus among continuously updated validators; 2) validators
need to store data of more shards; and 3) the 1-slot-period
re-allocation has to be executed.

Insight 7: The security level of Ethereum 2.0 - Shasper pro-
vides more flexible allocation for intra-consensus than that
of any other considered sharding mechanisms, nevertheless,
by incurring larger overhead.

Generating Randomness - Combination of RANDAO and
VDF

RANDAO [97] is implemented based on the commit-and-
then-reveal scheme [67] written in a pre-defined smart con-
tract running on the beacon chain. To be specific, there are
three functions defined in the smart contract, each of which
must run in order; see Fig. 4. They are described as follows,

1) Commit(): all participating validators select a seed X
in secret (e.g., the hash of the parent block), after they
have been deposited 32ETH in the smart contract. Then
each of the validators runs a Verifiable Delay Function
(VDF) [98] as a “‘hash onion” [96], [99],

VDF (\;) = Hash(Hash(Hash(...Hash(};)))), (5)

where the VDF conducts sufficient times of Hash(),
e.g. 10, 000 times shown in [96] for a sufficiently long
period (102min [93]). As such, some malicious manip-
ulation can be significantly prevented, e.g., deciding

VOLUME 8, 2020

not to reveal its commitment if Zé‘*] A; is found biased
to k-th validator. The unbiased randomness is guaran-
teed by the VDF where only the serial computing can be
run regardless of the computation power that is owned
by this validator. Also note that, each validator can only
commit once.

2) Reveal(): validators reveal their own seed X to the smart
contract, thus the contract can verify if the seed matches
up with their corresponding commitment by verifying
the 10, 000 preimages,

Hash™"(Hash™(...Hash~"(VDF (\,)))). (6)

3) Generate(): the smart contract generates a randomness
by adding up all A;. Punishment is applied to those who
fail to reveal their own A in time (corresponding to the
time overhead of the defined VDF).

However, this design still suffers from three flaws, as shown
in the following.

o A VDF consisting of n times Hash(-) incurs a computa-
tion overhead of O(n), which is inefficient. There have
been a few advanced VDF schemes proposed by the
recent researches [100]-[102].

« This design is prone to the censorship attack [103]. Mali-
cious validators can send irrelevant transactions with a
high gas fee to fill up a block. Thus, the Commit may
have to be interrupted as the gas limit of the block is run
out.

o This design is also prone to the grinding attack [104]
if the seed X is based on the hash of the parent block,
because validators can send arbitrary transactions, and
try to find out the most biased seed by collecting differ-
ent sets of transactions.

Insight 8: Current design of randomness generator in
Ethereum 2.0 incurs high computation overhead, and is over-
whelmingly dependent on the incentive scheme (punishment).
It is prone to censorship attack and grinding attack, if the
attack cost is acceptable.

B. ATOMICITY OF CROSS-SHARD
It is of importance that a sharding mechanism can support
the cross-shard-verification and cross-shard transactions for
validators allocated in different shards, according to the result
shown in [56], [57] (showing that the probability of cross-
shard transactions approaches to 100% as the total number
of shards increases). Maintaining an individual global root
chain may be one of the solutions to verification, but it
does not natively support cross-shard transactions without
any additional mechanism, e.g., lock/unlock operation in syn-
chronous networks or lock-free operation in asynchronous
networks. The demand for a secure protocol of cross-shard
transactions gradually outweighs a naive mechanism lacking
the support of cross-shard transactions (even it can achieve a
high improving factor \V).

Differing from the traditional database system, the support
of cross-shard transactions proposes a challenge to guarantee

14165

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

the Atomicity of the data that was first defined in [60], [61]
across multiple shards. Not only a simple payment transac-
tion involving withdraw and deposit operations needs to be
atomically protected, but also the demand for the complicated
conditional statements attracts more attention to the contract-
oriented Atomicity.

In this section, we compare and discuss the protocols
to achieve cross-shard-atomicity in the considered shard-
ing mechanisms. We focus on the design of cross-shard
transaction, including Monoxide that supports asynchronous
lock-free simple payment transactions; OmniLedger, Rapid-
Chain, and Ethereum 2.0 that supports simple payment
transactions with lock/unlock scheme; and Chainspace that
supports cross-shard operations for smart contracts (Elas-
tico is vaguely discussed as it does not support atomic-safe
cross-shard transactions.

1) MONOXIDE-RELAY TRANSACTIONS

In order to bypass the overhead of lock/unlock operation that
greatly constrains the throughput and performance in regards
to cross-shard transactions, Monoxide proposes Eventual
Atomicity where a single cross-shard transaction is decoupled
into an originated transaction in the local shard, and a relay
transaction being put into the outbound transactions set (and
hence becoming an inbound transaction when it is received by
the destination shard). Rather than the immediate atomicity,
Eventual Atomicity features its lock-free design and takes
advantage of Chu-ko-nu mining across parallel shards in
an asynchronous network, in order to maximize the global
throughput via simple message exchange.

Concretely, the miners of shard a, i.e., an originate shard
for a cross-shard transaction ¢, generate a relay transaction ¢,
in its local outbound transaction set if the withdraw opera-
tion passes the verification. Here, the withdraw operation is
verified in the form of a local transaction ¢#;, decoupled from
t, and stored in the local ledger. On the other hand, there are
two additional MPT roots regarding, 1) the outbound trans-
action set; 2) the inbound transactions and local non-cross-
shard transactions (denoted as MPTp and MPT}, respectively,
and stored in the batch-chaining block defined in Chu-ko-nu
mining). By means of MPTp and MPTj, the miners of shard
b, i.e., the destination shard for ¢, are able to verify 7, via the
attached proof,

[ShardID, ShardSize, BlockHeight, i, t,., ;,], 7)

where i denotes the index of ¢, in the outbound transaction
set generated by shard a; BlockHeight denotes the height of
block B that is stored #;; ;. denotes the MPT proof of 7, in
the given MPT with a root of MPTy stored in the header
of B. Thus, it can be consequently observed that a cross-
shard transaction in Monoxide achieves an improving factor
of N = 7 as it is split into the locally-executed transactions
and relay transactions expected to be outbound.

However, differing from the cross-shard transactions that
can be proactively rejected by an acknowledgement from an
entity (this is in charge by clients in Omniledger, as discussed

14166

later), the chain forking in Monoxide can cause a reversion
of the history and orphanize the block containing the #; that
has been executed within a shard. Without any existing of
acknowledgement reminding the originated shard the status
of ¢, in the destination shard, the forking not only invalidates
t, in the destination shard (if ¢, has been sent out before the
forking occurs), but also invalidates all the subsequent cross-
shard transactions relayed to any other shards. This implies
the following drawbacks.

Incompatibility to Smart Contracts: There does not exist
an upper-bound of timeout indicating if Eventual Atomicity
of a cross-shard transaction has been finalized, leading to the
incompatibility of conditional transactions, e.g., complicated
operations in smart contracts.

Additional Latency: There must be A confirmation blocks
delaying the execution of the inbound transaction, i.e., #,
in order to ensure the corresponding #; in the originated
shard is finalized and unlikely reverted. Also, the absence of
acknowledgement and strict upper-bound of timeout deterio-
rates the latency and throughput due to the inevitable message
loss, which incurs additional latency.

Unexpected Replay: To invalidate the inbound transactions
t, and all the subsequent #,s due to the failure and reversion
of #; in the originated shard, and prevent the history of all
destination shards from being reverted, the history needs to
be rebuilt from the genesis block of each shard. This incurs
unexpected overhead even if a checkpoint scheme is intro-
duced, e.g., the shard pruning in OmniLedger [56].

Insight 9 In order to maximize the global throughput, Even-
tual Atomicity achieves the lock-free asynchronous cross-
shard transactions at the cost of incurring Incompatibility
to Smart Contracts, Additional Latency, and Unexpected
Replay.

2) ELASTICO-NO CROSS-SHARD TRANSACTIONS

The elected leader of the traditional PBFT consensus algo-
rithm in each shard finalizes and sends an agreement in
regards to local transactions to a global subset, i.e., the final
committee, as discussed in Section III-A.2. A final global
block is stored in the global ledger and broadcast to all
validators among the network, so that validators can verify
the transactions from other shards. However, Elastico does
not provide a secure protocol to ensure the atomicity across
shards via this global ledger. There will be a fund loss as an
unexpected dead-lock occurs if the cross-shard transaction
sent to the destination shard gets rejected.

3) OMNILEDGER-ATOMIX PROTOCOL

To simplify the cross-shard-atomicity, OmniLedger proposes
a client-driven Atomix protocol that is UTXO-based, where
the communication overhead is shifted outside the shards.
This indicates that the clients act as a gateway exchanging
messages across multiple shards, by paying an extra cost of
overhead.

Concretely, it consists of the following procedures.

VOLUME 8, 2020

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

1) Initialize: A UTXO-based cross-shard-transaction is
created and gossiped to all input shards (ISs) by a client,
where the inputs of this transaction spend UTXOs in
some ISs, while outputs create new UTXOs in some
output shards (OSs).

2) Lock: The cross-shard-transaction received from the
client is stored in the local ledger within the shard
after the verification is conducted. Meanwhile, either
a proof-of-acceptance or a proof-of-rejection is cre-
ated by the shard leaders attached with the corre-
sponding CoSi, in the case that success or failure is
returned by the verification, respectively. Therein, a
proof-of-acceptance contains an MPT proof and the
transaction itself.

3) Unlock:

e Unlock to Commit: The client issues an Unlock
to Commit consisting of the locked cross-shard
transaction and the attached proof-of-acceptance,
and gossip it to OSs, as soon as it receives
proof-of-acceptance from all ISs. After the success
of verification, OSs store the cross-shard transac-
tion in the local ledger.

e Unlock to Abort: The client issues an Unlock
to Abort to those ISs issuing a proof-of-
acceptance to unlock the state, once it receives a
proof-of-rejection from one IS.

Consequently, a cross-shard transaction containing inputs
from one single IS and OS can achieve an improving factor
of N = g, as this transaction is only stored in two shards,
i.e., this IS and OS. On the other hand, inputs and outputs
of multiple ISs and OSs result in the transaction being stored
among the involved shards, i.e., an improving factor of V' = 1
in the worst case that the entire network is involved.

Insight 10: Atomix Protocol is, in fact, a band-aid at best.
It sacrifices the support of light-weighted clients, but requires
powerful performance for a client-driven exchange of mes-
sages.

Insight 11: Atomix Protocol has poorer support for UTXO-
based cross-shard transactions as the number of participat-
ing shards increases, which is unable to take full advantage
of the UTXO format.

4) RAPIDCHAIN-THREE-WAY CONFIRMATION

To verify a UTXO-based cross-shard transaction, there pro-
poses a three-way confirmation in RapidChain to optimize
the Atomix Protocol in OmniLedger, as shown in the bottom
part of Fig. 5. Concretely, k — 1 sub-transactions (7x and Tx»)
destined for each committee that stores its own /; of the cross-
shard transaction, with J; as the inputs and I as the outputs,
respectively, and k is the number of inputs of this cross-shard
transaction, are created by the output committee, i.e., C3 as
the C,,;. After passing the verification on each input commit-
tees, i.e., C2 and Cy as the two Cj,(s) of the original cross-
shard transaction, Txo and Tx, are stored in their own local
ledger, respectively. Finally, all C;,(s) send the corresponding

VOLUME 8, 2020

0x00 0x01 0x10 0x11

© emEm 0 - .
Crossstard b T N\ [inputs | outputs |
Fipus oupus ®

lo 0;

l2

FIGURE 5. (Top) Each committee (shard) maintains a routing table
containing log, n other committees. The routing table improves the
efficient communication among multiple shards, as described in

Section 111-C.2. Committee C; can locate C5 (via C,) responsible for
transactions with prefix 0x11. (Bottom) To cross-validate a UTXO-based
cross-shard transaction requires this transaction to be spilt in three-way
confirmation.

transactions back to C3, and end up aggregating 7x3 to be
finally stored in the local ledger of C3.

In order to determine the improving factor N/, we assume
that a single committee can only be either a sender commit-
tee or a receiver committee (practically a shard can be both
a sender or a receiver) at the same time for simplicity. In the
worst case where a full-sized cross-shard transaction contains
only the input from a single committee, C;, has to send this
full-sized transaction twice (each corresponds to invoking the
inter-communication once), i.e, 1-st and 3-rd handshaking.
On the other hand, the period from Cj, sending C,,; the cross-
shard transaction to it finishing verifying the sub-transactions
received, equals to the period from C,,, finishing verifying
the original cross-shard transaction to it finishing verifying
the confirmations sent by Cj,, i.e., one block period. It is
because the original cross-shard transaction is spilt into,

« the sub-transactions that are supposed to be stored in
the local ledger of each Cj, (a full-sized of the original
cross-shard transaction with inputs from a single com-
mittee or inputs involving all committees);

« the final transaction that is supposed to be stored in the
local ledger of C,,; (another full-sized of the original
cross-shard transaction) at the end of the protocol.

Consequently, either of these two kinds of transactions
accounts for the intra-throughput of a committee, hence one
block period, as shown by the T at the bottom of Fig. 5.
Therefore, an improving factor of A" = 5 can be achieved.

Insight 12: The routing table and three-way confirmation
resolve the issue of OmniLedger, by significantly reducing
the overhead of communication, even with a large number
of participating shards in a single UTXO-based cross-shard
transaction. However, by polluting specific routing tables,
the eclipse attack [105] becomes a concern.

5) ETHEREUM 2.0-USING RECEIPTS
Having known the beacon chain, validators can not only
address the issue of intra-consensus, but also address the

14167

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

issue of cross-shard-atomicity, i.e., cross-verifying the nor-
mal transactions in each shard the validators care about, and
enabling the cross-shard transactions. Note that, Shasper so
far can only support a simple account-based (as opposed
to the UTXO-based) payment transaction, while the design
contract-oriented cross-shard transaction has not been final-
ized and presented.

The cross-shard transactions in Shasper rely on the
receipts. Receipts correspond to accepted cross-shard trans-
actions that are used to verify and log the validity of the
transactions’ operations. Also, the result of these operations
can be obtained by the involved validators conducting cross-
validation in the destination shards. By means of receipts
whose identities are contained in Txgroup root field (Receipt
root), the cross-shard transactions are split into multiple sub-
transactions being executed in the originated and destination
shards, respectively. This can be regarded as a variation
of the synchronous lock/unlock scheme implemented in
OmniLedger and RapidChain, while the receipts take the
actual role of the lock.

Concretely, a proposed cross-shard transaction, ¢, is split
into a group of #1, 1, and ¢3.

1) The preliminary withdraw operation is executed and
stored after #1 is verified in the originated shard (input
shard, namely IS). A receipt corresponding to fti,
denoted as 7y, is included in Txgroup root of the latest
collation being proposed by the chosen proposer.

2) Having waited for a period that #; has been deter-
ministically finalized by the checkpoints (this period
can be shortened to meet different requirements, which
is similar to the trust-but-verify transaction validation
scheme proposed in OmniLedger; see the first point of
Section III-C and Insight 14), a proof-of-receipt is sent
to the destination shard (output shard, namely OS) as
the second sub-transaction, i.e., .

3) The OS can mark the r; as spent, as validators of the OS
are able to verify the status of 7| by the corresponding
Txgroup root that is stored in the beacon chain, and
the received proof-of-receipt. Meanwhile, the deposit
operation is executed.

4) The OS sends a proof-of-response as t3 to the original
IS, indicating that the whole process of ¢ has been
finalized. Validators of the IS can finally confirm this
fact by verifying the corresponding receipt of proof-of-
receipt on the beacon chain.

Consequently, a cross-shard transaction that is account-based
in Ethereum 2.0 - Shasper can achieve an improving factor of
N = £ due to the preliminary transaction, proof-of-receipt,
and proof-of-response.

Insight 13: Ethereum 2.0 - Shasper introduces account-
based cross-shard transactions by implementing the global
(stored by all validators) beacon chain to exchange the essen-
tial message, i.e., the receipts and proofs. However, Shasper
cannot be more than a transitional version due to the disad-
vantage of possible overhead.

14168

6) CHAINSPACE-THE INTER-PART OF S-BAC

S-BAC refers to Sharded Byzantine Atomic Commit, whose
intra-part makes use of an optimal PBFT, Mod-SMaRt,
to handle the intra-consensus process; see Section III-A.3.
Upon the intra-consensus being finalized within a shard
(Chainspace allocates nodes in different shards based on
the objects management, as described in Section III-C.6),
the elected leader of the shard, the BFT-Initiator, takes
responsibility for the atomicity of cross-shard transactions. It
is worth noting that Chainspace makes use of the concept of
BFT to ensure such atomicity, which constitutes the inter-part
of S-BAC.

Concretely, it resembles the Atomix Protocol in
Omniledger, with a crucial optimization where BFT consen-
sus process must be conducted instead of a naive client-driven
model. It consists of the following procedures.

1) Initialize and Intra-Consensus: An object-based cross-
shard-transaction T is created by a client and gossip
to all shards that manage the input objects, upon which
the intra-consensus is conducted in each of these shards
with an accept or commit broadcast to other concerned
shards. Objects are set to active by the matching shards
if ending up a commitment of 7.

2) Lock: All involved objects in T are locked whenever a
commit is received.

3) Unlock:

e Unlock to Commit: The lock of each involved
object in T is released if and only if commit is
received from all concerned shards, upon which the
objects are set to inactive and the output objects
are created via BFT consensus process in a certain
shard.

e Unlock to Abort: The same locks are released
whenever an abort is received, upon which the
objects are set back to active and may be used by
other subsequent transactions.

Similar to the problem the Atomix Protocol of OmniLedger
has encountered, i.e., Insight 11, the improving factor upon a
cross-shard transaction can be ranged from N =nto N =1
with 7' containing only one input object and no object being
output, and T involving all objects around the entire network,
respectively.

C. GENERAL IMPROVEMENTS

In this section, some general key challenges and improve-
ments particularly proposed by the considered sharding
mechanisms are listed. Such improvements can be generally
implemented to address the new issues the considered shard-
ing solutions pose to the entire system. They include trans-
action latency, inter-communication protocol, shards ledger
pruning, decentralized bootstrapping, securing the epoch
reconfiguration, and sharded smart contract.

1) REDUCING TRANSACTION LATENCY
Apart from the throughput, the transaction latency, referring
to how long a transaction is deterministically confirmed and

VOLUME 8, 2020

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

finalized, is most likely more sensitive to individual users.
It has been shown that the BFT-based 1% attack (refers to
Section III-A) can be either resolved by implementing a
scalable BFT consensus, e.g., OmniLedger and Ethereum
2.0, or increasing the FT within a single shard, e.g., Rapid-
Chain. However, it remains the issue of transaction latency,
as described below.

o The transaction latency deteriorates as a scalable BFT
consensus features a large scale shard size to address
the 1% attack, according to the evaluation shown
in [56], [63]. Thus, Omniledger introduces the trust-
but-verify transaction validation scheme running within
each shard to provide the real-time transaction confirma-
tion time, which can also be implemented in any compat-
ible sharding scheme, such as Ethereum 2.0. Concretely,
validators of a shard are split into an optimistic group
and a core group. The optimistic group is further split
into multiple small sub-groups (even a sub-group with
only one validator is allowed), hence each sub-group
can verify the transactions in a real-time manner. Subse-
quently, the core group conducts the second verification,
where the inconsistent and malicious transactions can be
censored. Note that, there can be multiple inputs from
multiple optimistic sub-groups to this second verifica-
tion in a concurrent manner. Finally, the transactions
passing the second verification can be contained in the
proposed block and stored in the local ledger.

Insight 14: The real-time transaction latency is achieved
by sacrificing the security, as the further 1% attack can
still happen in optimistic groups. Similar to IoTA [25], this
real-time transaction latency can only be used in specific
scenarios with lower security requirements.

o The transaction latency deteriorates as a non-scalable
50% BFT consensus incurs larger communication over-
head. Thus, upon the 50% consensus only agreeing
on a digest of the block. RapidChain implements the
information dispersal algorithm (IDA)-based gossip
protocol [106], [107] to transmit large payload more
efficiently. Concretely, the sender divides the original
message into some n-equal-sized chunks, followed by
applying an (m, n) erasure code scheme to encode the n
chunks to m chunks. As a result, each node can recon-
struct the original message by receiving valid n chunks
from its neighbors with the help of some proofs, e.g,
the MPT proofs, hence significantly reduces the latency.

2) INTER-COMMUNICATION PROTOCOL
Differing from the protocol to achieve the atomicity-cross-
shard, the inter-communication protocol focuses on the over-
head of data transmission among shards. The related schemes
discussed in this survey include the following two major
types.
o A global root chain acting as a message distributor
is implemented, while each validator (or miner in
the context of Monoxide) needs to store this chain.

VOLUME 8, 2020

Sharding mechanisms using this kind include Ethereum
2.0, Monoxide with identical PoW targets, and
Elastico®.

Insight 15: The bottleneck is shifted to the global root chain
due to its single-chained structure, as opposed to sharded
structure. This can only be a transitional version but not a
real solution.

o The most straightforward way is used by OmniLedger
and Chainspace, i.e., full-mesh connection. This require-
ment tends to hold in those latency-sensitive systems,
which incurs an considerable overhead.

In order to bypass the full-mesh connection, RapidChain
proposes a novel inter-communication protocol based on a
routing table stored by each validator; see the top side of
Fig. 5. It is inspired by Kademlia-based [108] routing pro-
tocol, where each validator in a shard maintains a routing
table containing all members of its shard as well as log, log, n
validators of other log, n shards which are distance 2° for
0 < i < logyn — 1 away. The inter-communication is
conducted by having all validators in the sender shard send
messages to all validators on the receiver side. By taking
advantage of P2P network, the communication overhead can
be significantly reduced.

3) SHARDS LEDGER PRUNING

The reason most of the existing Blockchain system with a
single-chained structure [1], [64], [109]-[111] tends to store
the full version of its chain is that they intend to improve
the communication and computation overhead of censorship
and audition. Storing a full version of ledger of every shard
incurs an unacceptable overhead of disk storage to validators,
referring to the calculation in Section IV, as validators need
to track the history of each shard in order to support the cross-
shard transactions, as well as the re-allocation (bootstrapping)
during each epoch. To solve this, OmniLedger proposes the
design of state blocks (SB).

SBs of a shard summarizes the state as well as all trans-
actions of its shard associated with each epoch. At the end
of each epoch &, the selected leader of a shard i constructs
an MPT consisting of all the transactions, while the corre-
sponding MPT root is stored in the header of SB; ;. As such,
the body of SB; ;1 can be pruned if SB; x passes the verifica-
tion by other validations in shard i to become the new genesis
block of &41. The regular blocks are also pruned as soon as
SBi k+1 is generated at the end of & 41, during which it is
the clients’ responsibility to create and store the transaction
proofs to prove the existence of a past transaction to other
shards for cross-shard transactions.

The design of SBs is similar to stable checkpoints in
PBFT [5], fast-sync mode in Ethereum [109],

6Elastico maintains a final committee where the finalized block is pro-
posed and stored in the global root chain, based on the agreement from
each shard. The global chains implemented by OmniLedger and RapidChain,
i.e., the identity Blockchain and reference Blockchain, respectively, do not
account for this kind as the messages exchanged by these two chains are not
related to the actual transactions.

14169

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

and stable checkpoints of Node Hash-Chains in
Chainspace [58]. According to the evaluation in [58], such
kind of pruning incurs an overhead of O(m + logT) for a
partial audit and O(T) for a full audit, where m denotes the
shard size, and T denotes the number of transactions. The
partial audit allows any users to obtain a proof to verify the
existence of any transactions in any shards; the full audit
allows a full verification by replaying the entire history of a
shard. However, the design of SB raises two issues, 1) the
overhead of transaction proofs might become the bottle-
neck, but it can still be relieved by introducing the Simple
Payment Verification (SPV) [1], [109], several multi-hop
backpointers [112]-[114], or Proofs of Proof of Work
(PoPoW) [115], [116]; and 2) Insight 16,

Insight 16: The design of State blocks faces the same prob-
lem as that of the Atomix Protocol in OmniLedger and light-
client protocol in Ethereum 1.0 (if used in Ethereum 2.0),
i.e., shirking the most important duty to the client
side.

4) DECENTRALIZED BOOTSTRAPPING
For sharding mechanisms involving a randomness generator
that is responsible for a PoW-based entry ticket in the BFT-
based intra-consensus protocol, it is important to select the
initial set with an honest majority, e.g., the final committee in
Elastico, and the reference committee in RapidChain’.
Thus, RapidChain proposes a decentralized bootstrapping
in the form of sampler-graph election network [57], with
only a hardcoded seed and some network settings. In such an
election network, participating validators are uniformly dis-
tributed into a few groups, within each of which a PoW-based
result is computed by each member based on the randomness
generated by the VSS-based DRG protocol (Section III-A.5)
and its identification ID. Based on the result, a subgroup can
be obtained for each group. Finally, a unique root group (it
randomly selects the members of the reference committee)
can be obtained with 50% honest majority (high probability),
when this process is iterated. Consequently, the communica-
tion overhead can be improved from Qn?) to O(n/n) with n
denoting the total number of participating validators.

5) SECURING THE EPOCH RECONFIGURATION

For sharding mechanisms running a BFT-based intra-
consensus protocol, (new) validators have to be swapped-
out and re-allocated in other shards every epoch in order to
prevent attacks from slowly adaptive adversaries, i.e., attacker
can corrupt or Distributed Denial of Service (DDoS)-attack
validators, but it takes a bounded time for such attacks to take
effect. This indicates that the epoch length should be carefully
designed to be lower than the bounded time.

7OmniLedger eliminates the necessity of an initial global set that respon-
sible for verifying the PoW result, by using RandHound and VRF. How-
ever, an initial global randomness is still needed to derive VRF. Ethereum
2.0 builds the design on top of PoW-based mainnet, where the PoS-based
Casper is used instead of PoW.

14170

Recall that Elastico and Chainspace do not provide such a
solution, while Ethereum 2.0 solves the intra-consensus with
a global validator pool by frequently updating the member
participating in the intra-consensus protocol for each shard.
Both of them require validators to track the status of each
shard to speed up the reconfiguration phase. OmniLedger
implements a random permutation scheme to swap-out the
validators, ensuring the number of validators being swapped
is bounded by k = logn/m at a given time, where n denotes
the total number of participating validators; m denotes the
number of shards. Here, new validators that require to register
their ID on a global identity Blockchain are also assigned
to random shards. As such, the number of remaining honest
validators can be sufficient to reach consensus while some are
swapped-out, thus the idle phase can last shorter to improve
the throughput. However, this scheme incurs a significant
delay and scales moderately, which cause 1-day-long epoch
that does not suit highly adaptive adversaries (when the
bounded time becomes smaller).

In contrast, RapidChain proposes a light-weighted recon-
figuration protocol based on the Cuckoo rule [117], [118],
where only a constant number of validators are allowed to
move between committees in each epoch. To be specific,
the reference committee (C,) announces a PoOW puzzle based
on the randomness generated in epoch i — 1 (R;) by the DRG
protocol, thus validators that wish to participate in epoch i+ 1
(including those that have participated in epoch i — 1 and i)
can solve the puzzle and inform C, by the end of epoch i.
During epoch i + 1, C, defines the active and inactive lists
of validators of epoch i + 1, and swap-out a constant number
of validators from one to another committee based on R4
generated in epoch i. Finally, C, agrees on a reference block
stored in the local ledger of C,, and broadcasts it to the
entire network. This design, compared to that of OmniLedger,
incurs less overhead and allows a more frequent epoch recon-
figuration to suit more highly adaptive adversaries.

6) SHARDED SMART CONTRACT

None of the considered sharding mechanism has achieved the
smart-contract-oriented sharded so far except Chainspace that
introduces such functionality for the first time. Concretely,
Chainspace, inspired by the UTXO model, proposes a new
transaction structure based on new atoms Objects denoted
as o. Here, o records state in the system with two kinds
of unique identifier, i.e., id(0) (a cryptographically id that
cannot be forged within a polynomial time) and types(o) (a
pointer to a smart contract ¢ that defines types(o)). Mean-
while, a contract c, referred to a special types of o, defines
a namespace consisting of types(c) (the set of types that the
specific c has defined) and a checker v denoted as v(input) —
{True, False}, as shown in (9). Such v is used to verify pro-
cedures proc(c), denoted as p(input) — output (defining the
operation logic, as shown in (8)), by means of a pure function
returning a Boolean value.

c.p(X, r, parameters) — 'y, returns, (8)

VOLUME 8, 2020

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

cv(p, X, r, parameters, y, returns, dependencies)
— {True, False}; ®
[c, p, X, v, y, parameters, returns, dependencies]

€ Trace € Transaction. (10)

Note that, x denotes the input objects that must be active
beforehand, and be set to inactive when the corresponding
new output objects y set to active. r denotes the reference
objects that must also be active, nevertheless, the status of r
remains unchanged afterward. The dependencies, in the form
of a list of Traces from other contracts other than c, is along
with all the other items (as shown in (10)) so that a single
Trace can be obtained to constitute a Transaction.

The method to allocate nodes in different shards in
Chainspace is by placing the nodes that manage, record, and
verify the same set of o to a single shard, denoted as ¢(0).
Further, ®(T) is defined to denote the concerned nodes of
a transaction 7', where concerned nodes represent the set of
nodes managing all x or r of 7. To verify a transaction 7, all
¢(0) with o being involved in T as input or reference should
ensure the active status. Meanwhile, all ®(T") (excluding the
dependencies) should run the checker v of the corresponding
contract ¢ to validate the Traces. As such, a cross-shard
consensus algorithm that guarantees the atomicity of smart
contracts, i.e., S-BAC, is proposed (as discussed in
Section III-B.6).

Insight 17: By modifying the transaction structure and
involving the concept of the new atoms and objects,
it can safely shard a smart contract with strong atomicity,
but at the cost of considerable overhead and hence low
throughput.

Up to this point, we have elaborated on the designs and
protocols of each considered sharding mechanisms in terms
of the intra-consensus, cross-shard atomicity, and general
improvements, based on which a comprehensive comparison
is presented in Table 2.

IV. EVALUATION

A. THE UPPER-BOUND OF THROUGHPUT

This section estimates the theoretical upper-bound of
each discussed sharding mechanism, given the outbound
bandwidth, disk storage space, and CPU process capa-
bility. Note that, Chainspace is not discussed in this
section, because it pays the price in poor performance
to be able to achieve sharding for Turing-complete smart
contracts (Insight 17).

We choose a typical compute-optimized type of servers
in either AWS or Ali cloud service, i.e., c5.xlarge.
It features outbound bandwidth up to 200Mbps (25MB/s)8,
4vCPU of Intel Xeon (Skylake) from 2.5GHz to 3.5GHz
with Turbo boost, and 1TB basic disk storage space. This

8https://github.com/sivel/speedtestcli. speedtest—cli is used to test
the bottleneck of inbound/outbound bandwidth on both AWS and Ali cloud.
The average inbound bandwidth is 535.91Mbps, and the average outbound
bandwidth is 202.56Mbps, while the latter matches with the 200Mbps dis-
played in the dashboard.

VOLUME 8, 2020

roughly costs 0.3USD/hour and 0.33USD/hour in AWS and
Ali cloud service, respectively, with the storage fee around
100GB/0.01USD/hour. Table. 1 lists the notations of neces-
sary parameters used in the calculation. We set the parameters
to some values in order that bandwidth can be filled. Here,
bandwidth is selected to be the upper-bound rather than disk
storage and computation processing as the latter two metrics
can be easily scaled in the cloud and cost much less than that
of bandwidth.

Also note that the randomness generations of Elastico,
OmniLedger, RapidChain, and Ethereum 2.0 are not dis-
cussed in this section, although the generation phase also
incurs the overhead. This is because the generation is con-
ducted only once in each &£, resulting in a predictable data
burst that can be transiently scaled (the randomness genera-
tion is discussed in detail in Section III-A).

To be specific, the basic calculation of bandwidth,
disk storage, and computation processing are defined
as follows,

o Bandwidth: Dedicated channel for outbound message
transmitting for the intra-consensus protocol and cross-
shard operation on a single miner at the same time. Note
that, whether a cross-shard transaction (cross-shard Tx)
accounts for the intra-shard bandwidth or inter-shard
bandwidth depends on whether the Tx should be inserted
in local C of destination shard within a single T.

o Disk Storage: Data storage permanently committed to
the local database, including data both in the local shard
and other shards.

o Computation Processing: CPU computation processing
mainly corresponds to the verification of each Tx and
Sigs of each B or H. Without loss of generality, We
consider that the verification of each Tx or Sig accounts
for a single operation of computation processing.

1) MONOXIDE

Monoxide is the only sharding mechanism that supports
Nakamoto consensus protocol with PoW for the intra-
consensus among the discussed mechanisms in this paper.
We consider |B| = 30KB, |H| = 500B, |Tx| = 250B, |Sig| =
65B (we consider the signature format of Ethereum [64]),
T = 125,n = 262, 144 = 23 = 128 and 1 = 1, 000, 000.

Bandwidth

e Bandwidth Overhead Within Each Shard (Intra-
Bandwidth): This mainly corresponds to the transmitting
of B within a single shard, i.e., ‘TB‘ = 2.5KB/s.

o Bandwidth Overhead Across All Shards (Inter-
Bandwidth): According to the eventual atomicity of
cross-shard Txs, a single cross-shard Tx is split into two
parts that are inserted in C of source shard and desti-
nation shard, respectively. Each of the parts accounts
for its corresponding intra-shard bandwidth. Thus, this
mainly corresponds to the transmitting of the verifica-
tion scheme of Chu-ko-nu mining. References [119]
provides the expressions, as shown in the following,

14171

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

— Mixed PoW targets of shards in one batch. This
design allows miners to mine blocks in batch for
different PoW targets and nonces. Blocks whose
targets have been fulfilled can be sent out first, fol-
lowed by the update of MPT and the further mining
for those whose targets have yet to be fulfilled. This
can be calculated by w = 22.4MB/s,
where 32 log,(n) denotes the Merkle proof for Chu-
ko-nu mining across shards.

— Identical PoW targets of shards in one batch [119].
In this case, the design allows miners to mine
blocks in batch for all n shards simultaneously with
identical PoW targets and nonce. It sacrifices the
decentralization to maintain a global subnet where
all miners should participate, to broadcast ‘H of all
shards. We also let n = 524, 288 = 219 hence the
network size can be extended more, as calculated
by "2 — 20.8MB/s.

o Throughput of a Single Shard (Intra-Throughput): This
is simply calculated by % = 10.241ps.

o Throughput of the Network (Inter-Throughput): This can
be calculated by multiplying the intra-throughput by the
improving factor, i.e., 2 for Monoxide (details refer to
Section III-B.1), as shown in the following,

— Mixed PoW targets of shards in one batch. This can

be calculated by % = 1.23Mtps, where n =
262, 144.

— Identical PoW targets of shards in one batch. This
can be calculated by % = 2.56Mtps, where n =
524, 288.

The total bandwidth of both designs, i.e., identical and mixed
PoW targets, have been upper-bounded, i.e., 20.8 < 22.4 <
25 MB/s. Here, the intra-bandwidth can be negligible due
to its small size compared with that of the inter-bandwidth.
Restricted by this, Monoxide can achieve nearly 1.23M1ps for
mixed PoW targets, and 2.56Mips for identical PoW targets
by sacrificing the decentralization.

Disk Storage

As B contains H, Txs, and Sigs, implying that |5| domi-
nates in |C|, as calculated by h|B| = |C,| = 28GB. On top
of that, Chu-ko-nu mining requires miners to track and syn-
chronize block headers of all the shards they participate in
(the more the number of shards being involved, the more
secure Chu-ko-nu mining is), i.e., Z;'_l(|5;,\|) +h|B|=n-—
1)h|H |+ h|B|. This can be up to 119TB and 238TB for mixed
and identical PoW targets, respectively. It indicates that a
miner that only focuses on a single shard can reap a profit
from the small disk storage, while Chu-ko-nu mining requires
much more storage to guarantee security in the context of
cross-sharding.

Computation Processing

Monoxide may have overwhelming computation process-
ing than the other discussed sharding mechanisms due to
the use of PoW. It requires as much processing as a normal

14172

PoW in a single shard as usual®. However, the hashrate varies
with the total amount of computation power in a single shard
(directly proportional to m) with a nearly fixed T to prevent a
high orphan rate. We consider the hashrate to be the average
Bitcoin hashrate of CPU used in the considered server (Intel
Xeon), i.e., 66 MH /s [120]. Here, any other PoW algorithms
can replace as the kind of PoW is orthogonal to Monoxide.
Besides, the computation processing also corresponds to the
construction of the MPT of every pending block in each shard
involved in the current round of Chu-ko-nu mining, as well
as the verification of every intra-shard Tx and inter-shard Tx.
These two kinds of Tx both account for the throughput of a
single shard (10.24¢ps), which can be negligible compared to
the PoW process. Thus, totally a 66MH /s of affordable CPU
computation processing is needed in Monoxide.

In summary, a miner only conducting normal mining may
only need to spend 0.21USD/hour and 0.24USD/hour in
AWS and Ali cloud, respectively. In order to extend the disk
space, miners participating in Chu-ko-nu mining across all
shards need to spend about 36USD/hour and 40USD/hour
in AWS and Ali cloud, respectively for mixed PoW targets,
and 71USD/hour and 79USD/hour in AWS and Ali cloud,
respectively for identical PoW targets. By only paying the
price on the extended disk storage, Monoxide can achieve
nearly 1.23Mips for mixed PoW targets, and 2.56Mtps for
identical PoW targets.

2) ELASTICO
Elastico is the first practical sharding mechanism where only
the communication and processing are sharded while it still
needs to be globally stored. We consider the intra-throughput
is 1000¢ps (which is average among others with PBFT con-
sensus algorithm [62]), |B] = (1000 x 10 x 250) + m ~
2.4MB where T = 10s and |Tx| = 250B, |H| = 5008,
|Sig| = 65B, n = 48, m = 64(1%), h = 1,000, 000, and
E = 10 min. The randomness is negligible due to its small
size.

Bandwidth

Bootstrapping and ID generation are rarely conducted, also
during which there is no block-oriented consensus being
processed. On the other hand, the consensus of the final
committee can use MPT root hash being transmitted to sub-
stitute B itself. Thus, the considered bandwidth here mainly
corresponds to the intra-consensus protocol and cross-shard
operation.

e Bandwidth Overhead Within Each Shard: This mainly
corresponds to the transmitting of B during the

9Although the other discussed sharding mechanisms, e.g., Elastico and
RapidChain, also conduct a PoW consensus during the stage of validators
allocation to prevent the sybil attack, those miners participating in inter-
shard communication may have to compete with those who do not attend in
Monoxide. This is also the reason m does not account for any calculations of
Monoxide. As aresult, the hashrate of PoW in Monoxide is bound to be much
higher than that of in Elastico or RapidChain, which should be considered in
the calculation.

10This is % of the minimum number of members in each shard, as defined
in [55].

VOLUME 8, 2020

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

intra-consensus within a single shard,
ie., W 14MB/s. Here, an optimized
PBFT can be used to prevent the block body from being
broadcasting twice.

o Bandwidth Overhead Across All Shards: The bandwidth
of a single miner corresponds to n|3| at most when it
is a member of the final committee, and a global ledger
is run and maintained locally. This is simply calculated
by @ = 11MB/s. Note that, this does not indicate
Elastico supports cross-shard 7xs as no atomicity can be
guaranteed in Elastico, leaving a likely unsafe Tx being
locked forever.

o Throughput of a Single Shard: This is simply defined as
10001ps, as discussed previously.

o Throughput of the Network: This can be calculated by
multiplying the intra-throughput by the improving factor
of, i.e., n for Elastico. Thus, it is 1000n = 48ktps.

The total bandwidth overhead of a single validator has been
upper-bounded if we sum up the values of intra-bandwidth
and inter-bandwidth, i.e., 14 + 11 < 25 MB/s. Restricted by
this, Elastico can achieve nearly 48ktps.

Disk Storage

As no ledger pruning scheme is introduced in Elastico,
the periodical reshuffling of validators make all validators
have to store a global ledger, which contains all B from all
shards and costs a huge amount of disk storage. This can be
simply calculated by nh|B| = 104.8TB.

Computation Processing

The computation processing of PoW during the stage of
reshuffling validators depends on the total amount of com-
putation power among the entire network, given a fixed T.
As PoW does not account for the intra-consensus protocol
in Elastico, while it is only conducted once every £. We can
neglect the computation processing of PoW in this calcula-
tion. In addition, the randomness generation is also conducted
only once every £ and can be negligible in this calculation
(this assumption always holds for the rest of the discussed
sharding mechanisms where a randomness is needed.). Thus,
the following factors are considered for simplicity,

« Asdiscussed above, Elastico does not support safe cross-
shard Txs due to the of a (un)lock scheme or a relay
Tx scheme introduced in Monoxide. Thus, we have the
verification for every individual Tx that equals to the
intra-throughput, i.e., 1000H/s.

o Ifaconsidered miner is a member of the final committee,
2x % =~ 555H /s can be obtained when the verifica-
tion of 13 during PBFT process in the normal committees
and final committee are both considered. In addition,
each member of the final committee needs to verify Txs
that are aggregated from all m shards in the global ledger,
ie., 48kH /s.

The total overhead of computation processing is roughly
50kH /s, which is even smaller than that of Monoxide,

VOLUME 8, 2020

i.e., 66MH /s, and has yet to reach the bottleneck of the
considered CPU.

In summary, validators participating in the final commit-
tee need to spend about 32USD/hour and 35USD/hour in
AWS and Ali cloud, respectively. By paying the price on the
extended disk storage, Elastico can achieve nearly 48kips.

3) OMNILEDGER

OmniLedger is the first practical sharding mechanism where
bandwidth, storage, and processing are all sharded by means
of a scalable intra-consensus, Atomix protocol, and the
scheme of ledger pruning. We consider the intra-throughput
is 1200tps (refers to Fig. 9 in [56]), |B| = 32MB (refers
to Table 3 in [56]), |[Tx| = 500B (refers to Size of Unlock
Transactions of Section IV in [56]), |Sig| = 65B (this is not
the size of CoSi [76]), |H| = 500B, n = 48, m = 1024,
h = 1,000,000, and E = 1 day. Thus, T = gt = 555
(nearly matches with Table 3 in [56]). The randomness is
negligible due to its small size.

Bandwidth

Similar to Elastico, the considered bandwidth mainly cor-

responds to the intra-consensus protocol and cross-shard
operation due to the conduct of Bootstrapping and ID gen-
eration for every one-day E.

o Bandwidth Overhead Within Each Shard: This mainly
corresponds to the transmitting of |B| during the
intra-consensus within a single shard. Recall that,
OmnilLedger proposes ByzCoinX that implements a
group-based scheme (rather than a tree-based scheme in
ByzCoin [63]), where a single shard is partitioned into
multiple consensus groups. Each group leader is selected
based on the randomness generated for every epoch, and
is unchanged unless a view change occurs. This group-
based scheme can be a shadow-tree where the depth-3 is
constant and the branching factor depends on the number
of group leader. As a result, each validator only needs
to broadcast B to its children in addition to a unicast of
B to its parent. We consider the number of groups and
group size are both /m (refers to the same assumption
of Section VI-D in [56]), the intra-bandwidth can be cal-
culated by Y™BEBL — 19 2MB/s, ie., the bandwidth
overhead of either the prepare phase or commit phase'!.
Here, the aggregated signature is negligible due to its
small size compared to _ |Tx].

e Bandwidth Overhead Across All Shards: As Atomix
protocol is client-driven, the inter-bandwidth mainly
corresponds to the outbound bandwidth of clients rather
than validators. Thus, the inter-bandwidth for a valida-
tor can be simply regarded as a unicast to the client,
ice., Bl — 0.554MB/s('%). On the other hand, the client
has to suffer from a huge amount of bandwidth overhead,

1 Txs are either transmitted in the prepare phase or commit phase, i.e., it
is counted only once.

12 A5 CoSi is used in ByzcoinX, |B| consists of the CoSi of each Tx, i.e., >~
788.48Bx 1.2kips = 0.9MB, instead of 278l where 788.48B refers to Size
of Unlock Transactions of Section IV in [56].

14173

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

ie., %BI = 26.6MB/s > 25MB/s, which has exceeded
the upper-bound of the bandwidth of a single considered
server.

o Throughput of a Single Shard: This is simply defined as
1200¢ps as discussed previously.

o Throughput of the Network: This can be calculated by
multiplying intra-throughput by the improving factor,
i.e., 5 for OmniLedger with only one input shard and
output shard involved; refer to Section I1I-B.3. Thus, it is
1200n — 28.8kps.

The total bandwidth overhead of a single validator has been
upper-bounded if we sum up the values of intra-bandwidth
and inter-bandwidth, i.e., 19.2+0.56 < 25 MB/s. Restricted
by this, Omnil.edger can achieve nearly 28.8ktps, by shifting
the bottleneck to clients.

Disk Storage

The disk storage in Omnil.edger mainly corresponds to
the ID Blockchain and the local pruned chain in each shard.
We consider the size of a single ID, |ZD| = 32B.

o The block height of the ID Blockchain can be calculated
by, % = 637. Thus, |Brpes7l = 637nm|ID| =
0.93GB.

o The shard ledger pruning can be achieved by construct-
ing an MPT with the aggregated Bs in the current &,
and end up finalizing a state block being the genesis 3
of &1 at the end of &. Validators only need to store
‘H of each state block, and all the regular Bs of each £.
This can be calculated by h|H| + ‘B% ~ 48GB.

Computation Processing

This mainly corresponds to the computing overhead of
the intra-consensus (ByzcoinX) and cross-shard operation
(Atomix). The computing overhead in ByzcoinX consists of
the verification of signature, i.e., m = 12.4H /s and Txs,
i.e., 1.2kH /s as defined. Validators log the cross-shard Txs
in the local ledger and mark them as (un)locked one during
the Initialize and Unlock to Abort of the client-driven Atomix
protocol. This implies that the cross-shard Txs must account
for the intra-Txs. As a result, a 1.2kH /s of the overhead of
computation processing can be obtained, which is smaller
than that of Monoxide, and has yet to reach the bottleneck
of the considered CPU.

In summary, validators need to spend about 0.2USD/hour
and 0.23USD/hour in AWS and Ali cloud, respectively.
OmnilLedger can achieve nearly 28.8ktps with fewer disk
storage.

4) RAPIDCHAIN

RapidChain trades-off the protocol complexity for system
robustness and achieves an efficient shard-driven cross-
shard protocol by improving several parts of Elastico and
OmniLedger. RapidChain also shards all of the bandwidth,
storage, and processing. We consider the intra-throughput
is 1000tps, |B| = 8MB (refers to Fig. 3 in [58]), |Tx| =
512B, |Sig| = 65B, |H| = 500B, n = 256, m = 256,

14174

h = 1,000,000 and E = 1day. Thus, T = % = 16.4s.
The randomness is negligible due to its small size.
Bandwidth
Similar to Elastico and OmniLedger, the considered band-
width mainly corresponds to the intra-consensus protocol and
cross-shard operation due to the conduct of Bootstrapping
and ID generation for every one-day E.

e Bandwidth Overhead Within Each Shard: RapidChain

implements the IDA to transmit Bs within a shard.
‘We consider that the Reed-Solomon erasure codes [121]
used in this protocol is (255, 233), leading to an actual
B roughly 12.5% larger than the metadata, i.e., IB| =
9MB. We further consider the parameter k = d =
m — 1 = 255, where « and d denote the number of
chunks and the number of neighbours of each valida-
tor, respectively. A single MPT proof incurs a size of
32logy(d) = 256B. Thus, the bandwidth overhead to
gossip Bs by IDA is w = 0.55MB/s, where
|B| can be regarded as the size of chunks, and 256B
denotes the total size of a single MPT proof sent to each
neighbour.
By means of the IDA-based gossip protocol, only H is
needed in the intra-consensus protocol based on [85].
Thus, the bandwidth overhead can be calculated by
w = 23kB/s, which can be negligible. Note that,
the multiplier 3 corresponds to 2-nd, 3-rd, and 4-th
consensus rounds in every iteration, as described in
Section III-A.5.

o Bandwidth Overhead Across All Shards: The cross-
shard operation of RapidChain features a routing-table
maintained by every validator in each shard. Every val-
idator communicates with other log,(n) =~ 8 shards, and
records log, log,(n) =~ 3 nodes of each other shard.
As such, this can be MXTW 23.4MB/s. Here,
the senders, in the worst case, incur a double overhead
of cross-shard operation due to the “three-way confir-
mation’’; refer to Section I11-B.4.

Another IDA gossiping is conducted by the shard leader
after receiving the cross-shard B, this can be another
IBIE256d _ 0.55MB/s.

o Throughput of a Single Shard: This is simply defined as
1000¢ps, as discussed previously.

o Throughput of the Network: This can be calculated by
multiplying intra-throughput by the improving factor,
ie., % in RapidChain (details refer to Section III-B.4).
Thus, it is % = 128ktps.

The total bandwidth overhead of a single validator has
been upper-bounded if we sum up the values of intra-
bandwidth and inter-bandwidth, i.e., 23.4 + 0.55 x 2 <
25MB/s. Restricted by this, RapidChain can achieve
nearly 128kzps.

Disk Storage

The disk storage in RapidChain mainly corresponds to the
ID in the local routing table, the local pruned chain in each
shard by using the same scheme as that of OmniLedger, and

VOLUME 8, 2020

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

the ID Blockchain for a member of the reference committee.
We consider the size of a single ID to be the same as that of
OmniLedger, i.e., |ZD| = 32B.

« The routing table of a validator stores ZD of all members
in its committee, as well as log, log, n validators of other
log, n committees, i.e. 32m+-321og,(log,(n)) log,(n) =
9kB.

o RapidChain suggests using the shard pruning scheme
proposed in OmniLedger. Thus it can be calculated by
hH| + BE ~ 42GB.

Computation Processing

Similar to Elastico, only the reconfiguration phase incurs

the computation processing of PoW in RapidChain. We can
also neglect this kind of computation overhead. Thus,
the computation processing overhead mainly corresponds to
the following two factors,

o The verification of Txs and the corresponding Sigs,
i.e., >~ 1000H /s.

o As the leader of an output committee, the Txs need to
be verified when the leader first receives these Txs from
input committees. However, these Txs will not be logged
into the local ledger prior to the final confirmation; refer
to Fig. 5, which implies the fact that the verification of
these cross-shard Txs should be independent to that of
the local Txs, i.e., >~ % ~ 16kH /s.

As a result, a 16k + 1k = 17kH /s of the computation
overhead can be obtained, which is still smaller than that
of Monoxide, and has yet to reach the bottleneck of the
considered CPU.

In RapidChain, it costs validators that participate in
the reference committee nearly the same price as that of
OmniLedger, i.e., 0.2USD/hour and 0.23USD/hour in AWS
and Ali cloud, respectively, but with a significant break-
through of the global throughput of nearly 128kzps, i.e., ~
4.5x.

5) ETHEREUM 2.0
The Shasper of Ethereum 2.0 is a design that resolves the
two major issues defined in Section III at the same time.
Meanwhile, it also shards all of the bandwidth, storage, and
processing. We consider |B;| (collation in a shard) = 1.5MB,
|Hc| = |Hp| (size of a header on the beacon chain) = 5008,
|Tx| = 250B, |Sig] = 256B, T = 8s (local chains and
the beacon chain), n = 512, m = 8, h = 1,000, 000 and
E = 1lweek. In addition, We also consider the number of
attesters selected in each slot (several slots in one &) is 9,
the number of validators responsible for checkpoints is 400,
and the checkpoint period is 100 [96]. The randomness is
negligible due to its small size.

Bandwidth

To reach the consensus within a shard in Ethereum 2.0,
the attesters are randomly selected from the global validators
pool outside the local shard. This leads to the bandwidth
mainly corresponding to only the intra-consensus, as well
as all the other cross-shard operation. We consider that

VOLUME 8, 2020

ByzCoinX proposed in OmniLedger is used for a large-scaled
consensus group in this calculation as the actual protocol is
not discussed and given in Ethereum 2.0. To be specific, We
consider there exist /400 = 20 sub-leaders, each of which
contains +/400 = 20 children.

e Bandwidth Overhead Within Each Shard: This mainly
corresponds to the transmitting of B, within a single
shard, i.e., B = 192KB/s.

o Bandwidth overhead across all shard: This mainly cor-
responds to two parts, i.e., to reach the consensus within
a shard, and to upload to the beacon chain with another
consensus in a single checkpoint period.

Every T = 8s, a proposer is randomly selected from
the local validator pool within a shard, followed by
9 attesters are also randomly selected from the global
validator pool. Note that, validators are evenly allocated
in each local validator pool of each shard based on the
randomness generated every £. Also note that a validator
can be both a potential attester from a global pool, and
a proposer selected from its local pool. The selected
proposer needs to collect at least 2 /3 signatures from the
attesters to finalize a B, to be stored in the local ledger
of this slot. This can be calculated by w =
1.7MB/s.

Every checkpoint period contains 100 B.s, while the
400 validators as a global checkpoint-committee need
to sign the tip B, during the checkpoint period. This is
also called notarization in Ethereum 2.0. By anchoring
the checkpoint, history can be deterministically finalized
and cannot be reverted. Concretely, it consists of the
following steps,

1) Finalize the Checkpoints: The required data size
can be calculated by n(20|B;| + |B.|) = 15.75GB.

2) Upload to the Beacon Chain: The required data
size for the selected validators to upload the check-
points of all shards can be calculated by n(|B.| +
00> 2Sisly = 516MB.

3) Consensus on the Beacon Chain: The required data
size can be calculated by (/nm|Hp| + |Hp|) =
31.7KB, as each validator should be aware of the
body of the corresponding 3, during the previous
steps.

The three steps take at most 100T = 800s to
be finished, hence the considered inter-bandwidth is
15.75GB+516MB+31.7KB _
300 = 20.8MB/s.
. Tgroughput of a Single Shard: This can be calculated by
1Bel _
T = 787tps. .
o Throughput of the Network: This can be calculated by
multiplying intra-bandwidth by the improving factor,
ie., % for Ethereum 2.0 (details refer to Section III-B.5).
Thus, it is @ = 134ktps.
The total bandwidth overhead of a single validator has been
bounded if we sum up the values of both kinds of bandwidth
overhead, i.e., 192KB + 1.7MB + 20.8MB < 25MB/s.
Restricted by this, Ethereum 2.0 can achieve nearly 134ktps.

14175

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

Disk Storage

The disk storage in Ethereum 2.0 mainly corresponds to the
PoW-based main chain, the beacon chain, and the local chain
of each shard that a validator cares more about. We consider
the considered validators are in single-shard mode'3. We con-
sider the size of a single ID, |ZD| = 32B

« It is intended that most of the business logic and data,
i.e., Txs, will be moved to the beacon chain for storage,
while the original PoW-based main chain is only respon-
sible for additional computation-based security, as well
as a smart contract used to register and manage the val-
idators. As a result, it can be regarded as a C with empty
bodies (as if a light node in Ethereum [109]), which
accounts for about 400MB at the time of writing [122].

o Each block of the beacon chain, i.e., 3, needs to store
H.s from all involved shards, i.e., nh|Hc| = 238GB.
In addition, the ZDs all active validators need to be
stored in the beacon chain, i.e., 32nm = 128KB.

« Validators require to download the entire local ledger
of the shard in which they are allocated, i.e., h|B.| =
1.43TB.

Computation Processing

We can neglect the PoW overhead, as a validator can
involve itself in mining on the PoW-based main chain or not
at will in Ethereum 2.0. Thus, the computation processing
overhead mainly corresponds to the following two factors,

« A validator that is elected to be the attester to verify
transactions for a single shard, without the loss of gener-
ality, can also be elected to be the attester for other shards
(which is not discussed in details in any of the docu-
ments). We neglect the overhead of verifying signatures
due to the small size of each group of attesters. Thus,
the overhead of verifying transactions in n proposed B.s
can be 787n = 403kH /s.

« Every checkpoint period (100B.s of each shard) the
checkpoint committee consisting of 400 validators final-
izes the checkpoint of each shard. This corresponds to,

— the 2/3 signatures required to reach the consen-

sus for each checkpoint in every single shard,
ie., MO — 171H;

- verifyir.lg transactiqns incurring 83‘(%)'4 = 4kH /s
— uploading checkpoints to the beacon chain with the

: 2nm_ __
consensus, i.e., g5 s = 3.4H /s.

Note that, the verification of proposed B.s in each shard
is independent to the verification of notarizing checkpoints.
As a result, >~ 408kH /s of the computation overhead can be
obtained, which is smaller than that of Monoxide, and has yet
to reach the bottleneck of the considered CPU.

In Ethereum 2.0, validators need to spend about
0.39USD/hour and 0.42USD/hour in AWS and Ali cloud for
disk extension, respectively, to achieve nearly 134ktps. How-

3 The single-shard mode can be used rather than the super-full mode.
A single-shard node processes the beacon chain blocks only, including the
headers and signatures of the collation, i.e., B, in each shard, but does not
download and verify all the data of the BB.s unless it cares more about.

14176

ever, demand for stronger security incurs a huge overhead of
disk storage for validators as they are most likely to be re-
allocated every 8s-slot, which forces the validators to store
the ledgers of every shard. As such, the huge overhead of disk
storage is boosted to ~ 1007B (similar to that of Monoxide
and Elastico), i.e., a super-full node [59].

B. COMPARISON AND DISCUSSION

This section, based on the calculation of the upper-bound of
the throughput, provides a comparison among the considered
sharding mechanisms, i.e., Monoxide, Elastico, OmniLedger,
Rapidchain, Ethereum 2.0, and Chainspace. This comparison
is also characterized as Table 3.

We conclude that RapidChain and Ethereum 2.0 imple-
ment optimizations that reduce restrictions of Elastico and
OmniLedger, which leads to RapidChain and Ethereum
2.0 being the most advanced BFT-based sharding mecha-
nisms in terms of throughput and cost. On the other hand,
Monoxide pushes the upper-bound of throughput to Mega
level, and opens up a new direction of the Nakamoto-based
sharding mechanisms. Chainspace has plenty of room for
performance improvement for sharded-smart contract.

Furthermore, we point out the challenges remaining
unsolved practically, as well as the future trend being dis-
cussed.

1) FUTURE TREND FOR REDUCING THE OVERHEAD

Three common pitfalls in existing sharding mechanisms pre-
vent the system from being horizontally scaled to the theo-
retical upper bound due to the communication and storage
overhead.

o An existing global chain that is needed to be stored by
all participating miners/validators. Such a global chain
tends to be responsible for all global operations, such
as generating randomness, cross-validating transactions
in different shards, reshuffling operation. However, this
simply poses the bottleneck threat back to a single global
chain, which is the root issue sharding technologies
would have tried to solve. Insight 15 and SSChain [123]
hit this pitfall. Note that SSChain simply utilizes a two-
layer architecture where a global chain is set to deal with
all data migration and reshuffling operations. Trend 1:
Restricting the use of a global chain in any opera-
tions, and the bottleneck requiring to be solved if
used.

o Requiring miners/validators to store ledgers from other
shards. This is necessary in some of the existing shard-
ing mechanisms in order to cross-validating transactions
and reshuffling operation. However, it leads to min-
ers/validators incurring high communication and storage
overhead in O(n) (n is the number of shards). Insights
1, 7,9, 10, 11, 13 hit this pitfall. Trend 2: Balancing
the storage and communication overhead for min-
ers/validators in sending cross-shard transactions
and reshuffling, so that the order can be lower than

VOLUME 8, 2020

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

O(n). One of the potential solutions might be the fraud
proof that enables light nodes to be as secure as full
nodes without needing to store the whole ledger [124],
yet it has not been mature at the time of writing.

o Allocating participating nodes to shards based on their
business requirements in order to bypass the over-
head of using the sharding technology. Business-driven
members allocation for shards has been proposed and
discussed in some designs, e.g., Ethereum 2.0 [96]14
in order to reduce, 1) the frequency that a participat-
ing node gets swapped out; and 2) the ratio of non-
cross-shard transactions, for the ease of management
and lower overhead. However, this results in a very
long epoch reconfiguration for participating nodes and
unevenly shard size, which ultimately poses a risk of
crowed transactions to a single shard as time passes and
the size and throughput increases, thus hitting the bot-
tleneck of intra-consensus. Trend 3: Avoiding simple
business-driven members allocation that risks shards
suffering from crowed transactions.

2) FUTURE TREND FOR STRENGTHENING THE SECURITY

AND ATOMICITY

This trend corresponds to the intra-consensus and atomicity

of cross-shard transactions, respectively. We point out the

potential direction on more secure intra-consensus and more

efficient cross-shard transactions, as shown in the following.
Intra-.Consensus:

o Trend 4: Scaling the unbiased and unpredictable ran-
domness generator in large-scale networks with as few
third-party hardcoded settings as possible. The unbiased
and unpredictable randomness plays an important role in
BFT-based intra-consensus design. Improving this kind
of algorithms can significantly prevent the validators
from being under DDoS attacks. Insights 3, 5, and 8
belong to this aspect.

o Trend 5: Improving the PoW-based intra consensus,
and generalizing it into other types of Nakamoto-based
consensus algorithms. Chu-ko-nu mining of Monoxide
takes advantage of PoW to bypass the vortex of random-
ness, nevertheless, the security of which is dependent
on the storage. As such, the future direction can be
potentially decoupling the security and storage, and gen-
eralize the concept to other Nakamoto-based consensus
algorithms, e.g., Proof-of-Stake.

Efficient Atomicity:

o Trend 6: Enabling efficient conditional cross-shard
transactions that enable contract-orient operations.
Only Chainspace and the future phase of Ethereum
2.0 claim to support such conditional cross-shard trans-
actions so far, but at the cost of unacceptable overhead
and latency, which requires more focus in the future
trend.

147 possible design proposed by Ethereum 2.0 is to merge shards that
interact more frequently than others.

VOLUME 8, 2020

V. CONCLUSION
This survey highlights the importance of sharding for the
design of scale-out Blockchains and systematizes the state-
of-the-art sharding mechanisms in regards to the intra-
consensus security, atomicity of cross-shard transactions, and
general challenges and improvements. We also proposed our
calculations and insights analyzing the features and restric-
tions, based on which a comprehensive comparison among
the considered sharding mechanisms was obtained.

A list of the key observations and conclusions are as fol-
lows:

« For the first time Monoxide proposes a Nakamoto-based
sharding mechanism, but at the cost of storing headers of
all shards to guarantee the maximum intra-consensus-
safety.

o The traditional PBFT used in Elastico and Chainspace
does not guarantee the intra-consensus-safety due to its
weak scalability, while the BFT-based sharding mecha-
nisms, i.e., OmniLedger, Rapidchain, and Ethereum 2.0,
improve the intra-consensus-safety in the sense that scal-
ing the traditional PBFT or increasing the fault tolerance
of the traditional PBFT.

o The randomness generators of all considered shard-
ing mechanisms in this paper need strict network set-
tings, otherwise the unpredictiability and unbiasability
in scaled networks will be compromised.

o Monoxide, OmniLedger, Rapidchain, and Ethereum
2.0 all propose their own solution to the issue of cross-
shard transactions, none of which can support cross-
shard smart contracts. Only Chainspace proposes a
smart-contract-oriented sharding mechanism, but at the
cost of low throughput.

o All considered sharding mechanisms introduce the opti-
mizations to address the new challenges their proposed
sharding mechanisms pose to the system, i.e., latency
and storage, but further improvements are necessary.

ACKNOWLEDGMENT

The CRC program supports industry-led collaborations
between industry, researchers and the community. UCOT
Australia is a full-industry chain anti-counterfeiting traceabil-
ity solution operator, dedicated to research and development
of technology products based on Blockchain.

REFERENCES

[11 S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] O. Novo, “Blockchain meets IoT: An architecture for scalable

access management in I0T,” [EEE Internet Things J., vol. 5, no. 2,

pp. 1184-1195, Apr. 2018.

R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated blockchain

and edge computing systems: A survey, some research issues and chal-

lenges,” IEEE Commun. Surveys Tuts., vol. 21, no. 2, pp. 1508-1532,

2nd Quart., 2019.

[4] X. Wang, X. Zha, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and
K. Zheng, “Survey on blockchain for Internet of Things,” Com-
put. Commun., vol. 136, pp. 10-29, Feb. 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S01403664 18306881

(3

—

14177

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

[5]

[7

(8]

9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

14178

M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proc.
OSDI, vol. 99, Feb. 1999, pp. 173-186.

M. Vukolic, “The quest for scalable blockchain fabric: Proof-of-work vs.
BFT replication,” in Proc. Int. Workshop Open Problems Netw. Secur.
Cham, Switzerland: Springer, 2015, pp. 112-125.

F. Tschorsch and B. Scheuermann, *“Bitcoin and beyond: A technical sur-
vey on decentralized digital currencies,” IEEE Commun. Surveys Tuts.,
vol. 18, no. 3, pp. 2084-2123, 2016.

J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-
chain instant payments,” Lightning Netw., San Francisco, CA, USA,
Tech. Rep. DRAFT Version 0.5.9.2, 2016.

Raiden Network. Accessed: 2015. [Online]. Available: https://raiden.
network/

J. Poon and V. Buterin, ‘“Plasma: Scalable autonomous smart contracts,”
Lightning Netw. Ethreum, San Francisco, CA, USA, Tech. Rep. WORK-
ING DRAFT, 2017, pp. 1-47.

M. Jourenko, K. Kurazumi, M. Larangeira, and K. Tanaka, “SoK: A tax-
onomy for layer-2 scalability related protocols for cryptocurrencies,”
IACR Cryptol. ePrint Arch., vol. 2019, p. 352, Apr. 2019.

R. Cattell, “Scalable SQL and NoSQL data stores,” SIGMOD Rec.,
vol. 39, no. 4, p. 12, May 2011.

I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse, “Bitcoin-NG:
A scalable blockchain protocol,” in Proc. 13th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), Santa Clara, CA, USA, Mar. 2016,
pp. 45-59. [Online]. Available: https://www:usenix:org/conference/
nsdil6/technical-sessions/presentation/eyal

I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs of
stake,” JACR Cryptol. ePrint Archive, vol. 2016, p. 919, Sep. 2016.

A. Kiayias, A. Russell, B. David, and R. Oliynykov, ‘“Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol,” in Proc. Annu. Int.
Cryptol. Conf. Cham, Switzerland: Springer, 2017, pp. 357-388.

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. (CCS). New York, NY, USA: ACM, 2016, pp. 31-42.

M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, ‘“‘HotStuff:
BFT consensus with linearity and responsiveness,” in Proc. ACM Symp.
Princ. Distrib. Comput. (PODC). New York, NY, USA: ACM, 2019,
pp. 347-356, doi: 10.1145/3293611.3331591.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” ACM SIGOPS Operating Syst.
Rev., vol. 41, no. 6, pp. 45-58, 2007.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, ““Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proc. 26th Symp.
Operating Syst. (SOSP). New York, NY, USA: ACM, 2017, pp. 51-68,
doi: 10.1145/3132747.3132757.

K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer,
“On scaling decentralized blockchains,” in Financial Cryptography
and Data Security, J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach,
M. Brenner, and K. Rohloff, Eds. Berlin, Germany: Springer, 2016,
pp. 106-125.

J. Garzik. Bipl02: Block Size Increase to 2MB. Accessed: 2015.
[Online]. Available: https://github.com/bitcoin/bips/blob/master/
bip-0102.mediawiki

P. Wuille. Bipl03: Block Size Following Technological Growth.
Accessed: 2015. [Online]. Available: https:/github.com/bitcoin/
bips/blob/master/bip-0103.mediawiki

E. Lombrozo, J. Lau, and P. Wuille, “Bip141: Segregated witness (con-
sensus layer),” Bitcoin Improvement Proposal, Tech. Rep. Bip141, 2015.
Y. Sompolinsky and A. Zohar, ““Secure high-rate transaction processing
in bitcoin,” in Financial Cryptography and Data Security, R. Bohme and
T. Okamoto, Eds. Berlin, Germany: Springer, 2015, pp. 507-527.

S. Popov, “The tangle,” IoTA Found., Berlin, Germany, Tech. Rep. Ver-
sion 1.3, 2016, p. 131.

A. Churyumov. (2016). Byteball: A Decentralized System for Storage and
Transfer of Value. [Online]. Available: https://byteball.org/Byteball.pdf
L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance,” Swirlds, College Station, TX, USA, White
Paper SWIRLDS-TR-2016-01, 2016.

Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and
scalable cryptocurrency protocol,” IACR Cryptol. ePrint Arch., vol. 2016,
p. 1159, Jan. 2018.

Y. Sompolinsky and A. Zohar, “Phantom: A scalable blockdag protocol,”
IACR Cryptol. ePrint Arch., vol. 2018, p. 104, Mar. 2018.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

C. Li, P. Li, D. Zhou, W. Xu, F. Long, and A. Yao, ‘“Scaling
nakamoto consensus to thousands of transactions per second,” May 2018,
arXiv:1805.03870. [Online]. Available: https://arxiv.org/abs/1805.03870
L. Kan, Y. Wei, A. H. Muhammad, W. Siyuan, G. Linchao, and H. Kai,
“A multiple blockchains architecture on inter-blockchain communica-
tion,” in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur. Companion (QRS-
C), Jul. 2018, pp. 139-145.

H. Wang, Z. Zheng, S. Xie, H. N. Dai, and X. Chen, “Blockchain chal-
lenges and opportunities: A survey,” Int. J. Web Grid Services, vol. 14,
no. 4, p. 352, 2018.

L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of consensus
protocols on blockchain applications,” in Proc. 4th Int. Conf. Adv. Com-
put. Commun. Syst. (ICACCS), Jan. 2017, pp. 1-5.

'W. Gao, W. G. Hatcher, and W. Yu, ““A Survey of Blockchain: Techniques,
applications, and challenges,” in Proc. 27th Int. Conf. Comput. Commun.
Netw. (ICCCN), Jul. 2018, pp. 1-11.

W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and
D. 1. Kim, ““A survey on consensus mechanisms and mining strategy man-
agement in blockchain networks,” IEEE Access, vol. 7, pp. 22328-22370,
2019.

W. Yang, S. Garg, A. Raza, D. Herbert, and B. Kang, “Blockchain: Trends
and future,” in Knowledge Management and Acquisition for Intelligent
Systems, K. Yoshida and M. Lee, Eds. Cham, Switzerland: Springer, 2018,
pp- 201-210.

Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview
of blockchain technology: Architecture, consensus, and future trends,”
in Proc. IEEE Int. Congr. Big Data (BigData Congr.), Jun. 2017,
pp. 557-564.

S. Goswami, “Scalability analysis of blockchains through blockchain
simulation,” M.S. thesis, Dept. Comput. Sci., Univ. Nevada,
Las Vegas, Las Vegas, NV, USA, 2017. [Online]. Available:
https://digitalscholarship.unlv.edu/thesesdissertations/2976/

M. Bez, G. Fornari, and T. Vardanega, “The scalability challenge of
ethereum: An initial quantitative analysis,” in Proc. IEEE Int. Conf.
Service-Oriented Syst. Eng. (SOSE), Apr. 2019, pp. 167-176.

C. Worley and A. Skjellum, “Blockchain tradeoffs and challenges
for current and emerging applications: Generalization, fragmenta-
tion, sidechains, and scalability,” in Proc. IEEE Int. Conf. Internet
Things (iThings) IEEE Green Comput. Commun. (GreenCom) IEEE
Cyber, Phys. Social Comput. (CPSCom) IEEE Smart Data (SmartData),
Jul. 2018, pp. 1582-1587.

S. Kim, Y. Kwon, and S. Cho, “A survey of scalability solutions on
blockchain,” in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC),
Oct. 2018, pp. 1204-1207.

A. Chauhan, O. P. Malviya, M. Verma, and T. S. Mor, “Blockchain and
Scalability,” in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur. Compan-
ion (QRS-C), Jul. 2018, pp. 122-128.

F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic litera-
ture review of blockchain-based applications: Current status, classi-
fication and open issues,” Telematics Inform., vol. 36, pp.55-81,
Mar. 2019. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0736585318306324

D. Mechkaroska, V. Dimitrova, and A. Popovska-Mitrovikj, “Analysis
of the possibilities for improvement of blockchain technology,” in Proc.
26th Telecommun. Forum (TELFOR), Nov. 2018, pp. 1-4.

T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
“Untangling blockchain: A data processing view of blockchain sys-
tems,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 7, pp. 1366-1385,
Jul. 2018.

Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed con-
sensus protocols for blockchain networks,” CoRR, vol. abs/1904.04098,
pp. 1-34, Apr. 2019. [Online]. Available: http://arxiv.org/abs/1904.04098
R. Wang, K. Ye, and C.-Z. Xu, “Performance benchmarking and opti-
mization for blockchain systems: A survey,” in Blockchain—ICBC,
J. Joshi, S. Nepal, Q. Zhang, and L.-J. Zhang, Eds. Cham, Switzerland:
Springer, 2019, pp. 171-185.

M. H. Manshaei, M. Jadliwala, A. Maiti, and M. Fooladgar, “A game-
theoretic analysis of shard-based permissionless blockchains,” IEEE
Access, vol. 6, pp. 7810078112, 2018.

P. Singhal and S. Masih, ““Metaanalysis of methods for scaling blockchain
technology for automotive uses,” CoRR, vol. abs/1907.02602, pp. 1-11,
Jul. 2019. [Online]. Available: http://arxiv.org/abs/1907.02602

VOLUME 8, 2020

http://dx.doi.org/10.1145/3293611.3331591
http://dx.doi.org/10.1145/3132747.3132757

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66

[67]

[68]

[69]

[70]

A. Meneghetti, T. Parise, M. Sala, and D. Taufer, “A survey
on efficient parallelization of blockchain-based smart contracts,”
CoRR, vol. abs/1904.00731, pp. 1-9, Feb. 2019. [Online]. Available:
http://arxiv.org/abs/1904.00731

G. Wang, Z. J. Shi, M. Nixon, and S. Han, “SoK: Sharding
on Blockchain,” in Proc. Ist ACM Conf. Adv. Financial Tech-
nol. (AFT). New York, NY, USA: ACM, 2019, pp. 41-61, doi: 10.1145/
3318041.3355457.

J. Wang and H. Wang, ‘“Monoxide: Scale out blockchains with
asynchronous consensus zones,” in Proc. 16th USENIX Symp.
Netw. Syst. Design Implement. (NSDI). Boston, MA, USA: USENI
Association, Feb. 2019, pp. 95-112. [Online]. Available: https://
www.usenix.org/conference/nsdil9/presentation/wang-jiaping

J. C. Corbett et al., “Spanner: Google’s globally distributed database,”
ACM Trans. Comput. Syst., vol. 31, no. 3, pp. 8:1-8:22, Aug. 2013, doi:
10.1145/2491245.

G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,”
CoRR, vol. abs/1505.06895, pp. 1-15, May 2015. [Online]. Available:
http://arxiv.org/abs/1505.06895

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), 2016, doi: 10.1145/
2976749.2978389.

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A secure, scale-out, decentralized ledger via
sharding,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 583-598.

M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
blockchain via full sharding,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS). New York, NY, USA: ACM, 2018, pp. 931-948,
doi: 10.1145/3243734.3243853.

M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A sharded smart contracts platform,” CoRR,
vol. abs/1708.03778, pp. 1-16, Aug. 2017. [Online]. Available:

http://arxiv.org/abs/1708.03778

V. Buterin. (Apr. 2019). Ethereum Sharding FAQ. Accessed: Aug. 1,2019.
[Online]. Available: https://github.com/ethereum/wiki/wiki/Sharding-
FAQ

J. Gray, “The transaction concept: Virtues and limitations,” in Proc.

VLDB, vol. 81, 1981, pp. 144-154.

T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Comput. Surv., vol. 15, no. 4, pp. 287-317, Dec. 1983.

T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan,
“BLOCKBENCH: A framework for analyzing private blockchains,” in
Proc. ACM Int. Conf. Manage. Data (SIGMOD). New York, NY, USA:
ACM, 2017, pp. 1085-1100, doi: 10.1145/3035918.3064033.

E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford, “Enhancing bitcoin security and performance with strong
consistency via collective signing,” in Proc. 25th USENIX Secur.
Symp. (USENIX Secur.). Austin, TX, USA: USENIX Association,
Aug. 2016, pp. 279-296. [Online]. Available: https://www:usenix:org/
conference/usenixsecurity 1 6/technical-sessions/presentation/kogias

G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1-32,
Apr. 2014.

A. Judmayer, A. Zamyatin, N. Stifter, A. G. Voyiatzis, and E. Weippl,
“Merged mining: Curse or cure?” in Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology, J. Garcia-Alfaro, G. Navarro-
Arribas, H. Hartenstein, and J. Herrera-Joancomarti, Eds. Cham,
Switzerland: Springer, 2017, pp. 316-333.

BitCoinWIKI. (Aug. 2015). Merged Mining Specification. Accessed:
Aug. 1 2019. [Online]. Available: https://en.bitcoin.it/wiki/Merged_
mining_specification

M. Naor, “Bit commitment using pseudorandomness,” J. Cryptol., vol. 4,
no. 2, pp. 151-158, Jan. 1991, doi: 10.1007/BF00196774.

M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the pres-
ence of faults,” J. ACM, vol. 27, no. 2, pp. 228-234, Apr. 1980, doi: 10.
1145/322186.322188.

P. Feldman, “A practical scheme for non-interactive verifiable secret shar-
ing,” in Proc. 28th Annu. Symp. Found. Comput. Sci. (SFCS), Oct. 1987,
pp. 427-438.

T. P. Pedersen, ‘“Non-interactive and information-theoretic secure
verifiable secret sharing,” in Advances in Cryptology—CRYPTO,
J. Feigenbaum, Ed. Berlin, Germany: Springer, 1992, pp. 129-140.

VOLUME 8, 2020

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

M. Stadler, “Publicly verifiable secret sharing,” in Advances in
Cryptology—EUROCRYPT, U. Maurer, Ed. Berlin, Germany: Springer,
1996, pp. 190-199.

B. Schoenmakers, “A simple publicly verifiable secret sharing scheme
and its application to electronic voting,” in Advances in Cryptology—
CRYPTO, M. Wiener, Ed. Berlin, Germany: Springer, 1999, pp. 148-164.
T. Rabin and M. Ben-Or, ““Verifiable secret sharing and multiparty pro-
tocols with honest majority,” in Proc. 21st Annu. ACM Symp. Theory
Comput. (STOC). New York, NY, USA: ACM, 1989, pp. 73-85, doi: 10.
1145/73007.73014.

J. Sousa and A. Bessani, ‘“From byzantine consensus to BFT state
machine replication: A latency-optimal transformation,” in Proc. 9th Eur.
Dependable Comput. Conf., May 2012, pp. 37-48.

E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford, ‘“Scalable bias-resistant distributed random-
ness,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2017, pp. 444—460.
D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures
for smaller blockchains,” in Advances in Cryptology—ASIACRYPT,
T. Peyrin and S. Galbraith, Eds. Cham, Switzerland: Springer, 2018,
pp. 435-464.

E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities ‘honest or bust’
with decentralized witness cosigning,” in Proc. IEEE Symp. Secur. Pri-
vacy (SP), May 2016, pp. 526-545.

C. P. Schnorr, “Efficient signature generation by smart cards,” J. Cryptol.,
vol. 4, no. 3, pp. 161-174, 1991, doi: 10.1007/BF00196725.

C. Stathakopoulous and C. Cachin, “Threshold signatures for
blockchain systems,” Swiss Federal Inst. Technol., Ziirich, Switzerland,
Tech. Rep. RZ3910 (#2UR1704-014), 2017.

Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” in Advances in
Cryptology—CRYPTO, G. Brassard, Ed. New York, NY, USA: Springer,
1990, pp. 307-315.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold
DSS signatures,” in Advances in Cryptology—EUROCRYPT, U. Maurer,
Ed. Berlin, Germany: Springer, 1996, pp. 354-371.

V. Shoup, “Practical threshold signatures,” in Proc. Int. Conf. Theory
Appl. Cryptograph. Techn. Cham, Switzerland: Springer, 2000, pp. 207—
220.

A. Boldyreva, “Threshold signatures, multisignatures and blind sig-
natures based on the gap-Diffie-Hellman-group signature scheme,” in
Public Key Cryptography—PKC, Y. G. Desmedt, Ed. Berlin, Germany:
Springer, 2002, pp. 31-46.

C. Cachin, K. Kursawe, and V. Shoup, ‘“‘Random oracles in constantino-
ple: Practical asynchronous byzantine agreement using cryptography,”
J. Cryptol., vol. 18, no. 3, pp. 219-246, Jul. 2005, doi: 10.1007/s00145-
005-0318-0.

L. Ren, K. Nayak, I. Abraham, and S. Devadas, “Efficient synchronous
byzantine consensus,” CoRR, vol. abs/1704.02397, pp. 1-19, Apr. 2017.
[Online]. Available: http://arxiv.org/abs/1704.02397

M. Swan, Blockchain : Blueprint for a New Economy. Sebastopol,
CA, USA: O’Reilly Media, 2015. [Online]. Available: http://shop.
oreilly.com/product/0636920037040.do

X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on
the security of blockchain systems,” Future Gener. Comput. Syst.,
to be published, [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167739X17318332

V. Zamfir. (Nov. 2018). Casper-CBC FAQ. Accessed: Aug. 1, 2019.
[Online]. Available: https://github.com/ethereum/cbc-casper/wiki/FAQ
J. Ray. (Mar. 2019). Sharding Roadmap. Accessed: Aug. 1, 2019.
[Online]. Available: https://github.com/ethereum/wiki/wiki/Sharding-
roadmap

S. King and S. Nadal. PPcoin: Peer-to-Peer Crypto-Currency
With Proof-of-Stake. Aug. 2012. [Online]. Available: https:/pdfs.
semanticscholar.org/0db3/8d32069f3341d34c35085dc009a85bal3c13.
pdf

C. Xu, K. Wang, P. Li, S. Guo, J. Luo, B. Ye, and M. Guo, “Making
big data open in edges: A resource-efficient blockchain-based approach,”
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 4, pp. 870-882, Apr. 2019.
(2018). Reddcoin. [Online]. Available: https://wiki.reddcoin.com/
Main_Page

V. Buterin. (Aug. 2018). Convenience Link to Casper+Sharding
Chain V2.1 SPEC. Accessed: Aug. 1, 2019. [Online]. Available:
https://ethresear.ch/t/convenience-link-to-casper-sharding-chain-v2-1-
spec/2332

14179

http://dx.doi.org/10.1145/3318041.3355457
http://dx.doi.org/10.1145/3318041.3355457
http://dx.doi.org/10.1145/2491245
http://dx.doi.org/10.1145/2976749.2978389
http://dx.doi.org/10.1145/2976749.2978389
http://dx.doi.org/10.1145/3243734.3243853
http://dx.doi.org/10.1145/3035918.3064033
http://dx.doi.org/10.1007/BF00196774
http://dx.doi.org/10.1145/322186.322188
http://dx.doi.org/10.1145/322186.322188
http://dx.doi.org/10.1145/73007.73014
http://dx.doi.org/10.1145/73007.73014
http://dx.doi.org/10.1007/BF00196725
http://dx.doi.org/10.1007/s00145-005-0318-0
http://dx.doi.org/10.1007/s00145-005-0318-0

IEEE Access

G. Yu et al.: Survey: Sharding in Blockchains

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

[114]

14180

J. Y. Park. (Dec. 2018). Preparing for Ethereum PoS Staking
in 2019. Accessed: Aug. 1, 2019. [Online]. Available:
https://medium.com/whaley-official/getting-prepared-for-ethereum-
pos-staking-in-2019-3a3855e6a018

J. Prestwich. (Jan. 2019). What to Expect When ETH'’s
Expecting. Accessed: Aug. 1, 2019. [Online]. Available: https://
hackernoon.com/what-to-expect-when-eths-expecting-80cb4951afcd
LinkTime, Youtube. Justin Drake-Ethereum, Sharding.
Accessed: Sep. 1, 2019. [Online]. Available: https://www.youtube.com/
watch?v=J4rylD6w2S4

(2017). Randao: Verifiable Random Number Generation. [Online]. Avail-
able: https://www.randao.org/whitepaper/Randao_v0.85_en.pdf

D. Boneh, J. Bonneau, B. Biinz, and B. Fisch, ‘“Verifiable delay
functions,” in Advances in Cryptology—CRYPTO, H. Shacham and
A. Boldyreva, Eds. Cham, Switzerland: Springer, 2018, pp. 757-788.
JustinDrake. (2018). Minimal VDF Randomness Beacon. Accessed:
Aug. 1, 2019. [Online]. Available: https://ethresear.ch/t/minimal-vdf-
randomness-beacon/3566

B. Wesolowski, “Efficient verifiable delay functions,” Cryptol. ePrint
Arch., Cham, Switzerland, Tech. Rep. 2018/623, 2018. [Online]. Avail-
able: https://eprint.iacr.org/2018/623

K. Pietrzak, “Simple verifiable delay functions,” Cryptol. ePrint Arch.,
Cham, Switzerland, Tech. Rep. 2018/627, 2018. [Online]. Available:
https://eprint.iacr.org/2018/627

L. D. Feo, S. Masson, C. Petit, and A. Sanso, ““Verifiable delay functions
from supersingular isogenies and pairings,” Cryptol. ePrint Arch., Cham,
Switzerland, Tech. Rep. 2019/166, 2019. [Online]. Available: https:/
eprint.iacr.org/2019/166

V. Buterin. (2015). The Problem of Censorship. Accessed: Aug. 1, 2019.
[Online]. Available: https://blog.ethereum.org/2015/06/06/the-problem-
of-censorship/

A. Chepurnoy, “Interactive proof-of-stake,” Jan. 2016,
arXiv:1601.00275. [Online]. Available: https://arxiv.org/abs/1601.00275
E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse
attacks on Bitcoin’s peer-to-peer network,” in Proc. 24th USENIX
Secur. Symp. (USENIX Secur) Washington, DC, USA: USENIX
Association, Aug. 2015, pp.129-144. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity 15/technical-sessions/
presentation/heilman

N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. Stern, ““Scalable
secure storage when half the system is faulty,” in Automata, Languages
and Programming, U. Montanari, J. D. P. Rolim, and E. Welzl, Eds.
Berlin, Germany: Springer, 2000, pp. 576-587.

N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. Stern, “Adden-
dum to ‘scalable secure storage when half the systemis faulty’ [inform.
comput. 174 (2) (2002) 203-213],” Inf. Comput., vol. 205, no. 7,
pp. 1114-1116, 2007.

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the XOR metric,” in Proc. Revised
Papers 1st Int. Workshop Peer-to-Peer Syst. (IPTPS), London,
U.K.: Springer-Verlag, 2002, pp. 53-65. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646334.687801

B. Wesolowski, “Efficient verifiable delay functions,” in Advances in
Cryptology—EUROCRYPT, Y. Ishai and V. Rijmen, Eds. Cham, Switzer-
land: Springer, 2019, pp. 379-407.

Block.One. (Mar. 2018). EOS.IO Technical White Paper V2.
[Online]. Available: https://github.com/EOSIO/Documentation/blob/
master/Technical WhitePaper.md

(2018). NEO White Paper. [Online]. Available: http://docs.neo.org/en-us/
K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, 1.
Khoffi, J. Cappos, and B. Ford, “CHAINIAC: Proactive software-
update transparency via collectively signed skipchains and verified
builds,” in Proc. 26th USENIX Secur. Symp. (USENIX Secur.)
Vancouver, BC, Canada: USENIX Association, Aug. 2017, pp. 1271-
1287. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 17/technicalsessions/presentation/nikitin

A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Tim6n, and P. Wuille. (2014). Enabling
Blockchain Innovations With Pegged Sidechains. [Online]. Available:
http://www.opensciencereview.com/papers/123/enablingblockchain-
innovations-with-pegged-sidechains

E. Regnath and S. Steinhorst, “LeapChain: Efficient blockchain ver-
ification for embedded IoT,” in Proc. Int. Conf. Comput.-Aided
Design (ICCAD). New York, NY, USA: ACM, 2018, pp. 74:1-74:8, doi:
10.1145/3240765.3240820.

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

A. Kiayias, A. Miller, and D. Zindros, ‘“Non-interactive proofs of proof-
of-work,” IACR Cryptol. ePrint Arch., vol. 2017, no. 963, pp. 1-42, 2017.
A. Kiayias, N. Lamprou, and A.-P. Stouka, “Proofs of proofs of work
with sublinear complexity,” in Financial Cryptography and Data Secu-
rity, J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, and
K. Rohloff, Eds. Berlin, Germany: Springer, 2016, pp. 61-78.

B. Awerbuch and C. Scheideler, “Towards a scalable and robust DHT,”
Theory Comput. Syst., vol. 45, no. 2, pp. 234-260, Aug. 2009, doi: 10.
1007/s00224-008-9099-9.

S. Sen and M. J. Freedman, “Commensal cuckoo: Secure group parti-
tioning for large-scale services,” SIGOPS Oper. Syst. Rev., vol. 46, no. 1,
p. 33, Feb. 2012, doi: 10.1145/2146382.2146389.

W. Jiaming. (Jan. 2019). Monoxide: A Solid Solution to Break-
ing the Blockchain Trilemma. [Blog] Notes of Decentralized Dig-
ital World. Accessed: Aug. 1, 2019. [Online]. Available: https:/
zhuanlan.zhihu.com/p/56065714

B-Wikipedia. (2019). Non-Specialized Hardware —Comparison.
[Online]. Available: https://en.bitcoin.it/wiki/Non-specialized_
hardware_comparison

I. S. Reed and G. Solomon, “‘Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300-304, Jun. 1960.

W. Lim. (2018). What are the Ethereum Disk Space
Needs? Accessed: Aug. 1, 2019. [Online]. Available: https:/
ethereum.stackexchange.com/questions/143/what-are-the-ethereum-
disk-space-needs?noredirect=1&Iq=1

H. Chen and Y. Wang, “SSChain: A full sharding protocol for pub-
lic blockchain without data migration overhead,” Pervasive Mobile
Comput., vol. 59, Oct. 2019, Art. no. 101055. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1574119218306370
M. Al-Bassam, A. Sonnino, and V. Buterin, “Fraud and data availability
proofs: Maximising light client security and scaling blockchains with
dishonest majorities,” CoRR, vol. abs/1809.09044, pp. 1-34, Sep. 2018.
[Online]. Available: http://arxiv.org/abs/1809.09044

GUANGSHENG YU received the B.Sc. and M.Sc.
degrees from the University of New South Wales,
Sydney, Australia, in 2015. He is currently pur-
suing the Ph.D. degree with the Global Big
Data Technologies Centre, Faculty of Engineer-
ing and Information Technology, University of
Technology, Sydney. His main research interests

< include blockchain consensus algorithms, scaling

» blockchains, privacy in blockchains, and the IoT
applications with blockchains.

XU WANG received the B.E. degree in computer
science from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2010, and
the Ph.D. degree from Beijing Information Science
and Technology University, Beijing, in 2019. His
main research interests include blockchain, cyber
security, complex networks, social networks, and
network dynamics.

KAN YU received the B.Sc. degree from the
Beijing University of Posts and Telecommuni-
cations, China, in 2005, the M.Sc. degree from
the Chalmers University of Technology, Sweden,
in 2010, and the Ph.D. degree from Malardalen
University, Sweden, in 2014. He was a Vis-
iting Scholar with The University of Sydney,
in 2015. He was with the Huawei Beijing Research
Centre and Huawei Australia, in 2007 and
2016, respectively. He is currently a Lecturer in

Internet-of-Things (IoT) with La Trobe University. His current research
interests include applying blockchain to the IoT, the industrial IoT, smart
cities, and smart agriculture.

VOLUME 8, 2020

http://dx.doi.org/10.1145/3240765.3240820
http://dx.doi.org/10.1007/s00224-008-9099-9
http://dx.doi.org/10.1007/s00224-008-9099-9
http://dx.doi.org/10.1145/2146382.2146389

G. Yu et al.: Survey: Sharding in Blockchains

IEEE Access

WEI NI (Senior Member, IEEE) received the B.E.
and Ph.D. degrees in electronic engineering from
Fudan University, Shanghai, China, in 2000 and
2005, respectively. He is currently a Team Leader
with CSIRO, Sydney, Australia, and an Adjunct
Professor with the University of Technology Syd-
ney. He was a Postdoctoral Research Fellow with
Shanghai Jiao Tong University, and the Deputy
Project Manager of the R&I Center, Bell Labs,
and Alcatel/Alcatel-Lucent, from 2005 to 2008.
He was also a Senior Researcher in devices research and development with
Nokia, from 2008 to 2009. His research interests include stochastic optimiza-
tion, game theory, and graph theory and their applications to network and
security.

J. ANDREW ZHANG (Senior Member, IEEE)
received the B.Sc. degree from Xi’an Jiaotong
University, China, in 1996, the M.Sc. degree from
the Nanjing University of Posts and Telecommu-
nications, China, in 1999, and the Ph.D. degree
from Australian National University, in 2004. He
is currently an Associate Professor with the School
of Electrical and Data Engineering, University of
Technology Sydney, Australia. He has published
over 150 articles in leading international journals
and conference proceedings. His research interests include areas of signal
processing for wireless communications and sensing, and autonomous vehic-
ular networks. He has won five best paper awards for his work.

A »

VOLUME 8, 2020

REN PING LIU (Senior Member, IEEE) has
supervised over 30 Ph.D. degree students. He is
currently a Professor with the School of Com-
puting and Communications, University of Tech-
nology Sydney, where he leads Network Security
Lab. He is also a member of the Global Big Data
Technologies Centre. Prior to that, he was a Prin-
cipal Scientist with CSIRO, where he led wireless
networking research activities. He specializes in
protocol design and modeling. He has delivered
networking solutions to a number of government agencies and industry
customers. He has over 100 research publications. His research interests
include Markov analysis and QoS scheduling in WLAN, VANET, the IoT,
LTE, 5G, SDN, and network security. He was the winner of the Australian
Engineering Innovation Award and the CSIRO Chairman Medal.

14181

	INTRODUCTION
	OUR CONTRIBUTIONS
	RELATED WORK
	PAPER OUTLINE

	SHARDING REVIEW AND SURVEY METHODOLOGY
	OVERVIEW OF THE SHARDING TECHNOLOGY
	SURVEY METHODOLOGY

	DESCRIPTION
	INTRA-CONSENSUS PROTOCOL
	NAKAMOTO-BASED-MONOXIDE - CHU-KO-NU MINING
	BFT-BASED-ELASTICO
	BFT-BASED-CHAINSPACE
	BFT-BASED-OMNILEDGER
	BFT-BASED-RAPIDCHAIN
	BFT-BASED POS-ETHEREUM 2.0

	ATOMICITY OF CROSS-SHARD
	MONOXIDE-RELAY TRANSACTIONS
	ELASTICO-NO CROSS-SHARD TRANSACTIONS
	OMNILEDGER-ATOMIX PROTOCOL
	RAPIDCHAIN-THREE-WAY CONFIRMATION
	ETHEREUM 2.0-USING RECEIPTS
	CHAINSPACE-THE INTER-PART OF S-BAC

	GENERAL IMPROVEMENTS
	REDUCING TRANSACTION LATENCY
	INTER-COMMUNICATION PROTOCOL
	SHARDS LEDGER PRUNING
	DECENTRALIZED BOOTSTRAPPING
	SECURING THE EPOCH RECONFIGURATION
	SHARDED SMART CONTRACT

	EVALUATION
	THE UPPER-BOUND OF THROUGHPUT
	MONOXIDE
	ELASTICO
	OMNILEDGER
	RAPIDCHAIN
	ETHEREUM 2.0

	COMPARISON AND DISCUSSION
	FUTURE TREND FOR REDUCING THE OVERHEAD
	FUTURE TREND FOR STRENGTHENING THE SECURITY AND ATOMICITY

	CONCLUSION
	REFERENCES
	Biographies
	GUANGSHENG YU
	XU WANG
	KAN YU
	WEI NI
	J. ANDREW ZHANG
	REN PING LIU

