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ABSTRACT Effective emotion recognition algorithms can help machines better understand people and
promote the development of human-computer interaction applications. In recent years, many research efforts
have used benchmark expression data to train deep neural network models to achieve state-of-art results.
These high-accuracy models usually contain hundreds of layers, so they require complex calculations and
may not be suitable for real-world scenarios. This paper proposes a lightweight emotion recognition (LER)
model to handle the latency problem under natural conditions. The three main contributions of this paper are
as follows. 1) The LER model incorporates a densely connected convolution layer and model compression
techniques into a framework that eliminates redundancy parameters. 2) Multichannel input is introduced in
our work to preprocess the image data, which improves the learning ability of the model. 3) Experiments
show that the proposed LER model has better performance on the FER2013 and FERPLUS datasets
compared with other lightweight models. Compared with the VGG13 used in previous work, the LERmodel
achieves higher accuracy and reduces the number of parameters by 97 times. Finally, the FERFIN dataset is
created, which had fewer noise data and more accurate labels than the FERPLUS dataset.

INDEX TERMS Emotion recognition, convolutional neural network, lightweight.

I. INTRODUCTION
Emotion is the cognitive experience that human beings pro-
duce under intense psychological activities. It provides cues
of potential affection by observing facial expressions when
people communicate with each other [1]. Building a system
that can automatically recognize emotion has tremendous
significance and can be applied to many scenarios such as
pain detection, patient care, driver alert systems and detection
of false statements [2].

The fact that facial expression can be produced by elec-
trical stimulation suggests that characterizing features in the
face is the most effective way to analyze emotions [3].
The first research on emotion recognition was published
in 1978 and tracked the position of the key points in a con-
tinuous set of face images [4]. Additionally, the facial motion
coding system (FACS) which measured human facial move-
ments by defining facial action units (AUs) was published [5].
The FACS the initial method that attempted to describe
all states of the face. However, unadvanced preprocessing
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algorithms and low computational power limited its devel-
opment. In 2000, Kanade and Cohn published a CK dataset,
which contained hundreds of face sequences with variable
postures and overcame this situation [6].

Early research focused on extracting handcrafted features,
which involved prior knowledge from 2D images and can
roughly be divided into geometry and appearance [7]. Geo-
metric features are good at characterizing primary expres-
sions by studying the correlation between the coordinates
of facial landmarks. For example, Pantic et al. [8] detected
limited facial landmarks with particle filtering and calculated
the distance between them to measure the AUs. Compara-
tively, appearance features are good at finding subtle color
and texture changes in the face by computing themathematics
of the intensity value of pixels [9]. A typical example is the
Gabor filter which is a linear filter used for texture analysis.
Bartlett et al. [10] convolved the input data with Gabor filters
to obtain frequency and orientation representations for basic
emotion recognition.

2D images are computationally convenient for extracting
features, while 3D images contain more intrinsic informa-
tion [11]. To supplement the depth information on the gray
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or RGB data, researchers focused on new modalities such as
3D data and heat figures. Yin et al. published a BU-3DFE
database that contains 2,500 3D facial expressions of 100 sub-
jects [12]. They claim that 3D models can handle large head
rotations, subtle skin movements, and light changes more
stably than 2D models. However, modeling of stereoscopic
head portraits requires reliable software to achieve certain
photorealistic effects including intensive numeric calcula-
tion [2]. Regarding the heat figure, the difficulty of interpre-
tation makes it hard to extract facial information and often
has to combine with the RGB dataset [11].

The primary challenge in methods utilizing hand-craft
features is performance decline in naturalistic environ-
ments [13], which is caused by head pose variations, illu-
mination, and occlusions. In contrast, data-driven methods
have benefited from the development of discrete graphics and
big data technologies. Recently, many excellent works have
employed a machine learning (ML) algorithm to fulfill end-
to-end tasks [14], [15]. Typical examples are SVMs [16], [17]
and random forests [18], which are supervised algorithms
and k-nearest neighbors [19], which reduce the dimensions
of the input and is an unsupervised algorithm. Furthermore,
as a branch of ML, deep learning, especially convolutional
neural networks (CNN), led the majority task, such as classi-
fication and segmentation in the computer vision community.
CNN is inspired by biological processes and uses relatively
little preprocessing compared to other image classification
algorithms. In addition, the shared weight architecture and
translation invariance characteristics make it specialized in
image recognition applications [20].

Although many emotion recognition methods have incor-
porated CNNs into their framework, the lack of labeled data
and computational inefficiency are the two main problems to
be considered [2]. In applications such as fatigue detection
in driver assistant systems, real-time data processing is an
inevitable requirement. Therefore, large-scale CNN could be
useless in such a scenario. To take advantage of the high
generalization the performance of the CNN and to apply a
well-established model in practice, we demonstrate how this
tradeoff can be realized by presenting a strategy based on
a dense convolutional neural network that not only elim-
inates millions of parameters, but also achieves accuracy
comparable to a large-scale CNN. DenseNet was designed by
Huang et al. [21] and achieved state-of-art results in many
benchmark image classification datasets. Of note, DenseNet
can considerably decreased trainable parameters by feature
reuse and a compression feature map produced by convolu-
tional layers [22].

Inspired by their work, we propose a lightweight emotion
recognition (LER) model that incorporats a densely con-
nected convolution layer and model compression techniques
into a framework that eliminates redundancy parameters.
After preprocessing the image data with the multichannel
input method, the LER model can achieve higher accu-
racy compared to previous work and reduce the parameters
by 97 times. Finally, according to the distribution of the

FER2013 and FERPLUS datasets, we created the FERFIN
dataset by removing noise data and combining two similar
categories. Details are illustrated in section 3.

II. RELATED WORK
A complete emotion recognition system must have three
steps: face detection, face alignment and emotion recognition.
The strategy used in each step is different, depending on the
modality of the data. There are 2D, 3D and thermal data
formations employed in current research community. The
main focus of the present study is 2D images, since 3D mod-
els require complex computations and thermal images have
many limitations, such as a lack of geometric information.

A. FACE DETECTION
The purpose of face detection is to identify faces in images
and mark them for subsequent procedures. The marking
method can be divided into two categories: a detection
method that aims for the bounding box of the face and a
segmentation method that specifies the outline with a binary
label of the pixel.

Viola and Jones proposed that a cascade classifier applies
over Haar-like features selected by AdaBoost and is still
one of the most prevalent methods [23]. A Haar-like feature
considers adjacent rectangular regions at a specific location
and can be calculated in constant time for any size image.
Although it has high efficiency, it cannot address occlu-
sion and large posture variations. The linear support vector
machine (SVM) to detect humans with histograms of gra-
dients (HOG) is also a typical method [24]. The primary
step divides an image into small connected regions and then
obtain the distribution of intensity gradients or edge direc-
tions. Because the HOG descriptor operates on local cells, its
invariance to geometry makes it suitable for human detection.
Osadchy built a convolutional neural network model to map
input images to points on the manifold to integrate face
detection and pose estimation together. If sufficient data are
available, it achieves remarkable accuracy on a variety of pose
images [25].

B. FACE ALIGNMENT
The purpose of face alignment is to solve cases when a face
is not frontal which can lead to inaccurate recognition results.
Themainstream approach finds the facial landmarks based on
the located face and then carries out rotation or deformation.
The landmark numbers vary depending on how many sample
points, which are used around eyes, nose, mouth and face
contour.

Active appearance models (AAM) are the extension of
active shape models (ASM) and attempt to construct a sta-
tistical model by learning the correlation between estima-
tion of appearance and the target image [26]. The matching
process is optimized by the least squares algorithm which
is a standard regression analysis method. In addition, AAM
takes advantage of extra texture information other than shape
features. Matthias and Juergen proposed a real-time method
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using conditional regression forests to learn intensity fea-
tures from facial image patches [27]. A conditional model
is a machine learning framework that augments learning
with declarative constraints that incorporate prior expressive
knowledge. Together with random forests which can alle-
viate the overfitting problem, they can effectively improve
accuracy. A recently suggestedmethod utilizing the ensemble
of regression trees optimized by gradient boosting to locate
the facial landmarks processes pictures at the millisecond-
level [28]. In essence, the regression tree is a decision tree
with continuous target values that can achieve better predic-
tive performance by ensemble learning techniques.

C. EMOTION RECOGNITION
Emotion recognition strategies depend on two factors: the
definition of facial expressions and extracting features that
can be divided into handcrafted and learned.

1) DEFINITION OF FACIAL EXPRESSIONS
There are two methods for defining facial expressions, which
are continuous and discrete. The continuous definition relies
on FACS, where AU represents the contraction of one or
more muscles in the face [5]. In this setting, researchers have
attempted to detect the four phases of AU, which are neutral,
onset, apex and offset. These four phases have time coherence
and can represent the marking process from start to finish
of AUs.

The discrete definition divides the facial expression space
and generates the most basic expression. Early methods only
identified six basic expressions: disgust, fear, happiness, sur-
prise, sadness, and anger. Later, to find a more refined classi-
fication, researchers added more basic expressions. Discrete
definitions are widely used in expression recognition research
due to their universality and comprehensibility.

2) HAND-CRAFTED FEATURES
Geometry and appearance are the two main classes under the
categories. Geometric features measure the distance, curva-
ture, and deformation based on the facial reference points
found in the image. Appearance features capture specific
information by analyzing the relations of pixels.

Optical flow is the pattern of apparent motion and focuses
on the distribution of velocities of movement of brightness
patterns in an image. Some works used optical flow to detect
AUs and recognized corresponding primary emotions. While
AUs are robust to background changes, they are susceptible
to intense light. Pantic and Patras [8] proposed a particle
filter to track the position of 15 feature points of the face,
and automatically recognize the action units (AUs) in the
face contour according to the change in distance. Sandbach
and Zafeiriou [29] proposed a local normal binary mode to
recognize expressions by calculating the 2D-characterized
local binary pattern (LBP) features extracted from the 3D
image information.

Dhall et al. [30] used PHOG (pyramid of histogram of gra-
dient) features and LPQ (local phase quantization) features to

describe facial appearance and shape. The PHOG feature is
an improvement of the HOG feature. It statistically analyzes
the edge image direction gradient histogram at different levels
leading to strong antinoise performance and certain anti-
rotation ability, but is subject to layering rules and lacks scale
adaptability. Littlewor [10] usedGabor filters to extract image
features that take advantage of Gabor wavelet characteristics
in processing texture and discrimination features and illumi-
nation invariance and posture invariance, but the disadvan-
tage is that the calculations are complex and require time to
go through Gaussian kernel function modulation and other
steps.

3) LEARNED FEATURES
Handcrafted features involve a large amount of prior knowl-
edge and are difficult to modify, so researchers have turned
their attention to end-to-end learning methods. These meth-
ods use a large amount of labeling data for supervised learn-
ing, mainly based on convolutional neural networks, which
are good at processing image data [31], [32] and utilizing
the characteristics of local receptive fields and are similar
to the way that human eyes observe things. Recursive neu-
ral networks consider additional timing information whose
variant version can retain important information and abandon
unwanted information [33], [34].

Because of the advancement of big data, the aforemen-
tioned method with strong data dependence has occupied
most of the visual field problems, and researchers have con-
tinued to expand the depth and width of the network architec-
ture to obtain better results. However, there are two obvious
shortcomings. One is that the upper limit of neural network
performance depends on the reliability of the labeler. If the
label is wrong, then the model that learns from it cannot
achieve high accuracy. Second, large-scale networks need
thousands of trainable parameters which means that it is not
feasible to apply it to practical applications.

In summary, the handcrafted features have the advan-
tage of low-complexity and fast calculation speed, but they
require prior knowledge and have poor generalization ability.
Learned features referring to the deep-learning method can
handle large-scale variance, but as the model architecture
increases, the flops increase exponentially. We tried to seek
an approach that can address head and background diver-
sity means while having computational efficiency. Therefore,
we adopted the dense convolutional neural networks that
employ many parameter compression layers to reduce the
model complexity and still in a data-driven way. Details are
illustrated in the next section.

III. PROPOSED EMOTION RECOGNITION
FRAMEWORK
In this section, we briefly introduce the face detec-
tion and face alignment pipeline and focus on illustrat-
ing our DenseNet model with different hyperparameter
deployment.
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FIGURE 1. Face detection based on HOG features.

FIGURE 2. Face alignment based on landmarks.

A. FACE DETECTION AND ALIGNMENT
In the face detection part, we used the SVM method applied
over HOG features [24] which constructed feature vectors by
calculating the histograms of gradient of the local regions
of the image and then put them into the classifier. If the
result was positive, it returned the position of the detection
area which is the coordinates of the upper left corner of the
bounding box (Xl,Yl) and the coordinates of the lower right
corner (Xr ,Yr ). This method can achieve better balances in
terms of accuracy and speed compared with other methods
and is more suitable for online identification applications.
Details of computing the gradients of pixels in the image
are shown in Eq.1, where m and θ are the magnitude and
direction, respectively.

fx(x, y) = f (x + 1, y)− f (x − 1, y)

fy(x, y) = f (x, y+ 1)− f (x, y− 1)

m(x, y) =
√
fx(x, y)2 + fy(x, y)2

θ (x, y) = arctan(fx(x, y)/fy(x, y)) (1)

In the face aliment part, we used the millisecond ensemble
method proposed in [28] to train several regression trees using
gradient boosting, and then regressed the 68 landmark points
include eyes contour, bridge of the nose and mouth contour,

by the ensemble of decision trees. Figure.1 and Figure.2 illus-
trate the face detection and alignment process in the proposed
system.

B. LIGHTWEIGHT EMOTION RECOGNITION MODEL
DenseNet is a unique convolutional neural network(CNN)
architecture that maximally reduces trainable parameters
through an intensive connected pattern and many parameter
reduction layers.

Unlike the depth expansion CNN architecture ResNet [35],
which employs the identity function to extend the effective
optimized distance and the width expansion CNN architec-
ture Inception [36], which uses different sizes of convolu-
tion filters to perform feature extraction on different scales,
DenseNet employs heavy feature reuse to allow any former
layers’ feature maps directly link to subsequent layers as
shown in Figure.3.

In essence, DenseNet has two key hyperparameters: the
growth rate k and dense block number n. The growth rate
specifies the accumulated speed of the feature maps product
by convolutional layers. For example, if the input data with
m channels go through l convolutional layers, then the lth
layer has m + k(l − 1) input feature maps. To conveniently
understand various DenseNet architectures and adjust the
hyperparameter flexibly, DenseNet sets another hyperparam-
eter dense block.

In addition, the described convolutional layer includes
not only the convolution calculation of the filtering window
but also the activation function ReLU and batch normaliza-
tion [37]. ReLU is a typical nonlinear activation function that
maps the input signal into the feature space with the formula
f(x)=max(0,x). Compared with the traditional sigmoid acti-
vation function, ReLU uses unilateral suppression mapping,
which is more similar to the biological signal transmission
process and has a broader excitation boundary and also has
a significant effect in overcoming the disappearing gradient
problem.

Additionally, ReLU deliberately shields a large number
of input signals, which are reflected in the negative half-
axis of the X-axis. This sparse activation is more suitable for
extracting the sparse image features existing in the manifold
so that it improves the precision and efficiency of learning.
The purpose of batch normalization is to ensure that the
input of each layer has zero mean and unit variance, which
is originally derived from the initialization of the input layer

FIGURE 3. Architecture of DenseNet employed in emotion recognition.
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and belongs to the network training skills, which speeds up
the training of the network and adds a certain degree of reg-
ularization. The generalized calculation in the convolutional
layer is shown in Eq.2.

f1(xi) = max(0, xi),

f2(xi) = conv3∗3(fi(xi)),

f3(xi) =
f2(xi)− E[f2(xi)]
√
Var[f2(xi)]

,

Foutput = f3([x1, x2, x3, . . . , xl−1]) (2)

Rather than the middle of the dense block, the pooling
layer sits between them. Along with the bottleneck and com-
pression layer, they are called the transition layer. All the
convolutional layer pad zero pixels around the input tensor
before the convolution function so that the feature map sizes
are consistent, as shown in Eq.3, where w and h are the width
and height of the feature maps, F indicates the filter’s size,
s indicates the filter moving stride and p represents the zero
padding pixels.

Size(w,h) =
w(h)− F + 2p

s
+ 1 (3)

In a typical CNN architecture, the pooling layer is followed
by every convolution layer to gradually subsample the tensor
of weights. However, in the DenseNet architecture, the pool-
ing layer sits between two dense blocks that fully utilize the
feature extraction function of the convolution layer.

Specifically, we took the 2 × 2 average pooling rather
than 2 × 2 max pooling as it is more suitable for the con-
volution structure by enforcing correspondences between
feature maps and categories. The max pooling discards
three-quarters of the information while average pooling con-
siders all information. In addition, average pooling sums the
spatial information; thus, it is more robust to spatial transla-
tions of the input. Themean normalization is actually a gener-
alization function that can prevent the dense connection from
falling into the overfitting problem. After average pooling,
the feature map size is shown in Eq.4.

Size(w,h) =
w(h)− F

s
+ 1 (4)

The idea of the bottleneck layer was first suggested in
Lin’s work [38], and they proposed a micro neural network
with 1× 1 convolution to enhance model discriminability for
local patches. Furthermore, 1 × 1 convolution can compress
the trainable parameters by setting fewer convolutional filters
to reduce the model size.

The compression layer further improves the model com-
pactness. As the final layer in the transition layer, hyperpa-
rameter θ decreases the feature maps generated by the dense
block, where 0 ≤ θ ≤ 1 referrs to the compression factor.

C. THREE MINI-SIZE DENSENETS
As mentioned above, the DenseNet has some practical means
for reducing the parameters. The growth rate and the number

of convolutional layers in the dense block are the key ele-
ments that affect the size of the network model. Therefore,
we designed three mini-sizes DenseNets to train a real-time
emotion classifier with acceptable accuracy. The architecture
details are shown in Table.1.

DenseNet-1 has three dense blocks with the a growth
rate set to 12, and each block has 12 convolutional layers.
DenseNet-2 has four dense blocks with the growth rate set to
16, and each block has 12 convolutional layers. DenseNet-3
has four dense blocks with the growth rate set to 12, and
each block has 6, 12, 24, 16 convolutional layers separately
inspired by the original work [21].

For the optimization algorithm, we used the Nesterov
momentum optimization method [39], which based on the
improvement of momentum. The momentum method is
an improvement for the local minimum point oscillation
problem in the optimization space for stochastic gradient
descent.

It adds the weighted update vector generated by the previ-
ous iteration to the current update vector, as shown in Eq.5.

vt = βvt−1 + α∇θL(θ )

θ = θ − vt (5)

This algorithm increases the momentum in the same direc-
tion as the gradient update while reducing the vibration in
the direction of the gradient change, thus achieving a faster
convergence rate. However, blindly following the gradient
acceleration update also brings instability. The Nesterov
momentum gives the approximate gradient trend information
after the optimization function by calculating θ − βv(t − 1).
If the gradient has an increasing trend, the update rate is
speeded up. If the gradient has a decreasing trend, the update
speed rate is slowed down, as shown in Eq.6. In essence,
the second-order information of the loss function is intro-
duced so that the optimization function has a predictive func-
tion in the optimization space and faster and more stable
convergence.

vt = βvt−1 + α∇θL(θ − βvt−1)

θ = θ − vt (6)

IV. EXPRIMENT
In this section, we briefly introduce our experiment platform
and specify our training dataset and results.

A. EXPERIMENT PLATFORM
Our model training processing was performed on a NVIDIA
Titan X graphics card with 3,584 CUDA units, 12GB of
GDDR5X memory, a core frequency of 1,531MHz, and
the single-precision floating-point operation is 7.0 TFlops.
We designed our algorithm based on Python3.6 and the
TFlearn deep learning toolkit.

B. DATASET
The FER2013 dataset initially intercepted facial expression
images from videos collected by the Kaggle team from the

38532 VOLUME 8, 2020



G. Zhao et al.: Expression Recognition Method Based on a Lightweight CNN

TABLE 1. DenseNet architectures for FER2013, FERPLUS and FERFIN. The growth rate for DenseNet-1 and DenseNet-3 is k = 12, for DenseNet-2 is k = 16.

internet in 2013, which contains 35,887 gray images of
48 × 48 pixels, and used it as a challenge [40]. At the
first publication, the dataset labels were divided into 7 cat-
egories, including 4,953 cases of ‘‘anger’’, 547 cases of
‘‘disgust’’, 5,121 cases of ‘‘fear’’, 8,989 cases of ‘‘happy’’,
6,077 cases of ‘‘sadness’’, 4,002 cases of surprise’’ and
‘‘neutral’’ 6,198 cases.

Howerver, the FER2013 labeling was later proven to be
inaccurate due to the low performance of human labelers [41].
In this case, Barsoum et al. [42] used the crowdsourcing
method to improve the accuracy of the labeler and added
three categories of contempt, unknown and not a face. The
improved dataset has 12,906 cases of ‘‘neutral’’, 9,355 cases
of ‘‘happy’’, 4,462 cases of ‘‘surprise’’, 4,371 cases of ‘‘sad-
ness’’, 3,111 cases of ‘‘anger’’, 248 cases of ‘‘disgust’’,
819 cases of ‘‘fear’’ 216 cases of ‘‘contempt’’, 222 cases of
‘‘unknown’’, and 177 cases of ‘‘not a face’’.

After careful observation, we found that ‘‘not a face’’ and
‘‘unknown’’ was quite rare compared to other classes and
they may be noise in training the neural network. There-
fore, we modified the dataset to remove these two classes.
In addition, ‘‘contempt’’ and ‘‘disgust’’ classes only had
248 cases and 216 cases respectively. In fact, the sample
space similarity between the two types was very high, and
they easily interfered with each other. Therefore, the second
modification we made was to combine these two classes.
The final dataset was called FERFIN which, after the major-
ity vote, contained 12,858 cases of ‘‘neutral’’, 9,354 cases
of ‘‘happy’’, 4,462 cases of ‘‘surprised’’, 4,351 cases of
‘‘sad’’, 3,082 cases of ‘‘angry’’, 575 cases of ‘‘disgust’’
and 816 cases of ‘‘fear’’. A total of 35,498 cases elimi-
nated 390 noise cases compared to the original FER2013
dataset.

C. RESULTS
As the statement in section 3, we employed the three
DenseNet architecture training on the FER2013, FERPLUS
and FERFIN datasets. The learning curves of the proposed
three models on three datasets are shown in Figure.4. For
discrete situations, the hyperparameter setting is slightly dif-
ferent. First, a 7-softmax layer or a 10-softmax layer followed
after the final fully-connected layer depends on the class
number of the dataset.

For other hyperparameters, the Nesterov momentum learn-
ing rate ε was set to 0.1, the momentum parameter α was 0.1,
and the attenuation step was 15,000. The compression factor
and the bottleneck reduction rate were set to 0.5. In terms
of training strategy, we used the standard 10-crop data aug-
mentation, which added four rows or columns of zero values
around each image, and then intercepted the top left, top right,
bottom left, bottom right and middle five tiles. Then, they
were flipped left and right to double this value to ten. Batch
normalization as an accepted method, was also used in the
training process to ensure that the input of each layer had zero
mean and unit variance.

On the FER2013 dataset, DenseNet-3 achieved validation
accuracy of 71.73%, which surpassed the first team result in
the challenge of 71.16% [41]. We believed that DenseNet-3
could achieve this result without using any ensemble method
and a small number of parameters for two reasons. First,
the feature reuse method increases the input size of subse-
quent convolutional layers, and makes the subsequent lay-
ers learnable while accepting the previous knowledge of
the network. Second, dense connections and the setting of
the bottleneck layer significantly reduces the parameters
of the network, forcing it to extract more compact and dis-
criminating features.
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FIGURE 4. Learning curve on the FER2013, FERPLUS, and FERFIN dataset.

On the FERPLUS dataset, DenseNet-2 achieved a val-
idation accuracy of 85.58%. It was 0.69% beyond the

TABLE 2. Experiment results.

result of Barsoum’s work [42], and DenseNet-2 only had
41 times fewer parameters than VGG13 employed. The
number increased to 92 times when the DenseNet-1 archi-
tecture was employed losing 0.52% accuracy. Large-scale
convolutional neural networks can achieve state-of-art results
with a large amount of labeled data, but in fact, every addi-
tional small order of accuracy after reaching a particular
value requires more network parameters. DenseNet mini-
mizes the redundant parameters in the convolutional network
and maximizes the representation ability of retained param-
eters. Therefore, our model can achieve a better balance in
terms of accuracy and algorithm complexity. The feature map
variation is illustrated in Figure.5.

On the FERFIN dataset, the same DenseNet-2 achieves a
validation accuracy of 85.89% which supports our assump-
tion of noise classes. Because the categories within the
database are more distinct, DenseNet learned more robust
representation features. The best results on each datasets of
themodel are presented in Table 2. The results of five trials on
the FERFIN dataset for the three models are listed in Table 6.

D. COMPARISON WITH STATE-OF-THE-ART
We compared our proposed DenseNet model with other state-
of-the-art methodswith the original workwhich published the
FERPLUS dataset in the following aspects: training method,
model, validation accuracy and optimization function.

The original work adopted four different schemes to pro-
cess the data with ten labels that determine the learning effi-
ciency of the neural network from data. Since the aim was a
tradeoff between accuracy and real-time capability, this paper
only used the majority vote, which took the most frequent tag
as the final label, to define the loss function. Comparisons
with excellent methods were conducted to assess the advan-
tages and disadvantages of our methods.

Specifically, the original work employed VGG13 with ten
convolution layers and the dropout technique as the training
model. According to the description, the VGG13 network has
a total of 8.7 million trainable parameters and achieves an

FIGURE 5. The level of features abstraction from low to high. From left to right represent the feature maps of (a) the first convolution layer,
(b) DenseBlock1, (c) DenseBlock2, (d) DenseBlock3. All feature maps have 16 channels.
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FIGURE 6. Learning curve comparison diagram, the best results are
VGG19 and ResNet18 which are large-scale networks. The third blue curve
is the proposed DenseNet, whose parameter is only 1/113 of VGG19.

average validation accuracy of 83.85%. The hyperparameter
settings are shown in Table.3.

Comparatively, the three proposed DenseNet models
require 0.09 million, 0.21 million and 0.17 million train-
able parameters respectively. DenseNet-2 achieved the best
average validation accuracy of 85.58%, and DenseNet-1
contains only 0.09 million parameters with a decrease
in 0.52% accuracy.The learning curves of all models in the
validation set are shown in Figure 4, and Figure 8 shows the
degree of overfitting on the FERFIN dataset.

Finally, the original work utilized the standard gradient
descent algorithm to optimize the neural network while the
present paper used the Nesterov momentum. The Nesterov
outperformed gradient descent, but was more suitable for
DenseNet architecture with dense connections.

In addition to the VGG13 networks used by
Barsoum et al., we also tested the performance of other
lightweight networks on FERPLUS datasets, such as
SqueezeNet [43], MobileNet [44] and ShuffleNet [45].
Additionally, we utilized large-scale CNNs, such as ResNet
and VGG19. The results suggested that the dense emotion

TABLE 3. Hyperparameter comparison between VGG13 of Barsoum’s
work [42] and proposed DenseNets.

TABLE 4. FLOPS represents the number of addition and multiplication
operations required by the model to perform an input and output. CPU
time represents the CPU run time required for a single input and output.

neural network proposed in this paper achieved the best trade-
off between accuracy and latency. Figure.6 and Table.4 show
the learning curves and related parameters of each model.

E. DISCUSSION
As shown in Table.2 and Figure.7, the accuracy of our models
is comparatively satisfactory in the corresponding datasets.
We assumed that the success of the current models may be
attributed to the following factors. First, the convolutional
neural network is good at analyzing image data because the
local receptive fields share the knowledge. Second, the unique
architecture of the DenseNet and compressed layers mini-
mize the parameters in the model. Third, correct and pure
labeling datamake the convergence process easily performed.
Still, our method has shortcomings. From Table 5, it can be
found that the model has a poor recognition accuracy for the

FIGURE 7. Confusion matrix of DenseNet-2 on the FERFIN dataset, the labels are in
order of neutral, happiness, surprise, sadness, anger, disgust, fear.
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TABLE 5. Precision, Recall, and F1 score of DenseNet-2 on FERFIN dataset.

FIGURE 8. Learning curve of three DenseNet models on both FERFIN training set and testing set.

TABLE 6. Testing accuracy from training three DenseNet models on FERFIN.

‘‘Sad’’, ‘‘Angry’’, ‘‘Disgust’’ and ‘‘Fear’’ classes. This may
be due to the small number of samples and the large intra-
class variation. We will try to solve this problem in the future.

Deep learning methods have disadvantages that force
researchers to pursue large labeling datasets and build many
very large models so that they can achieve state-of-art results
in competitions. Due to the weak learning ability of a shallow
convolutional network, small-sized and efficient architectures
such as DenseNet deserve more attention and investigation.
Therefore, the advantage of automatic and high-accuracy
deep learning methods can apply to real-time applications.

V. CONCLUSION AND FEATURE WORK
To directly recognize emotion from the input image in real-
time with high accuracy, this work proposed a lightweight
emotion recognition (LER) model that utilizes a densely
connected convolution layer and model compression tech-
niques. In addition, to improve accuracy, this work utilized
a multichannel input method to preprocess the gray images
and created a more concise dataset FERFIN that was adjusted
from the FERPLUS dataset.

In the original FER2013 dataset, our DenseNet-3 achieved
71.73% accuracy in the validation set which is 0.57% beyond
the first team’s result. In the crowd-sourced labeled dataset
FERPLUS, our DenseNet-2 achieved 85.58% accuracy in
the validation set. Under the same loss function setting our
model was 0.69% improved compared with the result in Bar-
soum’s work [42], and there were 41 time fewer parameters in
DenseNet-3 than VGG13. After removing the noise date and
combining similar classes, we created the FERFIN dataset.
In this dataset, our DenseNet-2 model with 0.21 million
parameters archived 85.89% accuracy in the validation set.

Many researchers believe that dynamic modality can
extract more useful features to recognize spontaneous facial

expression which is the next inevitable topic in emotion
recognition. In the future, we plan to detect spontaneous emo-
tion by considering temporal information while still utilizing
the lightweight algorithm for real-time application.
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