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ABSTRACT Electrocardiogram (ECG) data recorded by Holter monitors are extremely hard to analyze
manually. Therefore, it is necessary to automatically analyze and categorize each heartbeat using a computer-
aid method. Because convolutional neural networks (CNNs) can classify ECG signals automatically without
trivial manual feature extractions, they have received extensive attention. However, it is anticipated that
improving the existing CNN classifiers might provide better overall accuracy, sensitivity, positive predictiv-
ity, etc. In this study, we proposed a CNN based ECG heartbeat classification method. Based on theMIT-BIH
arrhythmia database, our proposed method achieved a sensitivity of 99.2% and positive predictivity of 99.4%
in VEB detection; a sensitivity of 97.5% and positive predictivity of 99.1% in SVEB detection; and an overall
accuracy of 99.43%. Our proposed system can be directly implemented on wearable devices to monitor long-
term ECG data.

INDEX TERMS Heartbeats, Holter, convolutional neural networks, MIT-BIH arrhythmia database, electro-
cardiogram signals.

I. INTRODUCTION
In cases with suspected arrhythmias, doctors often ask the
subjects to wear a Holter to continuously record ECG data for
24 hours or longer. Because the amount of ECG data recorded
by the Holter is extremely large, it is necessary to analyze the
recordings using a computer and categorize the type of each
heartbeat automatically [1].

According to the Association for the Advancement of
Medical Instrumentation (AAMI) [2], non-life-threatening
arrhythmia signals can be divided into five categories: non-
ectopic beat (N), supra ventricular ectopic beat (SVEB,
S), ventricular ectopic beat (VEB, V), fusion (F), and
unknown (Q). In this paper, we focus on classifying these
5 types of arrhythmia heartbeat.

With the wide use of convolutional neural networks (CNN)
in many fields [8]–[10], CNN have also become a popular
option to automatically classify ECG signals recorded by the
Holter [3]–[7]. Compared with traditional methods, the CNN
classifier can directly input heartbeats without additional fea-
ture extraction and selection; it also demonstrates competi-
tiveness in classification accuracy [3], [11], [16].

Many approaches on arrhythmia heartbeat classification
with CNN have been proposed. Kiranyaz et al. [3] improved
the two-dimensional (2-D) CNN used for images, and first
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proposed a 1-D CNN for the automatic classification of
heartbeats. Acharya et al. [4] balanced the five types of
heartbeats by oversampling, and proposed a nine-layer CNN
structure. Zhai et al. [5] coupled two adjacent sets of dual
ECG heartbeat data to generate a dual heartbeat coupling
matrix, which was used as an input sample and subse-
quently sent to a seven-layer 2-D CNN for classification.
Xiang et al. [6] added a manual extraction of RR inter-
val features to facilitate training and proposed a two-level
CNN structure. Sellami and Hwang [7] proposed a robust
deep convolutional neural network with batch-weighted loss.

The results of the researches mentioned above were
remarkable. However, none of them fully addressed high
accuracy, high sensitivity, high specificity and high positive
predictive value of classification at the same time. Conse-
quently, we intend to further optimize the CNN heartbeat
classifier in this study.

II. MATERIALS
A. DATABASE
Data used in this study were obtained from the MIT-BIH
Arrhythmia Database [14], [15]. The database contains
48 sets of dual-channel ECG data obtained from 47 subjects,
and the data have a sampling rate of 360 Hz. Each set of data
has a length of approximately 30 min and contains recordings
from two leads: one is MLII and the other is one of V1, V2,
V4, or V5. The position of each R-peak was marked and the
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TABLE 1. Summary of the 5 types of heartbeats.

FIGURE 1. Schematic diagram of the convolution layer connection of a
CNN.

corresponding category was manually annotated by two or
more cardiovascular disease experts. In our experiments, only
data from the MLII lead were used.

According to the R-peaks information available in the
database, we segmented the signal into heartbeats centered
about each R-peak and noted their given corresponding types.
Each heartbeat consists of 300 sample points (150 samples
before the R-peak and 149 samples after the peak). In light
of the AAMI recommendations, we extracted 107679 ECG
signal segments of five types: non-ectopic, supra ventricular
ectopic, ventricular ectopic, fusion, and unknown, as shown
in Table 1.

B. CONVOLUTIONAL NEURAL NETWORKS
Traditional neural networks use matrix multiplication to
establish a connection between the input and output, meaning
that each output unit interacts with each input unit, i.e., the
so-called fully connected network. As the number of neurons
increase, there will be more calculations involved.

An important feature of the CNNs is the introduction
of convolutional layers [10], [17]. The convolutional layer
replaces the general matrix multiplication operation by con-
voluting with the input using the convolution kernel. Figure 1
shows a convolutional layer connection with a convolution
kernel of size three. As shown in the figure, each neuron
in convolutional layer l is only connected to three neurons
of layer l-1 with the same set of three weight values, that
is, the so-called parameter sharing. Because the size of the
convolution kernel is significantly smaller than the input size,
it is used to perform sparse interactions. The characteristics of
sparse interaction and parameter sharing reduce the number

FIGURE 2. Schematic diagram of pooling layer connection of a
convolutional neural network.

FIGURE 3. Main procedures of ECG heartbeats classification.

of parameters of the CNN and computational complexity of
the neural network considerably.

In addition, the CNN typically introduces a pooling layer,
also called a subsampling layer, to further reduce the number
of computations. The pooling layer uses the overall charac-
teristics of the adjacent area of an input location to represent
the characteristics of the area. For instance, the maximum
pooling uses the maximum value in the adjacent area as the
output, and the average pooling uses the average value in
the adjacent area as the output. Figure 2 shows a pooled
layer connection with a maximum pooling of two steps.
Because pooling combines the feedbacks of all adjacent units,
the number of units after pooling are reduced significantly.
Therefore, the calculation efficiency is increased.

III. PROPOSED METHOD
In this paper, all the ECG signals are retrieved fromMIT-BIH
arrhythmia database as wementioned before. Our ECG heart-
beat classifier is composed of two main steps: preprocessing
and classification. Overall steps are shown in figure 3:

A. PREPROCESSING
The raw signal from MIT-BIH is corrupted by noise such as
myoelectric interference, power line interference and base-
line drift. To remove those noise, the raw ECG signal is
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FIGURE 4. Architecture of the proposed CNN model.

denoising by wavelet filters. Raw signal is decomposed by
Daubechies wavelet 6 (db6) to six levels and the wavelet
coefficients from 3rd level to 6th level were retained and used
for reconstructing the signal [12].

After denoising, we segmented the signal to heartbeats by
leveraging the position information of R-peaks annotated by
the MIT-BIH arrhythmia database. Each heartbeat consists
of 300 samples (149 before R-peak position and 150 after
R-peak position).

B. CLASSIFIER ARCHITECTURE
Figure 4 shows a schematic of our CNN classifier. The net-
work consists of nine layers, including four convolutional
layers, two subsampling layers, two fully connected layers,
and one Softmax layer.

Convolutional layers C1, C2, C3, and C4 perform the con-
volution operations as expressed in equation (1) on the output
of a previous layer using the current convolution kernel, and

their convolution kernel sizes are 5, 5, 3, and 3, respectively.

x lk = f (
∑

i∈Mk
x l−1i ∗ ωik + bk ) (1)

where Mk is the effective range of the convolution kernel, x lk
represents the output of the kth neuron in layer l, bk is the bias
of the kth neuron in layer l, ωik is the weight kernel between
the ith neurons in layer l-1 and the kth neuron in layer l, and
f(·) represents the Rectified Linear Unit (ReLU) activation
function [18].

Subsampling layers (S1 and S2) were used to reduce the
input size of the next layer, compress the dimension of the
ECG data, reduce the amount of calculation, and further
extract useful features. We used the max-pooling function
to obtain the maximum value among the adjacent region to
replace it. The output of the kth neuron of the subsampling
layer l is calculated by equation (2).

x lk = subsample
(
x l−1kcluster

)
(2)

where x lk represents the output of the kth neuron of layer l,
down represents the subsampling operation, and x l−1k_cluster
represents the kth output cluster of layer l-1.
Fully connected layers (F1, F2, and F3) were used to fur-

ther increase the number of nonlinear operations. The output
of the kth neuron in fully connected layer l was calculated
using equation (3).

x lk = f (
∑N

i=1
x l−1i ∗ ωik + bk ) (3)

where x lk represents the output of the kth neuron in layer l,
bk is the bias of the kth neuron in layer l, ωik is the weight
vector between the kth neuron in layer l and the ith neuron in
layer l-1, and N is the total number of neurons in layer l-1.
In this study, we used a rectified linear unit as the activation

function in both the convolutional layers and fully connected
layers [18]–[20]. In the output layer, we used the Softmax
activation function to obtain five categories of heartbeats.

C. TRAINING METHOD
The purpose of the training is to reduce the value of the loss
function L by adjusting the weights and biases. We used the
cross entropy function as the loss function (4):

L=−
1
N

∑N

n=1
[yn log

(
ŷn
)
+(1− yn) log

(
1− ŷn

)
] (4)

where N represents the total number of neurons in the output
layer, yn represents the actual category, and ŷn represents the
predicted category. We update the weights and offsets using
the Adam algorithm [21], which is as follows:

First, a batch of samples was sent to calculate the gradient
equation (5), and we set the batch size as 256:

g =
1
m
∇θ

∑
i
L(f

(
x(i); θ

)
, y(i)) (5)

where g is the gradient, m is the batch size, θ is the parameter
to be updated, f

(
x(i);θ

)
is the heartbeat type predicted by the
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FIGURE 5. Distribution of ECG segments used for training and testing.

ith sample, y(i) is the actual type of the ith sample, and L is
the loss function.

Subsequently, we update the biased first moment estimate
and the biased second moment. Further, we correct the biases
in the first and second moments.

mt = β1mt−1 + (1−β1)gt (6)

vt = β2vt−1 + (1−β2)g2t (7)

m̂t =
mt

1− β t1
(8)

v̂t =
vt

1− β t2
(9)

In the formula above, mt and vt are the first and second
moment estimates of the gradient, respectively. m̂t and v̂t are
the corresponding corrections of the biases. β1 and β2 are the
decay rates for the moment estimates, set as 0.9 and 0.999,
respectively.

θ (t) = θ (t− 1)−
1√
v̂t + ε

m̂t (10)

Finally, the parameter θ is updated by modifying the cor-
rected bias in the first moment m̂t , the corrected bias in the
second moment v̂t , and the step ε (set to 0.001):

After replacing θ with ωik and bk , we can obtain the update
of the weight and bias as follows:

ωik (t) = ωik (t− 1)−
1√
v̂t + ε

m̂t (11)

bk (t) = bk (t− 1)−
1√
v̂t + ε

m̂t (12)

Dropout [22], [23] was used to prevent overfitting on
convolutional layers C2 and C4; and fully connected layers
F1 and F2. Dropout allows for the weights of the hidden
layer neurons to be set randomly to zero during training,
which invalidates these nodes. A large number of experiments
prove that the introduction of the dropout layer can reduce the
possibility of model overfitting considerably.

IV. EXPERIMENTS
We used stratified sampling to divide 90% of the samples into
the training set and 10% into the test set. The training and
test sets are mutually exclusive. Subsequently, in the training
set, 90% of the samples are divided into the training set, and
10% into the validation set by stratified sampling. Similarly,
the training and validation sets are mutually exclusive. The
division is shown in Figure 5.

The CNN was trained using an Intel Core i7-8700K CPU
@3.70 GHz, 32G B RAM, GeForce GTX 1080 Ti GPU.

FIGURE 6. Learning curve of model training process.

TABLE 2. Confusion matrix of ECG heartbeats on all samples.

TABLE 3. Confusion matrix of ECG heartbeats on test samples.

Our network was based on the TensorFlow framework. After
the training was completed, the network parameters were
stored in the HDF5 file. The training time of each epoch
was approximately 5 s, and the maximum epoch number was
set to 50. The total training time was between 260.65 s and
268.46 s. The training process curve is shown in Figure 6.
As shown in the figure, the red and blue curves represent the
accuracies of the training set and validation set, respectively.
The green and black curves represent the losses in the training
set and validation set, respectively. As the training progresses,
the validation set and training set loss curves coincide. Thus,
overfitting does not occur.

Table 2 shows the confusion matrix of the training results
on all samples, and Table 3 shows the confusion matrix of
the training results on the test set. To prove the stability
of the model learning, we performed 20 experiments; the
training time and overall accuracy are shown in Table 4.
It can be observed that the overall accuracy of our model
is between 99.41%–99.49%, and training time is between
260.65–268.46 s. It proves that our model exhibits good
stability.

V. DISCUSSION
The result of this study is compared with former studies
shown in Table 5. Our improved CNN model is superior
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TABLE 4. Overall accuracy and consuming time of 20 repeat training.

TABLE 5. VEB and SVEB classification performance of previous studies.

to those in existing literature in terms of VEB or SVEB
classification performance.

In Table 5, the parameters Accuracy (Acc), Sensitivity
(Sen), Specificity (Spe), and Positive predictive value (Ppv)
are defined as follows: Acc = (TP + TN )/(TP + TN +
FP + FN ), Sen = TP/(TP + FN ), Spe = TN/(TN + FP),
Ppv = TP/(TP + FP), where TP is the true positive, TN is
the true negative, FP is the false positive, and FN is the false
negative [13].

We obtained such good results because of the positive
effects of the following two aspects:

A. USING COUPLED-CONVOLUTION LAYER STRUCTURE
In common situation, each convolution layer is followed
by a subsampling layer. However, we believe that the
mapping relationship between the heartbeat category and
its waveform is extremely complicated. Single convolu-
tion layer is not complicated enough. Therefore, we use a
coupled-convolution structure (shown in Figure 7) to achieve
a more powerful fitting capability.

B. BUSING DROPOUT
Many experiments have indicated that the dropout can pre-
vent overfitting effectively [23]. Dropout sets a probability
parameter, p. In each training epoch, every node exhibits the

FIGURE 7. Comparison between common structure and
coupled-convolution structure.

FIGURE 8. Learning curve of model training process without dropout.

probability of p to be maintained. If they are not maintained,
their weights will be set to 0. In fact, several subnets are
trained during each epoch. At the test or working period, all
the weights are multiplied by the probability p. Thus, we can
obtain the average result of each subnet.

In this study, when the dropout is not used, the network
training process curve is as shown in Figure 8. In the figure,
the red and blue curves represent the accuracies of the train-
ing set and validation set, respectively. The green and black
curves represent the losses in the training set and validation
set, respectively. It is clear that as the training progresses,
starting from the third epoch, the validation set loss curve
exhibits an upward trend, and intersects the training set loss
curve, indicating that the network has been overfitted. In con-
trast, the CNN network using dropout training in all our
previous experiments—conducted 20 times—did not exhibit
any overfitting, as shown in Figure 6.

It is worth noting that when applying our trained model in
real-life scenarios, we may encounter some other problems.
First, the sampling frequency of the training data from the
MIT-BIH arrhythmia database is 360 Hz, but some Holters
may acquire data with different sampling rates; subsequently,
we must resample the acquired data to 360 Hz first before
using our model. Next, we should continue to further retrain
our trained model with new data to render it more suitable
for the new situation while using it in real-life applications.
Subsequently, we used only the MLII lead data for our
model training; however, in an actual situation, the Holter
may collect data from more than 12 leads. Fortunately, only
a slight adjustment is required for our model to fit this
situation—simply changing the input channels as multichan-
nel ECG signals and setting the initial corresponding input
weights to zeros, whichwill be updatedwhen performing new
training.
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The model proposed in this paper relies on the correct
detection of Rwaves in practical applications. Hitherto, many
studies on R-peak detection have been conducted, and some
of them have achieved high accuracies. However, in the actual
Holter monitoring, much interference may occur that will
affect the correct detection of R waves. Therefore, in the
future, we are interested in investigating a robust and high
accuracy R-peak detection algorithm.

VI. CONCLUSION
In this study, we designed a Holter data CNN heartbeat clas-
sifier based on the MLII lead by using coupled-convolution
layer structure and adopting the dropout mechanism. It was
proved experimentally that the overall accuracy of the classi-
fication could reach 99.43%,while the sensitivity and positive
predictivity of VEB could reach 99.2% and 99.4%, respec-
tively. Further, the sensitivity and positive predictivity of
VEB could reach 97.5% and 99.1%, respectively. Compared
with the methods in previous literature, our model performed
better in terms of VEB, SVEB classification accuracy, and
overall accuracy. Moreover, our model could achieve an
overall accuracy of approximately 99.4% in all 20 repeated
experiments, indicating its good learning stability and facil-
itating the promotion and renewal of the model. For the
107679 samples extracted from the MIT-BIH arrhythmia
database, the training time was approximately 4 minutes.

We believed that our trained CNN heartbeat classifier
model can be used for real-life and real-time Holter appli-
cations [24] with a slight adaptive adjustment before use.
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