
Received November 18, 2019, accepted December 25, 2019, date of publication January 8, 2020, date of current version March 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2964778

An Inexpensive Upgradation of Legacy Cameras
Using Software and Hardware Architecture for
Monitoring and Tracking of Live Threats
UME HABIBA 1, MUHAMMAD AWAIS 1, MILHAN KHAN 1, AND ABDUL JALEEL 2
1Department of Computer Science and Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
2Department of Computer Science, Rachna College of University of Engineering and Technology, Gujranwala 52250, Pakistan

Corresponding authors: Ume Habiba (ume.habbiba@hotmail.com) and Muhammad Awais (awais.hassan@uet.edu.pk)

ABSTRACT Surveillance through digital cameras is increasing exponentially. A majority of these cameras
are not smart cameras; therefore, they send their video stream to a central server where it is processed and
analyzed for any threats. Typically, human operators or machine learning algorithms at the cloud analyzed
and processed the post-event videos to track and locate the perpetrator or victim. The centralized approach
leads to two primary shortcomings: 1) the high cost of cloud infrastructure; 2) lack of instant tracking and
detection of the threat. One solution is to replace these legacy cameras with the smart cameras so they can
process information locally. Although the solution is costly, it could solve the real-time threat detection
issues. However, the need for a central server remains there, to construct the path of threat, when threat
moves from one camera view to another. The existing distributed architectures for threat tracking shifts the
load of threat capturing and processing from a central server to the edge nodes, which in turn reduces the
computational power but does not remove the role of the central server completely. These architectures don’t
equip each camera of processing and communicating with each other. Further, in the existing distributed
architectures, the local cameras are not able to store the path of the threat individually and just transmit
the captured trajectory to the central body. This research proposed a second alternative that makes use of
legacy cameras through additional hardware and software components such that they can process information
and collaborate locally. The research addresses the challenge by introducing a low cost distributed threat
tracking framework that allows the single camera to identify the threat and communicate its information to
other cameras without involving the central server. The framework stores the information in a lightweight
architecture that is inspired by the blockchain storage algorithm. The system also allows querying the path
traveled by the threat at any stage. To evaluate the system, we performed two simulated experiments: one
with a central server and another with the proposed distributed system. The results of the experiments showed
that the time to track the threat through the proposed system was lower than the existing centralized system.
Moreover, the proposed system predicted the paths of threats with an accuracy of 85.49%. In the future,
the technique may be improved with reinforcement learning and other machine learning techniques.

INDEX TERMS Video surveillance, smart cameras, distributed computing, software architecture, peer-to-
peer computing.

I. INTRODUCTION
April 15, 2013, is one of the darkest days in the history of
the United States of America as it witnessed two disastrous
explosions. These explosions killed more than three peo-
ple, while hundreds of others received severe injuries. Later,
the two suspects of the bombing were captured by sifting

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

through CCTV videos of several hours [1]. The increased
terrorist and crime incidents have alarmed nations around the
globe and necessitated proper surveillance in cities [2].

Different sensors are being used these days for surveillance
and especially path tracking of threats. These sensors include
binary cameras [3], depth data [4], and digital cameras [5].
The digital cameras are the essential source of path tracking
due to their high resolution captured images and low cost
compared to other sensors.

40106 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5488-2959
https://orcid.org/0000-0002-2738-4927
https://orcid.org/0000-0002-8586-315X
https://orcid.org/0000-0002-0886-7819
https://orcid.org/0000-0002-3685-3879

U. Habiba et al.: Inexpensive Upgradation of Legacy Cameras Using Software and Hardware Architecture

A large number of cameras, for surveillance, have been
installed in all big cities of the world by their governments.
These devices continuously capture the video stream of the
area under their observation [6]. Usually, these cameras feed
their video stream to cloud infrastructure [7]–[9], where it
is stored, processed and analyzed [10]. To track the path
of any victim or perpetrator, these videos are processed by
the machine learning algorithms [11]–[13] and the human
operators.

The existing methods, in literature, for the surveillance
havemany drawbacks. For example, a study [14] has revealed
that the monitoring of multiple camera views puts a sig-
nificant burden on the human operator that results in time
consumption, tired eyes, and error-pronework [15]. The other
methods [11]–[13] those employ intelligent learning algo-
rithms for the detection and re-identification of persons do
not offer collaboration and communication between cameras.
However, these intelligent surveillance systems are unable
to query specific threat information from their neighboring
cameras and fail to live track of the threats. Other solutions
use the central server where the information is processed, but
these centralize systems have three primary challenges: 1) the
high cost of cloud infrastructure; 2) real-time monitoring of
threat; and 3) tracking the path of the object. There is a need
for a distributed system where nodes can query about threats
from neighbors and perform live tracking of a threat without
the involvement of a central server.

The goal of this research is to propose a software architec-
ture that enables legacy cameras, without an expensive cloud
infrastructure, to establish ad-hoc networks automatically
without any human intervention, identify the threat, transmit
and seek information of the threat from neighboring cameras,
track the threat movement and allow to query threat infor-
mation from the distributed network whenever it is required.
We targeted the following research questions to achieve our
goal.

1) How do you enable legacy cameras so they can
establish a distributed network automatically with-
out the intervention of humans or a centralized
system?

2) How can these modified cameras track the threat from
archived videos without any time expensive machine
learning algorithms or human intervention?

3) How can threat information be stored, co-related, and
queried from these distributed camera nodes?

Our contribution is that we enabled the legacy camera with
the help of low-cost hardware to communicate with other
cameras and detect the threat locally. Once the local camera
detects the threat, it stores the relevant threat info (such as
timestamp when the threat is detected and reference frames),
predicts the threat direction, and informs the neighboring
cameras about the threat so they can track it further. In this
way, only the relevant threat information is required to be
saved, and the upgraded cameras track the path that can be
accessed later.

II. LITERATURE SURVEY
Body tracking and detection are quite useful in multiple fields
including, robotics [16]–[18], health-related issues [19],
industrial, and academic areas [20], but most of the applica-
tions are in surveillance. Surveillance of a human body can be
done by different methods in the existing literature [21]–[26].
For identification of a threat the feature extraction, classifica-
tion, and face recognition are the most critical steps, and the
technique used for these steps include artificial neural net-
work, infrared sensors, and human segmentation [27]–[30].
These researches track the human body by re-identifying it in
different cameras, or by action recognition made by different
body parts of a human.

Chen et al. proposed ‘‘City Eyes,’’ a cloud-based com-
putational framework for developing intelligent surveillance
applications [7]. The authors integrated ‘‘City Eyes’’ in mul-
tiple surveillance systems of different cities and showed
a reduced time in continuous monitoring of surveillance
videos. To fulfill the QoS requirement and to optimize
the allocation of VM resources, Hossain et al. presented
a resource allocation scheme [8]. The scheme streamed
composite media in a cloud-based video surveillance envi-
ronment. The elastic cloud-based platform stored all video
streams that were captured and transferred by the surveillance
cameras. Li et al. investigated the processing of massive float-
ing car data (FCD) for traffic surveillance in cloud computing
environments [9]. Empirical studies showed the potential
of cloud computing for providing various solutions for on-
demand geospatial data-intensive applications.

Shao et al. developed an intelligent system with smart
front-end cameras for surveillance and pre-alarming [31].
The smart cameras were able to pre-alarm and store any
unusual event in the database. Chandana et al. [11] proposed
a surveillance system using ‘‘thing speak’’ and raspberry pi.
The raspberry pi enabled the cameras to capture the image
and detect the motion of a person. The images of individuals
were captured only after the detection of motion signals,
which in turn reduced the power consumption compared to
the surveillance system that continuously captured the videos.
Abas et al. developed ‘‘SlugCam’’: an outdoor wireless smart
camera network [12] where nodes were intelligent enough to
change their monitoring behavior when the passive infrared
sensor (PIR) detected any motion.Wang et al. demonstrated a
paradigm of ‘‘tweeting’’ cameras [13]. The software architec-
ture of tweeting cameras was able to recognize, detect abnor-
mal events through Sony IMX219 8-megapixel sensor. The
camera also tweeted about exciting events on social media
and received replies from humans for the learning process.

For processing and monitoring, Zhang et al. sent data
captured by cameras to cloud storage [32]. This data trans-
mission results in high response latency and bandwidth con-
straints, which in turn proves this solution to be inefficient
and expensive. To overcome the constraints of cloud stor-
age, the researchers, afterward tracked and identified threats
through intelligent single and multi-cameras. Tang et al.

VOLUME 8, 2020 40107

U. Habiba et al.: Inexpensive Upgradation of Legacy Cameras Using Software and Hardware Architecture

tracked the path of a person by re-identifying him in a monoc-
ular video of the crowded scene [33]. The authors used a novel
graph-based approach for linking and clustering the track of
a person. Results showed that this method outperformed the
existing benchmark. Beyer et al. integrated re-identification
(ReID) with multi-target multi-camera tracking [34]. This
integration resulted in an optimal Bayes filter. This filter
avoided the requirement of data association and dependency
on boundary boxes for tracking.

For detecting and tracking people in in-depth images cap-
tured through a time-of-flight camera, Stahischmidt proposed
a method and an application [35]. A Kalman filter tracked the
detected persons, and their adopted trajectories were stored.
Images captured by the cameras were taken perpendicularly
from the top-right angle andwere stored locally in the camera.
The solution was centralized as other cameras were not able
to process the information independently. Tesfaye et al. pro-
posed a three-layered hierarchal approach for tracking people
in multiple non-overlapping cameras [36]. This method took
a video and set of detections as input and performed within-
camera and across camera tracking. The camera communi-
cation was not allowed, and the input was not taken directly
from the cameras.

Liem & Gavrila proposed a multi-people position tracking
algorithm for overlapping cameras [37]. The similarity of a
person was mapped to the running track using a set of hints.
These hints included the motion style and appearance of the
person. The authors detected foreground maps by using the
background subtraction method. The tracking was done by
associating these detections to the previously tracked individ-
uals. The experiments showed that this system outperformed
with multi-person datasets having overlapping cameras, and
track consistency was also improved. This system did not
allow performing any query about a specific threat.

Bhuvana proposed an object tracking algorithm for target-
ing the bandwidth and energy limitations in the information
exchanged among surveillance cameras [38]. This method
restricted the number of cameras participating in the informa-
tion sharing process. The surprise selection method enabled
the cameras to decide whether their information was essen-
tial or not. This method showed improved tracking accuracy.

Wang et al. proposed a surveillance system that enabled
communication of cameras with edge nodes and reduced
the computation delay on central servers [39]. The delays
reduced because computation and storage resources shifted
from the centralized data center to the edge nodes. These
experiments showed that the system was more rapid, respon-
sive, and flexible. However, the cameras in this network were
not enabled with inter-camera communication. Jiang et al.
proposed a person re-identification framework based on the
orientation of a person [40]. Cameras in the framework
were enabled with inter-camera information exchange i.e.,
the camera was able to share information with its different
modules but not with other cameras. The camera in the frame-
work shared images of the same person based on his dis-
criminative appearance features for associating inter-camera

trajectory and achieving inter-camera Spatio-temporal con-
straints. The communication of cameras with different mod-
ules helped in person re-identification despite occlusions.

Kumar et al. developed a person re-identification algorithm
with distributing computing capabilities in non-overlapping
camera networks [41]. The cameras in the system were able
to self-process the threats and pass relevant information to
a primary camera. The primary camera was able to query
about a particular person from the neighborhood cameras.
Well, the trajectory of the identified or tracked persons was
not stored in the system. For detecting abnormal events in
frames, Wang et al. proposed an algorithm for distributed
cameras network [42]. The authors presented a multi-kernel
strategy for benefitting from the different views captured by
multiple cameras. Although this work identified malicious
activity, the cameras involved in the network were not able to
automatically configure and track or store the path of a threat.

Most of the available solutions provide surveillance
through a single camera and with the involvement of cloud
infrastructure. However, a meager number of researches
existed that deal with multiple cameras for threat detection
and tracking.

III. PROPOSED METHOD
For video surveillance, the proposed distributed network con-
sists of multiple cameras, and each camera is called a node.
To convert the node into a smart node, we proposed a soft-
ware architecture (Figure 1) that can run on the Raspberry
Pi. The raspberry camera was provided in Camera Serial
Interface (CSI) of all other cameras, which in-turn formed a
network. The distributed network consists of four major com-
ponents: networkmanager, threat handler, path generator, and
controller.

The network manager stores information of all nodes and
predicts the next location of the threat. Records required by
network manager are stored in the ‘‘camera lookup’’ log.
The threat handler component stores information about all
threats and uses the convolution neural network (CNN) for
threat identification. In case of a threat, the node communi-
cates the information about the threat to the neighbor nodes.
The path generator component produces the path against the
query about a threat. The controller is the primary component
that enables inter-node communication and the addition of
nodes in the network. The nodes in the network communi-
cate with each other by sending messages in the form of
packets. The following section provides details about these
components.

A. NETWORK MANAGER
A legacy surveillance camera can track the threat up to
a limited range because of its finite and fixed position
[25], [26]. Once a camera has identified the threat, it starts
monitoring the threat, and when the threat is moving out
to its field of view, the camera has to inform neighboring
cameras that the threat is entering into your viewing area.
To achieve the functionality, each camera should be aware

40108 VOLUME 8, 2020

U. Habiba et al.: Inexpensive Upgradation of Legacy Cameras Using Software and Hardware Architecture

FIGURE 1. Overall system architecture and services.

FIGURE 2. System demonstration.

of its immediate neighbors, Fig 3. There are two options:
one is to configure each camera manually, and a human tech-
nician provides the information of the neighboring camera.
However, on each node, it requires to add information of
all neighboring cameras manually that is a massive task if
new cameras keep coming up, the position of some cameras
is changed, or they stop working. The second option is to
automate the addition of nodes.

The most important information is the coverage area and
view frustum of each camera. Each camera knows its fixed
location, its field of view (FoV), and coverage distance.
When a camera gets online, it broadcasts these parameters to
other cameras. From this tuple, C (location, FoV, coverage
distance), other cameras calculate the two more points B
(Eq. 1) and D (Eq. 2) for each camera such that A, B, D
make a triangle of its coverage area as depicted in Fig 3 (a),

and Fig 3 (b). The blind spot between two cameras where
no coverage is available is also shown in Fig 3. Also, on
receiving these values, the camera calculates the relative
location of another camera regarding its position as depicted
in Fig 4. These relative positions could be from one of four
quadrants of Fig 4. using the function given in Eq. 3; this
relative location is used by Algorithm 2 while invoking the
neighboring cameras for a potential threat. Table 1. shows a
comparison of the proposed system having with the existing
solutions for threat detection and tracking.

B =
FOV ∗ f

h
(1)

Here, ‘B’ is the distance of a camera Ci from its left neighbor.
‘FOV’ is the field of view of the camera as specified by the

VOLUME 8, 2020 40109

U. Habiba et al.: Inexpensive Upgradation of Legacy Cameras Using Software and Hardware Architecture

TABLE 1. Comparison of proposed work with existing surveillance systems.

FIGURE 3. (a) Neighboring camera networks. (b) Neighboring camera
networks.

camera designer. ‘‘h’’ is the height of the camera sensor, and
f is the focal length of the camera lens.

D =
FOV ∗ f

h
(2)

Here, ‘D’ is the distance of a camera Ci from its right
neighbor. FOV is the field of view of the camera as specified
by the camera designer. ’h’ is the height of the camera sensor.

FIGURE 4. Relative location of a camera.

For calculating the relative position of a camera C1, concern-
ing to other camera C2 at first quadrants of both cameras are
calculated. We proposed a local storage table that stores all
the information of the neighboring cameras in Table 2.

TABLE 2. Lookup table of C2.

Suppose Pdir is the predicted direction of the camera. Let
◦~i be the quadrant angle of the current camera (Ci) that has
captured the threat. Let ◦~k, ◦~k+1, ◦~k+2,,,,,,, be the angles
of all neighbors of Ci. The difference between the angles
of the current camera and the angle of all other neighbor
camera is calculated. The camera with a minimum difference
is regarded as a neighbor of Ci. Information about the threat

40110 VOLUME 8, 2020

U. Habiba et al.: Inexpensive Upgradation of Legacy Cameras Using Software and Hardware Architecture

and its predicted direction is sent to Ci.

Min{(◦~i − ◦~k)(◦~i − ◦~k+1) . . . (◦~i − ◦~n)] = Neighbor (3)

Fig 4. shows the arrangement of cameras in a plane and
the way with which the relative location of a camera is
determined.

Algorithm 1 Node Manager
Input: Node N
Output: Acknowledgement (Sender Info)
Flag = false
foreach (Old_Node in lookupTable.Entries) do

if (N− >IP = Old_Node − > IP) then
flag = True //node already added
sendAcknowledgement(Old_Node)

endif
endfor
if (not flag)

pointB = (fov ∗ f) / h
pointD = (fov ∗ f) / h
quadrant= FindQuardrant (Longitude, Latitude)

end if
Entry = CreateLookupTableEntry

(N.ID,N.angleBetweenCamera,
N.distance,N.location,pointA,
pointB,pointB,Quardent)

lookupTable.Add (entry)
return acknowledgement(entry)

1) THREAT HANDLER
This module consists of three sub-modules: Threat Detection,
Threat Communication, and Threat Storage. First, we discuss
these sub-modules, and then we give a complete algorithm for
the threat handling process.

a: THREAT DETECTION
The proposed system consists of different camera nodes that
are connected to form a distributed network. Each camera
captures andmonitors the scene in its range. The camera node
consists of a Raspberry Pi that acts as a tiny processor and
serves as a host for video processing, storage, identification
of threats, and further communication and warning to the
neighbors.

Threat detection and identification at the early stages pre-
vent severe losses. To save time and to avoid the sending of
all video streams to the server, the proposed system uses this
local module to identify the threat. This module identifies
threats from a video sequence that is captured by a camera
node in the network. Each image/frame captured by a cam-
era node is first preprocessed by pre-processor before threat
detection or identification. The preprocessor follows some
steps for preparing an image for threat identification (Fig 5).
Step 1: (Noise Removal): Noise is introduced in an image

at the time of its acquisition, and the reason includes inappro-
priate light settings, corrupt image sensors, and dust particles

FIGURE 5. Block diagram of the preprocessing procedure.

on the camera. We used the order statistical filter to remove
noise in the captured images by the camera [45]. It is a
nonlinear filter whose response depends on the ordering of
pixels encompassed by the filter area.
Step 2: (Background Removal): For background removal

from the frames, we used background subtraction technique
using the concept of running average [46]. In this method,
video frames are analyzed. A comparison of the running
average of current and previous frames provides background
and foreground models. The foreground model is extracted
from the comparison by detecting the active objects.
Step 3: (Image Sharpening): For sharpening the images

with removed background, we used un-sharp mask [47]. This
technique first uses a blurred version of the original image.
This blurred version is then subtracted from the original
image. This subtraction points out the presence of the edges,
hence creating the un-sharp mask. An increased along the
edges using the abovemask, the product is a sharpened image.

For proper identification of the threat, there is a need
for visual features’ extraction from the video sequence. The
essential features are learned and extracted using CNN.

CNN models require training on a vast amount of data for
learning before any usage. This training causes high time
consumption, and to avoid this, we have used a pre-trained
CNNmodel. Fig 6. Shows the threat identification module of
the proposed system. For recognizing threats’ face, we used
visual geometry group (VGG) Face-16 CNN [48]. Structure
of VGG Face-16 has 13 convolutional layers, five pooling
layers, and three fully-connected layers. VGG Face-16 was
trained using a publically available dataset [49]. After the
convolution operation, CNN produces feature maps. The size
of these feature maps is determined from the width or height
of the filter, the width or height of the input image (or feature
map) before it enters the convolutional layer, the amount
of padding in the convolutional layer, and the number of
strides [50]. The rectified linear unit (ReLU) layer fol-
lows the convolution layer, which used polling windows
for reducing dimensions of obtained features and smoothing
the features extraction process. For window sliding Partial
Least Square method (PLS) is used and the features used by
Schwartz et al. [51]. The final layer, fully connected layer
(FCL), consists of a softmax function for normalizing the
inputs and yielding a categorical distribution of each class
function.

b: THREAT COMMUNICATION AND STORAGE
If the upper layer detects a person as a threat, it predicts the
exit quadrant where the threat is heading. The quadrants are

VOLUME 8, 2020 40111

U. Habiba et al.: Inexpensive Upgradation of Legacy Cameras Using Software and Hardware Architecture

FIGURE 6. Convolution neural network layer.

defined regarding the point of the camera. The module uses
the direction of the head in the captured set of images. This
method takes a face as a parameter and returns its direction
using the corner points of facial features (head, nose, eyes).
The location of the camera is required to predict the coordi-
nates of the quadrant.We used themethod given byXing et al.
to find the coordinates of the threat [52]. Once the coordinate
has been found, the quadrant is determined by the following
function:

FindQuadrant (longitude, latitude)
{
if (longitude > 0 && latitude > 0) {quadrant = 1}
elseif(longitude < 0 && latitude > 0) {quadrant = 2}
elseif (longitude < 0 && latitude < 0) {quadrant = 3}
elseif (longitude > 0 && latitude < 0) {quadrant = 4}
}
After predicting the threat of future quadrant, the camera

creates a block with threat hash, its IP, predicted quadrant,
predicted direction, current block id, and nearest neighbors in
the predicted direction. This block-chain based module stores
the path history of a particular threat. Whenever a camera
node detects a threat, it creates a block for the threat that
consists of threat_id, time, and date. Each block consists of
a hash value, which acts as its unique identifier. The time,
date (when the camera identified the threat), and the block_id
of the notifying node plays a vital role in the calculation
of the hash value. The value of the block is empty for the
first camera that detects the threat; in the blockchain, this
block is termed as ‘‘genesis block.’’ The block does not
have the next camera IP. It remains blank until the threat
enters into the specific camera. After generating the genesis
block, the system logged information in the local database
and forwarded the block to all registered cameras (present

in a lookup table). Now, all the relevant cameras have the
genesis block for the threat. When a camera detects a threat,
it broadcast the information to cameras so they can discard
the genesis block, and it also informs the parent camera. The
parent block appends the IP of receiving camera into the block
so it can help to create a chain for the threat. Now, the second
camera repeats the process, but this time it creates its block
and leaves the next camera attribute blank. Once the threat
leaves the camera, it sends the block information to another
camera of the predicted quadrant.

Algorithm 2 Threat Handler
Input: VideoFrame frame
pFrame = preprocess (frame)
featureMap = GetFeatures(pFrame)
isThreat =Model.Classify(featureMap)
if (not isThreat) return
else
Direction = PredictThreatDiretion (pFrame)
Position = PredictThreatPosition(PFrame)
Quadrant = FindQuadrant (longitude, latitude)
NewHash = generateHash(Node.IP,threat)
Old_Block = threatBlocks.find(pFrame) //if threat is

already communicated by any other camera
ParentBlock = GensisBlock

if Old_Block != Null //Threat BlockAlready Exist
Old_Block.NextBlockHash = newHash

SendAcknowlegment(Old_Block.senderIP,OldBlock.
HashID,newHash)

ParentBlock = Old_Block.HashID
End if

40112 VOLUME 8, 2020

U. Habiba et al.: Inexpensive Upgradation of Legacy Cameras Using Software and Hardware Architecture

B. THREAT PATH GENERATOR
After threat identification, the node stores the information of
threat into the local database in the form of a block. However,
the block does not store the path of the threat; the block only
contains the location of the next block and its Hash ID.

For path construction, the node queries the path of a spe-
cific threat from another node where the threat has moved.
For the purpose, a distributed query can be passed using the
BlockID that is to be tracked, IP address of the current node
from where the query is to be made, and previous path of the
threat if any. A node N can broadcast a query to its neighbor
node, about a specific threat having blockID. The neighbor
checks the log for BlockID. If a neighbor finds a threat in its
log, it appends its location into the path and checks whether
the next block is null or not. If it is not null, it calls the function
construct path for the next camera. If it is null, the sequence
of blocks is returned to the inquiring camera.

Algorithm 3 PreProcess(FindImage)
Input: QueryStarter,Sender,BlockID,Path
Output: ForwardQuery/SendResults
Found = false
For each B in Blocks

If (B.ParentBlock == BlockID)
Found = true
Path.Append(NodeID,B.BlockID)

SendQuery(B.NextNodeID,B.NextBlockID)
End if
If (Not Found)

SendResult (OueryStarter,Path)
End if

End For

Algorithm 4 Path Generator
Method Generate Threat Path Request
Input: Preprocessed-Image
Output:

RBlock= null
For Block B in threatBlocks
If B.frame == Preprocessed_Image

Rblock = B
End if

End For
If Rblock != null

Path.append(Current.NodeID,RBlock.BlockID)
Path = SendQuery(RBlock.NextNodeID,RBlock
.NextBlockID,Path)

Wait For Response
Print Path.

End If

Fig 7. Shows how the path of a particular threat is stored in
each camera installed in the way where the threat has passed.
For example, to query a particular threat (John), the inquiring

camera sends the BlockID to its neighbor cameras. If the
neighbor cameras do not find the threat information, they
forward the request further to their neighbors. In another case,
the inquired camera will go for the current ID of the threat.
The current id contains information about the cameras by
which the threat was being captured plus the id of the latest
camera that has spotted the threat.

C. CONTROLLER
The controller is responsible for exchanging each create
message with neighbor cameras. This component uses the
services of Raspberry Pi. Raspberry Pi is attached to each
monitoring camera, provides a dedicated socket for contin-
uously listening to the requests from its neighbors. Requests
from the neighbors can be one of the three types: threat alert,
a new node broadcast, and distributed query. Whenever a
message about a particular threat is received from the neigh-
bor camera, the communication layer redirects the message
to threat handler module of the current camera. In case of
addition of a node, the new node broadcasts ‘‘add’’ request to
all nodes in the network. The listening socket on Raspberry Pi
of receiving nodes forwards the request to its node manager
for the addition of the new node into the routing table. In case
the request is of the distributed query, the listening service
forwards it to the path manager.

Algorithm 5 Controller
1:Input: Req_Service
2: if (Service = add or remove node (N)) then
3: NetworkManager (N)
4: if (Service =Monitor_Threat (Threat_ID))
5: ThreatHandler (Threat_ID)
6: if (Service = Query (Threat_ID)) then
7: PathGenerator (Threat_ID)
8: endif
9: endif
10: endif

IV. EXPERIMENTATION
A. EXPERIMENTAL SETUP
Our experimental setup consisted of the 35 surveillance cam-
eras installed at various locations of a university campus.
We used Raspberry Pi 3B+ with Raspbian Jessie OS booted
from a 64G microSD card as in intelligent module to be
attached to each camera. The cameras in this setup were
installed at the incoming and exit points of eight departments
of the university. We passed a hundred video clips to the
Raspberry module in which one hundred and fifteen threats
were explicitly simulated. These threats were people who
performed abnormal and ambiguous activities. The dataset
used for classifying threats through classifier on the central
server and the one running on Raspberry Pi is ‘‘Behave’’ [53].
This dataset consists of view of people acting out in different
situations. The data is captured at 25 frames per second. The
resolution is 640 × 480. The video clips are provided in

VOLUME 8, 2020 40113

U. Habiba et al.: Inexpensive Upgradation of Legacy Cameras Using Software and Hardware Architecture

FIGURE 7. Blockchain demonstration of threat information.

the dataset that can be classified as frames. These frames
are available as a set of JPEG single image files. The nor-
mal behavior of the person is labelled as meeting, walking
together, splitting, and ignoring while the label for abnormal
behavior is: fight, and chase.

B. EXPERIMENT I: THREAT IDENTIFICATION THROUGH A
CENTRALIZED NETWORK OF CAMERAS
The first experiment was performed to assess the time taken
in identifying a threat by a centralized system. In this exper-
iment, the hundred multiple video clips, collected through
installed cameras in the experimental environment, were fed
to the central server for the analysis. A classifier running
on the central server identified threats was trained on mul-
tiple datasets [53] of videos containing normal and abnormal
behavior of the people. The same classifier was also used
for the distributed system in experiment II. Moreover, the
communication among the camera nodes was not allowed in
this first experiment.

C. EXPERIMENT II: THREAT IDENTIFICATION THROUGH
THE PROPOSED SYSTEM
The purpose of performing the second experiment was to
analyze the time taken to identify a threat and the accuracy
of the path prediction via the proposed distributed system.
In this experiment, the proposed framework was used to
track and identify the threats. Threats were identified by
the services provided by the Raspberry module attached
with each camera node. The classifier on Raspberry pi was
trained on multiple datasets [53] of videos containing normal
and abnormal behavior of the people. After detection of a
threat, the camera predicted and forwarded the threat’s face
to the relevant nearest neighbor for live tracking of the threat.
Message passing among camera nodes was in the form of
packets, and the number of packets received by the receiver

node was logged and compared with the number of original
packets sent.

Also, three nodes were added into the distributed network
at location L1, L2, L3, respectively, where the configuration
of each camera was updated automatically. The added nodes
sent requests, containing their IP and location (longitude, lat-
itude), to the neighbor nodes. The configuration of neighbor
nodes enabled them to add the received IP in their routing
table automatically.

V. RESULTS
VGG 16, used for threat detection, was classified using
the dataset ‘‘Behave’’ [50], and the abnormal activities, e.g.
chase and fight, were detected using this dataset. VGG 16
achieved 96% accuracy for classifying the threats in the above
dataset. These results were compared with those of HMM [5],
SVM [54], HMM-based GMM [55], and Table 3. shows the
comparison.

TABLE 3. Comparison of VGG-16 with existing techniques.

Table 4. lists down the processing time to identify
115 threats in experiment 1 and experiment 2. Path tracked by
the proposed system for a specific threat was matched with
the original path, followed by a threat. While the original
path was already known and stored in the system. Table 5.
lists down paths predicted by the proposed system for a
few sample threats and with the original paths adopted by
the threats. The locations in the university campus, where a
camera node is installed, is named as L1, L2, L3,. . .LN.

40114 VOLUME 8, 2020

U. Habiba et al.: Inexpensive Upgradation of Legacy Cameras Using Software and Hardware Architecture

TABLE 4. Sample threat tracking time for both experiments.

TABLE 5. Sample paths of threats predicted by the proposed system.

The system predicted paths of 85.49% threats precisely the
same as their original path.

Figure 8. shows a graphical comparison of the time taken
by the centralized and proposed system to identify random
threats.

FIGURE 8. Graphical comparison of threat identification time of
centralized and proposed system.

Table 6. shows a comparison between the routing tables
updated manually by the human operator in case of addition
of three nodes at location L5, L7, L2,.and routing tables
updated automatically in case of the same addition.

The error rate of the automatically updated routing table
through the proposed system was 0.012%. The average time
is taken by a camera to update its routing tables automatically
was reduced to 4.5 seconds, then the human operator who

took an average of 8 minutes to update the routing table of a
camera.

VI. DISCUSSION
In this research, we have proposed low-cost system architec-
ture for identifying and tracking threats through a distributed
network of video surveillance cameras and IoT sensors.
A Raspberry Pi module was attached to each camera node
that offered various services through the software modules.
All cameras were connected in a distributed network, and
the proposed architecture enabled these cameras to identify
and track the threats locally. At first, when a camera node
detected a threat, it assigned an identification number to the
threat. Then, the camera node predicted the next direction
of the threat. Data about the identified threat is forwarded
to the neighbor node in the same direction where the threat
is moving. Communication among nodes helped neighbor
cameras to track the path of threat using threat and path
management services of Raspberry Pi.

The proposed solution offers a service that allows the
cameras to automatically form a distributed network without
any human assistance (experiment II). The node manager
module updated the routing tables of each node when a new
camera was added in the network. When a node is added
into the system, it broadcast the add request to other cameras
in the network. After receiving the request, the nodes in
the neighbor update their routing tables for any matching
node with the same IP as of the requested node. The routing
table stores the location (longitude, latitude), direction, and
IP address of neighbors. The routing tables of all devices
were updated when three new nodes were added into the
distributed network at the location L5, L7, L2. The manually
updated tables were comparedwith the automatically updated
routing tables, the latter showed an error rate of 0.012%.
This dynamic insertion of nodes reduced the extra effort for
manually updating the routing table associated with each
camera from 8 minutes to 4.5 seconds. However, the removal
of a node was not available in the system.

Raspberry Pi, on each camera in the distributed network,
enabled local threat identification and tracking. The future
direction of each threat was predicted. Also, the current infor-
mation about the threat was stored in the local storage of
the camera. The proposed system predicted paths adopted by
the threats (Experiment II) with an accuracy of 85.49% as of
the actual paths of the threats (Table 5). The higher accuracy

TABLE 6. Manually updated routing table vs. automatically updated routing tables.

VOLUME 8, 2020 40115

U. Habiba et al.: Inexpensive Upgradation of Legacy Cameras Using Software and Hardware Architecture

of the proposed system was due to the local monitoring
and threat information storage by each camera rather than a
centralized unit.

Threat information about each threat was saved in the local
storage associated with each camera along with the threat id.
Information about each threat can be queried through each
camera. A query about a specific threat was forwarded to the
nodes in the direction where the threat was moving. A cam-
era that identified the threat logged the data in the system,
predicted the next direction of the threat, and forwarded the
query to the neighboring node in the same direction. The
same process continued until the threat was not available in
the frame of any camera in the network. Distributed query,
reduced the average time taken to identify a threat (Table 4)
as the identification was made through distributed nodes
(experiment II) rather than the central system (experiment I).

The proposed system has reduced the overall time cost for
identifying and tracking the path of the threat. It has also
reduced the need and cost of data transmission and receiving
from/to the centralized server. Blockchain-based data logging
about each threat, and the processing capability of each node
has reduced the overall cost of data submission and retrieval
from a centralized server.

VII. CONCLUSION
Based on the discussion above, we can conclude that instead
of replacing hundreds of thousand cameras, the capabilities of
these cameras should be enhancedwith the proposed software
architecture that can run on low-cost smart hardware. The
proposed software architecture and sensors give the cam-
eras an ability to communicate with neighboring cameras,
to identify and track the threats without the need for costly
cloud-based infrastructure. Moreover, we concluded that a
distributed system is better than a centralized system due to
time and cost factors. This strongly adheres to the results of
the experiment. The proposed system also comes up with
some limitations i.e. it does not consider the fast rotations
in the captured images. If a video frame contains immediate
rotation of faces, the proposed system will fail to identify
them. The proposed system does not provide coverage /
surveillance in blind spots. The network in the proposed
system does not provide continuous coverage i.e. if a threat is
recognized first by a camera, the next time the threat appears
in the same camera, it will not be recognized by this camera.
The study can be extended to reduce the error rate in path
prediction of the threat together with passing an alert message
concerning authorities after identifying a threat.

REFERENCES
[1] J. C. Klontz and A. K. Jain, ‘‘A case study on unconstrained facial recogni-

tion using the Bostonmarathon bombings suspects,’’ Michigan State Univ.,
East Lansing, MI, USA, Tech. Rep. 13-4, 2013, p. 1, vol. 119, no. 120.

[2] S. Ojha and S. Sakhare, ‘‘Image processing techniques for object tracking
in video surveillance—A survey,’’ in Proc. Int. Conf. Pervasive Comput.
(ICPC), 2015, pp. 1–6.

[3] D. Koller, G. Klinker, E. Rose, D. E. Breen, R. T. Whitaker, and
M. Tuceryan, ‘‘Real-time vision-based camera tracking for augmented
reality applications,’’ in Proc. VRST, vol. 97, 1997, pp. 87–94.

[4] A. Jalal, S. Kamal, andD. Kim, ‘‘A depth video-based human detection and
activity recognition using multi-features and embedded hidden Markov
models for health care monitoring systems,’’ Int. J. Interact. Multimedie
Artif. Intell., vol. 4, no. 4, p. 54, Jan. 2017.

[5] A. Jalal, S. Kamal, andD. Kim, ‘‘Individual detection-tracking-recognition
using depth activity images,’’ in Proc. 12th Int. Conf. Ubiquitous Robots
Ambient Intell. (URAI), Oct. 2015, pp. 450–455.

[6] Z. Xu, L. Mei, C. Hu, and Y. Liu, ‘‘The big data analytics and applications
of the surveillance system using video structured description technology,’’
Cluster Comput., vol. 19, no. 3, pp. 1283–1292, Sep. 2016.

[7] Y.-L. Chen, T.-S. Chen, L.-C. Yin, T.-W. Huang, S.-Y. Wang, and
T.-C. Chieuh, ‘‘City eyes: An unified computational framework for intelli-
gent video surveillance in cloud environment,’’ in Proc. IEEE Int. Conf.
Internet Things(iThings), IEEE Green Comput. Commun. (GreenCom)
IEEE Cyber, Phys. Social Comput. (CPSCom), Sep. 2014, pp. 324–327.

[8] M. S. Hossain, M.M. Hassan, M. A. Qurishi, and A. Alghamdi, ‘‘Resource
allocation for service composition in cloud-based video surveillance plat-
form,’’ in Proc. IEEE Int. Conf. Multimedia Expo Workshops, Jul. 2012,
pp. 408–412.

[9] Q. Li, T. Zhang, and Y. Yu, ‘‘Using cloud computing to process intensive
floating car data for urban traffic surveillance,’’ Int. J. Geograph. Inf. Sci.,
vol. 25, no. 8, pp. 1303–1322, Aug. 2011.

[10] D. J. Neal and S. Rahman, ‘‘Video surveillance in the cloud?’’ 2015,
arXiv:1512.00070. [Online]. Available: https://arxiv.org/abs/1512.00070

[11] R. Chandana, S. Jilani, and S. J. Hussain, ‘‘Smart surveillance system using
thing speak and Raspberry Pi,’’ Int. J. Adv. Res. Comput. Commun. Eng.,
vol. 4, no. 7, pp. 214–218, 2015.

[12] K. Abas, K. Obraczka, and L. Miller, ‘‘Solar-powered, wireless smart
camera network: An IoT solution for outdoor video monitoring,’’ Comput.
Commun., vol. 118, pp. 217–233, Mar. 2018.

[13] Y. Wang, C. von der Weth, T. Winkler, and M. Kankanhalli, ‘‘Tweeting
camera: A new paradigm of event-based smart sensing device,’’ in Proc.
10th Int. Conf. Distrib. Smart Camera, 2016, pp. 210–211.

[14] R. Du, S. Bista, and A. Varshney, ‘‘Video fields: Fusing multiple surveil-
lance videos into a dynamic virtual environment,’’ in Proc. 21st Int. Conf.
Web3D Technol., 2016, pp. 165–172.

[15] T. Sieberth, R. Wackrow, and J. H. Chandler, ‘‘Automatic detection of
blurred images in UAV image sets,’’ ISPRS J. Photogram. Remote Sens.,
vol. 122, pp. 1–16, Dec. 2016.

[16] M. S. Bakli, M. A. Sakr, and T. H. A. Soliman, ‘‘A spatiotemporal algebra
in Hadoop for moving objects,’’ Geo-Spatial Inf. Sci., vol. 21, no. 2,
pp. 102–114, Apr. 2018.

[17] A. Jalal, M. A. K. Quaid, and K. Kim, ‘‘A wrist worn acceleration based
humanmotion analysis and classification for ambient smart home system,’’
J. Elect. Eng. Technol., vol. 14, no. 4, pp. 1–7, 2019.

[18] A. Jalal and M. Mahmood, ‘‘Students’ behavior mining in e-learning
environment using cognitive processes with information technologies,’’
Educ. Inf. Technol., vol. 24, no. 5, pp. 2797–2821, 2019.

[19] A. Jalal, M. A. K. Quaid, andM. A. Sidduqi, ‘‘A triaxial acceleration-based
human motion detection for ambient smart home system,’’ in Proc. 16th
Int. Bhurban Conf. Appl. Sci. Technol. (IBCAST), Jan. 2019, pp. 353–358.

[20] A. Jalal and S. Kamal, ‘‘Improved behavior monitoring and classification
using cues parameters extraction from camera array images,’’ Int. J. Inter-
act. Multimedia Artif. Intell., vol. 5, no. 5, pp. 71–78, 2019.

[21] Q. Huang, J. Yang, and Y. Qiao, ‘‘Person re-identification across multi-
camera system based on local descriptors,’’ in Proc. 6th Int. Conf. Distrib.
Smart Cameras (ICDSC), 2012, pp. 1–6.

[22] A. Jalal, Y. Kim, S. Kamal, A. Farooq, and D. Kim, ‘‘Human daily activity
recognition with joints plus body features representation using Kinect
sensor,’’ in Proc. Int. Conf. Inform., Electron. Vis. (ICIEV), Jun. 2015,
pp. 1–6.

[23] H. Yoshimoto, N. Date, and S. Yonemoto, ‘‘Vision-based real-time motion
capture system using multiple cameras,’’ in Proc. IEEE Int. Conf. Multi-
sensor Fusion Integr. Intell. Syst. (MFI), Nov. 2003, pp. 247–251.

[24] A. Jalal and S. Kamal, ‘‘Real-time life logging via a depth silhouette-based
human activity recognition system for smart home services,’’ in Proc. 11th
IEEE Int. Conf. Adv. Video Signal Based Surveill. (AVSS), Aug. 2014,
pp. 74–80.

[25] A. Jalal and S. Kim, ‘‘The mechanism of edge detection using the block
matching criteria for the motion estimation,’’ in Proc. Korea HCI Soc.
Conf., 2005, pp. 484–489.

[26] A. Jalal and M. A. Zeb, ‘‘Security and QoS optimization for distributed
real time environment,’’ in Proc. 7th IEEE Int. Conf. Comput. Inf. Technol.
(CIT), Oct. 2007, pp. 369–374.

40116 VOLUME 8, 2020

U. Habiba et al.: Inexpensive Upgradation of Legacy Cameras Using Software and Hardware Architecture

[27] D. Singh and C. K. Mohan, ‘‘Graph formulation of video activities for
abnormal activity recognition,’’ Pattern Recognit., vol. 65, pp. 265–272,
May 2017.

[28] K. Kim, A. Jalal, and M. Mahmood, ‘‘Vision-based human activity recog-
nition system using depth silhouettes: A smart home system for monitoring
the residents,’’ J. Elect. Eng. Technol., vol. 14, no. 6, pp. 2567–2573,
Nov. 2019.

[29] M. Mahmood, A. Jalal, and M. A. Sidduqi, ‘‘Robust spatio-temporal
features for human interaction recognition via artificial neural network,’’
in Proc. Int. Conf. Frontiers Inf. Technol. (FIT), Dec. 2018, pp. 218–223.

[30] A. Jalal, S. Kamal, and C. A. Azurdia-Meza, ‘‘Depth maps-based human
segmentation and action recognition using full-body plus body color cues
via recognizer engine,’’ J. Elect. Eng. Technol., vol. 14, no. 1, pp. 455–461,
Jan. 2019.

[31] Z. Shao, J. Cai, and Z.Wang, ‘‘Smart monitoring cameras driven intelligent
processing to big surveillance video data,’’ IEEE Trans. Big Data, vol. 4,
no. 1, pp. 105–116, Mar. 2018.

[32] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, ‘‘Firework: Data processing
and sharing for hybrid cloud-edge analytics,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 9, pp. 2004–2017, Sep. 2018.

[33] S. Tang, M. Andriluka, B. Andres, and B. Schiele, ‘‘Multiple people
tracking by lifted multicut and person re-identification,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 3539–3548.

[34] L. Beyer, S. Breuers, V. Kurin, andB. Leibe, ‘‘Towards a principled integra-
tion of multi-camera re-identification and tracking through optimal Bayes
filters,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jul. 2017, pp. 29–38.

[35] C. Stahlschmidt, A. Gavriilidis, J. Velten, and A. Kummert, ‘‘Applications
for a people detection and tracking algorithm using a time-of-flight cam-
era,’’Multimedia Tools Appl., vol. 75, no. 17, pp. 10769–10786, Sep. 2016.

[36] Y. T. Tesfaye, E. Zemene, A. Prati, M. Pelillo, and M. Shah, ‘‘Multi-
target tracking in multiple non-overlapping cameras using fast-constrained
dominant sets,’’ Int. J. Comput. Vis., vol. 127, no. 9, pp. 1303–1320,
Sep. 2019.

[37] M. C. Liem and D. M. Gavrila, ‘‘Joint multi-person detection and tracking
from overlapping cameras,’’ Comput. Vis. Image Understand., vol. 128,
pp. 36–50, Nov. 2014.

[38] V. P. Bhuvana, M. Schranz, C. S. Regazzoni, B. Rinner, A. M. Tonello, and
M. Huemer, ‘‘Multi-camera object tracking using surprisal observations
in visual sensor networks,’’ EURASIP J. Adv. Signal Process., vol. 2016,
no. 1, p. 50, 2016.

[39] J. Wang, J. Pan, and F. Esposito, ‘‘Elastic urban video surveillance sys-
tem using edge computing,’’ in Proc. Workshop Smart Internet Things
(SmartIoT), 2017, p. 7.

[40] N. Jiang, S. Bai, Y. Xu, C. Xing, Z. Zhou, and W. Wu, ‘‘Online inter-
camera trajectory association exploiting person re-identification and cam-
era topology,’’ in Proc. ACM Multimedia Conf. Multimedia Conf. (MM),
2018, pp. 1457–1465.

[41] K. A. S. Kumar, K. R. Ramakrishnan, and G. N. Rathna, ‘‘Distributed
person of interest tracking in camera networks,’’ in Proc. 11th Int. Conf.
Distrib. Smart Cameras (ICDSC), 2017, pp. 131–137.

[42] T. Wang, J. Chen, P. Honeine, and H. Snoussi, ‘‘Abnormal event detection
via multikernel learning for distributed camera networks,’’ Int. J. Distrib.
Sensor Netw., vol. 11, no. 9, Sep. 2015, Art. no. 989450.

[43] X.Wang, ‘‘Intelligent multi-camera video surveillance: A review,’’ Pattern
Recognit. Lett., vol. 34, no. 1, pp. 3–19, Jan. 2013.

[44] L. Esterle, P. R. Lewis, R. McBride, and X. Yao, ‘‘The future of camera
networks: Staying smart in a chaotic world,’’ in Proc. 11th Int. Conf.
Distrib. Smart Cameras, 2017, pp. 163–168.

[45] R. Verma and J. Ali, ‘‘A comparative study of various types of image noise
and efficient noise removal techniques,’’ Int. J. Adv. Res. Comput. Sci.
Softw. Eng., vol. 3, no. 10, pp. 1–6, 2013.

[46] H. Soleimani and S. Zafar, ‘‘Review—Moving object detection using
background subtraction,’’ 2018.

[47] H. Singh and J. S. Sodhi, ‘‘Image enhancement using sharpen filters,’’ Int.
J. Latest Trends Eng. Technol., vol. 2, no. 2, pp. 84–94, 2013.

[48] VGG Face-16 CNN Model. Accessed: Jan. 15, 2019. [Online]. Available:
https://www.robots.ox.ac.uk/~vgg/software/vgg_face/

[49] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, ‘‘Labeled faces
in the wild: A database forstudying face recognition in unconstrained envi-
ronments,’’ Univ. Massachusetts, Amherst, MA, USA, Tech. Rep. 07-49,
2008.

[50] A. Karpathy. (2016). CS231n Convolutional Neural Networks for Visual
Recognition. Stanford University. Accessed: Feb. 1, 2019. [Online]. Avail-
able: http://cs231n.github.io/

[51] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis, ‘‘Human
detection using partial least squares analysis,’’ inProc. IEEE 12th Int. Conf.
Comput. Vis., Sep. 2009, pp. 24–31.

[52] Y. Xing, H. Nagahashi, and X. Zhang, ‘‘A 3D dynamic visualization
surveillance system,’’ Int. J. Comput. Sci. Issues, vol. 13, no. 5, pp. 36–44,
2016.

[53] The University of Edinburgh. (2007). BEHAVE Interactions Test
Case Scenarios. Accessed: Feb. 15, 2019. [Online]. Available:
http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/

[54] H.Wu,W. Pan, X. Xiong, and S. Xu, ‘‘Human activity recognition based on
the combined SVM&HMM,’’ in Proc. IEEE Int. Conf. Inf. Autom. (ICIA),
2014, pp. 219–224.

[55] L. Piyathilaka and S. Kodagoda, ‘‘Gaussian mixture based HMM for
human daily activity recognition using 3D skeleton features,’’ in Proc.
IEEE 8th Conf. Ind. Electron. Appl. (ICIEA), Jun. 2013, pp. 567–572.

UME HABIBA is currently pursuing the master’s
degree in computer science with the Computer
Science and Engineering Department, University
of Engineering and Technology, Lahore, Pakistan.
She is also working as a Research Assistant with
UET Lahore. Her research interests include gami-
fication and adaptive learning.

MUHAMMAD AWAIS received the M.C.S.
degree (Hons.) in computer science from Punjab
University and the Ph.D. degree in computer sci-
ence from the University of Engineering and Tech-
nology, Lahore, Pakistan. He is currently working
as an Assistant Professor with the Computer
Science and Engineering Department, University
of Engineering and Technology. His research
interests include artificial intelligence, reinforce-
ment learning, adaptive e-learning systems, and
affective computing.

MILHAN KHAN is currently pursuing the Ph.D.
degree with the University of Engineering and
Technology, Lahore, Pakistan. He is also a
Lecturer with the Computer Science Department,
University of Agriculture, Faisalabad, Pakistan.
His research interests include blockchain, software
metric, and software design.

ABDUL JALEEL received the B.S. degree in com-
puter science and engineering and the M.S. and
Ph.D. degrees in computer science from UET,
in 2006, 2010, and 2019, respectively. He is work-
ing as an Assistant Professor with the Rachna Col-
lege, University of Engineering and Technology.
His research interest includes the development of
self-managing software applications.

VOLUME 8, 2020 40117

