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ABSTRACT Deep learning methods for semantic image segmentation can effectively extract geographical
features from very high-resolution (VHR) remote sensing images. However, these methods experience over-
segmentation in low-level features and a breakdown in the integrity of objects with fixed patch sizes due to the
multi-scaled geographical features. In this study, a dual attentionmechanism is introduced and embedded into
densely connected convolutional networks (DenseNets) to form a dense-global-entropy network (DGEN)
for the semantic segmentation of VHR remote sensing images. In the DGEN architecture, a global attention
enhancement module is developed for context acquisition, and a local attention fusion module is designed
for detail selection. This network presents the improved semantic segmentation performance of test ISPRS
2D datasets. The experimental results indicate an improvement in the overall accuracy (OA), F1, kappa
coefficient and mean intersection over union (MIoU). Compared with the DeeplabV3+ and SegNet models,
the OA improves by 2.79% and 1.19%; the mean F1 improves by 3.43% and 0.88%; the kappa coefficient
improves by 4.04% and 1.82%; and the MIoU improves by 5.22% and 1.47%, respectively. The experiments
showed that the dual attention mechanism presented in this study can improve segmentation and maintain
object integrity during the encoding-decoding process.

INDEX TERMS Attention mechanism, DenseNet, semantic segmentation, very high-resolution remote
sensing images.

I. INTRODUCTION
Very high-resolution (VHR) remote sensing images have
become an important source of information for Earth sur-
face monitoring. The semantic segmentation of VHR remote
sensing images has been widely studied [1], [2] due to its
outstanding performance in the classification of VHR remote
sensing images. However, the finer spatial resolution in VHR
leads to an increase in the intra-group variability between
objects and a decrease in the inter-class variability between
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different classes, thus reducing the statistical separability of
different land cover classifications in the spectral domain and
impacting the accuracy of the classification [3], [4].

In addition, the limited spectral resolution of VHR sensors
further increases the complexity of the semantic segmentation
of VHR images [4]. Compared with low-resolution images,
VHR images contain more ground details and have lower
spectral resolution. Generally, VHR images have only red-
green-blue (RGB) channels, and some contain near-infrared
(NIR) channels [5]. In aVHR image, the information required
for classification cannot be completely captured by the spec-
tral intensity. The texture and spatial contexts become very
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important to the dense classification of each pixel. Therefore,
many conventional methods focus on extracting features from
the spatial neighborhood of pixels [1], [3], [6]–[18].

In general, object-oriented methods have been used for
VHR image classification [1], [18] and mainly include
two processes: segmentation and classification. During the
segmentation process, multi-resolution (MR) [19], mean
shift [20] and other image segmentation methods are applied
for image segmentation; during the classification process,
the computed target features (such as color, texture, and
geometric features) are used as the inputs for supervised
classification or unsupervised classification, or feature trans-
formation rule sets are designated to achieve recognition and
classification [21].

These kinds of models are constructed by features, which
are artificially extracted, and are also limited to those features,
since the various ground objects in the real data may not be
classified using a specific set of features [22].

Deep learning provides another way to effectively identify
features from the training set [22]. Deep learning enables
the use of both supervised and unsupervised feature learning
from very large raw image data sets [23]. In recent years,
deep learning architectures have achieved great progress in
the fields of computer vision, audio recognition, and natu-
ral language processing. Influenced by deep learning, many
computational visual deep learning architectures have been
used in remote sensing image analysis tasks [5], [24]–[27],
and remarkable progress has been made.

Convolutional neural network (CNN) models based on
deep learning theory are widely used in the semantic seg-
mentation of VHR remote sensing images. The semantic
segmentation models for VHR remote sensing images based
on CNNs mainly include patch-based models [28]–[30] and
fully convolutional network (FCN) [2], [27], [28], [31], [32].
Patch-based models were among the first deep learning
semantic segmentation models developed for remote sens-
ing images and predict each pixel by evaluating a region
surrounding each pixel. This kind of model is faced with
the problems of computing redundancy and the loss of edge
information [2], [27].

Furthermore, FCNmodels have become the mainstream in
the deep learning semantic segmentation of remote sensing
images [31]. For example, Kampffmeyer et al. [28] proposed
a CNN method to extract small targets from VHR remote
sensing images. Marmanis et al. [5] used the U-net model for
semantic image segmentation. Sherrah [27] proposed high-
resolution aerial semantic image segmentation based on an
FCN, which uses the dilated convolution of DeepLab [33]
to enlarge the convolution receptive field. As upgrades,
DeeplabV3 and DeeplabV3+ [34] are proposed with bet-
ter performance based on DeepLab. Marmanis et al. [2]
added boundary detection to the structure of SegNet [35]
to improve the performance of the semantic segmentation
of VHR remote sensing images. Audebert et al. [32] used
deep convolution networks to fuse multimodal and multiscale
remote sensing data for the semantic segmentation of VHR

remote sensing images and effectively compensated for the
lack of spectral information in the VHR data to achieve better
semantic segmentation results. In addition, Xu et al. [36]
also designed CNNs to extract buildings from VHR images
and achieved good results. Yao et al. [37] proposed DCCN
model to improve the classification by enhancing the object
boudaries using coordinate convolution and achieved very
good results.

In principle, an FCN model contains a downsampling pro-
cess, an upsampling process and skip connections [38]. The
downsampling process is composed of convolution layers
and pooling layers and is employed to extract multilevel
discriminative feature maps and generate low-resolution fea-
ture maps with improved discrimination. The upsampling
process is composed of convolution layers and deconvolution
layers. This process mainly restores the resolution of the
feature maps generated by the downsampling process and
generates segmentation maps with the same resolution as the
original image. Downsampling can obtain a large context and
generate discriminative feature maps by pooling layers to
enlarge the receptive field of each pixel, but it also leads to
losses of high-frequency details and spatial information of the
object. Therefore, deconvolution or interpolation is applied
to restore the spatial resolution of the downsampled feature
map during upsampling, but deconvolution or interpolation
cannot provide the precise localization of boundaries and
high-frequency details, which significantly impacts the accu-
racy of semantic segmentation [38]. Skip connections help
retain high-frequency details during the upsampling process
and improve the accuracy of semantic segmentation by fusing
the features generated during the early downsampling process
with the highly discriminant feature maps from the deeper
layer [32].

For the abundant detailed information regarding objects
in VHR remote sensing images, such as roof materials and
skylights, skip connections are used to recover many fea-
ture details, which will lead to the introduction of a large
number of redundant low-level features. However, this pro-
cess causes a decrease in the discrimination of high-level
features [36].

For the widespread continuous objects in VHR remote
sensing images, global context information can effectively
improve the perception of the scene and improve the con-
sistency of pixel classification [39]. In deep neural net-
works, the size of the receptive field can roughly indicate
the degree of usage of contextual information. However, the
literature [40] notes that the practical receptive field of a CNN
is much smaller than the theoretical receptive field, especially
in high-level layers. Additionally, to facilitate deep learning
network training, remote sensing images are usually divided
into fixed size patches (such as 256× 256 size patches). This
process will separate pixels from the same objects and lead to
the loss of image context information, which requires further
tiling and stitching. These conditions result in many networks
that are unable to fully integrate important global context
information.
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To solve these problems, namely, (1) the mis-
discrimination of the features of a skip connection and
(2) context information losses of the FCN network when pro-
cessing the VHR remote sensing images, in this paper, a novel
semantic segmentation network for VHR remote sensing
images called the dense-global-entropy network (DGEN) is
proposed. In this network, the structure is based on a densely
connected convolutional network (DenseNet) [41] to extract
multilevel features due to the powerful capacities of feature
extractions and information reuses [42]. Moreover, due to
the capabilities of selecting the most informative compo-
nents of the input image while suppressing the noise and
background of deep-learning-based attention mechanisms
[43], [44], which have attracted wide attention in the field of
computational vision [39], [43], [45]–[47] and remote sens-
ing scene classification [31], [48]–[52], the global attention
enhancement module and the local attention fusion module
(see Figure 2, 3 for details) are designed and embedded
into the network to enhance the global context information
and recover the mis-discrimination of objects. The global
attention enhancement module is used to strengthen the
global context information of highly discriminant features by
enlarging the receptive fields in upsampling. The local atten-
tion fusion module assigns weights by information entropy to
weaken the background information and obtain useful local
detailed information.

The remainder of this paper is organized as follows.
A detailed description of the proposed DGEN is given in
Section II. The designment and metrics of the experiments
are provided in Section III. The results and comparisons are
given in Section IV. The discusstions are given in Section V.
Finally, conclusion is drawn in Section VI.

II. METHODOLOGY
A. DGEN MODEL
In the DGEN, an encoding-decoding architecture is designed
for the semantic segmentation of VHR remote sensing images
based on DenseNet. The encoder part of the DGEN is mainly
used to extract multilevel features from the input image.
The encoder is built from the convolutional layers, the dense
blocks, the transition layers, and the downsampling oper-
ation. The decoder part aims to enlarge the feature maps
extracted by the encoder to produce a final segmentation map
with the same resolution as the input image. The decoder is
built from the convolutional layers, the nonlinear activation
layers, and the upsampling operation. The decoder gradually
recovers the details and spatial information of highly discrim-
inant feature maps by using operations, such as the convolu-
tional layers, the global attention enhancement modules and
the local attention fusion modules. The overall structure of
the DGEN proposed in this paper is shown in Figure 1.

The DenseNet used in the DGEN encoder is different
from the traditional network structure. In a traditional CNN,
the convolutional network with L layers has L connections.
Then, DenseNet has L (L + 1) / 2 direct connections.

FIGURE 1. The overview architecture of the dense-global-entropy
network (DGEN).

DenseNet uses dense connectivity to further improve the flow
of information between layers. For each layer, the feature
maps of all preceding layers are used as inputs, and its own
feature maps are also used as inputs for all subsequent layers.
In this way, each layer can access the loss gradient formed
between the end and the beginning of the model during
training. This connection pattern effectively improves the
flow of information between layers, alleviates the problem
of the disappearing gradient of the deep CNN, and makes
the model easy to train. In addition, this connection pattern
can also improve the reuse of features. However, the down-
sampling operation is very important for a deep CNN, and
downsampling will lead to a change in the size of the feature
map. The concatenation operation between feature maps of
different sizes cannot be completed. Therefore, DenseNet
divides the networks into multiple densely connected dense
blocks (DenseBlocks). In each DenseBlock, all layers main-
tain dense connectivity; individual DenseBlocks are con-
nected through the transition layers. In a single DenseBlock,
the function Fl (.)(batch normalization -ReLU- convolution
(3 × 3)) is used for the nonlinear transition between layers.
The density connection can be defined as follows:

Xl = Fl ([X0,X1, . . . ,Xl−1]) (1)

where Xl is the output feature map of layer 1 and
[X0,X1, . . . ,Xl−1] is the concatenation of the feature maps of
all preceding l layers. This concatenation DenseNet generates
too many feature maps. To effectively control the parameters
of the model, DenseNet defines a growth rate (K) to control
the number of feature maps.

The transition layer is mainly used for convolution and
pooling. Each transition layer is composed of a batch nor-
malization, a ReLU, and an average pooling layer (2× 2).
Generally, the decoder part of the encoder-decoder archi-

tecture uses a skip connection to recover the detailed infor-
mation during the process of generating a final segmentation
map with the same resolution as the input image. Unlike other
encoder-decoder architectures, we use the global attention
enhancement module to enhance the global context infor-
mation of the highly discriminant features in the decoder.
Subsequently, the deconvolution layers are used to expand the
sizes of these feature maps, and the expanded feature maps
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and the low-level feature maps are used as inputs for the local
attention fusion module. In the local attention fusion module,
the highly discriminant feature graph, which incorporates
the global context information as the local feature fusion,
is used to guide the selection of low-level features to recover
the high-frequency detailed information. Then, the features
that fuse global context information, restore spatial infor-
mation and identify local details are used as the inputs for
the DenseBlock for further processing. Finally, we use the
1 × 1 convolution to map the feature maps into different
classifications.

Compared to traditional FCN structures that directly use
skip connection in upsampling to recover details, the pro-
posed DGEN model (see details in Figure 1) uses the global
attention enhancement module and local attention fusion
module instead of upsampling processes. Therefore, the
global attention enhancement module enhances the global
information to further improve classification consistency.
The enhanced global features are then used as bases of
weighting for local information and are inputted to select
the high-frequency low-level features to recover the detailed
information and avoid information redundancy due to the skip
connection.

B. THE GLOBAL ATTENTION ENHANCEMENT
Global average pooling is the simplest way to obtain global
context information. The global average pooling operation
has been used by SENet [47], the pyramid attention net-
work [53] and other networks to extract the global features of
an image. The global information enhancement module also
uses the global average pooling layer to extract the global
context information from the feature maps and enhance the
global information of the feature maps. The architecture of
the global information enhancement module is shown in
Figure 2. In the global information enhancement module,
first, we use a global pooling layer to extract the global con-
text information from high-level feature maps. Then, the out-
put of the global context information is activated by a sigmoid
layer to be used as the weight of the feature maps. Finally,
the weighted features are added to the feature maps to obtain
the feature maps that integrate the global information.

FIGURE 2. The architecture of the global attention enhancement module.

C. THE LOCAL ATTENTION FUSION
In deep CNNs, the feature maps acquired in the early layer
with rich spatial location information are less discriminating
than those acquired in the subsequent layers. Such feature

maps are directly passed to the decoder by the skip connection
and may increase the ambiguity of the final result. The atten-
tion mechanism is a tool used to assign resources to the most
informative part of the input information. To prevent location
information from weakening the classification information,
we designed a local attention fusion module inspired by
the attention mechanism. Information entropy is an index
used to measure the level of information clutter. A higher
value of information entropy indicates that the information
is more uncertain and more chaotic. In contrast, a lower
value of information entropy shows that the information is
more defined and more stable. Therefore, we can use the
information entropy of the pixels over highly discriminative
features to guide the selection of low-level features. That
is, when pixels have high entropy values, the information is
unstable; that is, the more low-level features need to be fused
in the highly discriminative feature maps to help restore the
details and improve the accuracy of semantic segmentation.
In contrast, less low-level information needs to be integrated.
In the local attention fusion module, the high discriminative
features map is first mapped to different classifications using
a 1 × 1 convolution, and the output of the classification is
activated by a SoftMax layer. The output of the activation is
normalized to [0, 1]. Subsequently, the information entropy of
each pixel is calculated by Equation 2, and this value is used
as the weight of the low-level features. Then, the information
entropy of each pixel is multiplied by low-level features to
obtain the weighted low-level feature. Finally, weighted low-
level feature maps are added to the highly discriminative
feature maps as inputs for DenseBlock to gradually recover
detailed object information. The architectures of the local
information fusion module are shown in Figure 3.

H (x)=E
[
−log2 (pi (x))

]
=−

∑n

j=1
pi(x) ∗ log2 (pi (x))

(2)

where E
[
−log2 (pi (x))

]
is the information entropy of pi(x),

and pi(x) is the probability of pixel x belonging to category j.

FIGURE 3. The architectures of the local attention fusion module.

D. IMPLEMENTATION
The DGEN contains 10 dense blocks in the encoder and
decoder, including 52 convolution layers. The detailed archi-
tectures of DGEN are shown in Figure 4. Following the input
of the network, we use a convolution layer with 16 convo-
lution kernels of 7 × 7 to generate the initial feature map.
In the encoder, the transition_down module is built from a
1× 1 convolution layer, a drop_out layer and a 2× 2 average
pooling layer with stride=2. In the decoder, we use the 3× 3
‘‘transposed_convolution’’ layer with stride=2 to upsample.
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FIGURE 4. Detailed architecture of DGEN.

At the end of the network, we use a 1 × 1 convolution layer
and a SoftMax classifier to output the final prediction. The
growth rate of each dense block is set to 32.

III. EXPERIMENTS
A. DATASET
In this paper, we use VHR remote sensing images from the
International Society for Photogrammetry and Remote Sens-
ing (ISPRS) 2D Semantic Labeling Challenge. The ISPRS
2D datasets include data from Potsdam, Germany, and other
cities. Potsdam is a typical historic city with large building
blocks, narrow streets and dense settlement structures. Each
dataset is manually classified into six of the most common
land cover classes. The Potsdam dataset contains 38 images
of 6000× 6000, and 24 of these images have label data.
To verify the validity of our model, we divide the labeled
data into two parts: 80% for a training set and 20% for a
test set. Of the 24 labeled images of Potsdam, 5 images
with variety and balance on ground object type, which listed
as 4_12, 5_11, 5_12, 6_12 and 7_11, are selected for test-
ing set, and other 19 images are used in training set (see
in Table 1). To facilitate training, we cut the labeled datasets
into 256× 256, 320× 320 and 448× 448 sections. Finally,
21527 training samples and 5326 test samples are generated.

TABLE 1. Image selection of ISPRS 2D semantic labeling data - Potsdam.

B. TRAINING
Our experiments are based on TensorFlow. The ‘‘variance_
scaling_initializer’’ is used to initialize our model, and the
Adam optimizer with an initial learning rate of 0.001 is used
to optimize the network when adjusting parameters, such as
weights and biases. The rate of drop-out for all ‘‘drop_out’’
layers is set to 0.2. In addition, the number of feature maps
generated by each convolution layer in dense blocks is set
to 32. There are 150 epochs during training, and each epoch
has 2000 iterations. The batch of training samples (batch)
is set to 12. The graphics processing unit (GPU) used for
training models is GTX 1080Ti.

C. METRICS
To test the performance of the proposedmodel, the pixel accu-
racy (PA), F1 score, kappa coefficient and mean intersection
over union (MIoU) are chosen to evaluate the models.

1) PIXEL ACCURACY (PA)
The PA is a general statistic evaluation metric for accuracy.
In this paper, this metric measures the precision of matched
pixels, including the foreground and background. The equa-
tion is as follows:

PA =
pf + pb
N

(3)

where Pf and Pb represent the positive numbers for the
foreground and background at the pixel level, respectively,
and N is the number of pixels in the test image.

2) F1 SCORE
The F1 score calculates through the precision (P) and
recall (R) and is a powerful evaluationmetric for the harmonic
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mean of P and R. The F1 score can be calculated as follows:

F1 =
2 ∗ P ∗ R
P+ R

=
2 ∗ TP

2 ∗ TP+ FN + FP
(4)

R =
TP

TP+ FN
(5)

P =
TP

TP+ FP
(6)

where R represents the proportion of matched pixels in the
ground truth and P is the ratio of matched pixels in the
prediction results. TP, FP andFN represent the number of true
positives, false positives and false negatives, respectively.

Compared with PA, the F1 score is more impacted by the
smaller one in P and R. Under the same PA condition, a higher
F1 score requires the balance between precision and recall.
The shortage of either precision or recall results in a more
dramatic decrease in the F1 score than in the PA.

3) KAPPA COEFFICIENT
The kappa coefficient is a common metric of a consistency
check. This metric can also be used to evaluate the accuracy
of semantic segmentation. Based on the confusion matrix,
the kappa coefficient can be formulated as:

k =
p0 − pe
1− pe

(7)

where p0 is the proportion of units in which the judges agree
and pe is the proportion of units for which agreement is
expected by chance.

Assume n pixels are expected to be classified into m
classes, set the ground truth numbers of pixels for each class
are a1, a2, · · · , am; the classified numbers of pixels for each
class are b1, b2, · · · , bm; the correct classified numbers of
pixels of each class are c1, c2, · · · , cm. Thus:

p0 =

∑m
i=1 ci
n

(8)

pe =

∑m
i=1 ai × bi
n× n

(9)

In the semantic segmentation context, p0 and pe can also
be formulated as:

p0 =
∑m

i=1
(
TPi
n

) (10)

pe =
∑m

i=1
(
TPi + FPi

n
�
TPi + FN i

n
) (11)

where m is the number of expected classes; TP, FP and FN
represent the number of true positives, false positives and
false negatives, respectively.

Basically, the kappa coefficient changes between 0 and 1.
A larger value indicates better consistency.

4) MEAN INTERSECTION OVER UNION (MIoU)
MIoU is a standard metric for segmentation
(Garcia-Garcia et al., 2017). IoU is to ratio the intersection
and the union of the ground truth set and the predicted
segmentation set. The MIoU is the average value of the IoU

of each class. The MIoU in semantic segmentation can be
formulated as follows:

MIoU =
1
m

∑
(
Apred ∩ Atrue
Apred ∪ Atrue

) (12)

where m is the number of expected classes; Apred is the
prediction set, and Atrue is the set of corresponding ground
truth.

The MIoU is based on sets. The sets are regions of pixels
of the same class on the image, which also means objects,
instead of somemean value of the single pixels. The setsmake
the MIoU an object-oriented metric instead of pixel-based.
The MIoU can reflect the overlap ratio of predicted objects
and the corresponding object of ground truths.

IV. RESULTS AND COMPARISONS
A. RESULTS
After 150 epochs of iterations, our DGEN achieves state-
of-the-art results on the datasets (see Table 2). All results
are listed based on infrared, green and blue (IrGB) images
without any preprocessing or post-processing.

TABLE 2. The PA for each class, the OA, F1 score, Kappa coefficient (a) for
each class, and the MIoU (b) for the classification of all validation
datasets by the DGEN model.

After 150 epochs of iterations, our DGEN achieves state-
of-the-art results on the datasets (see Table 2). All results
are listed based on infrared, green and blue (IrGB) images
without any preprocessing or post-processing.

Our model achieves high scores for all five validation
images under the 4 metrics mentioned above. Specifically,
the overall accuracy (OA) of a pixel reaches 89.31%, which is
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a good general PA; the mean F1 score reaches 86.61%, which
indicates that both precision and recall are satisfactory; the
kappa coefficient reaches 74.47%, which shows good consis-
tency; and the MIoU reaches 77.08%. These data show that
the proposed DGEN performs well for land cover classifica-
tion from multiple perspectives.

B. PERFORMANCE OF THE DGEN
1) STATISTICAL COMPARISON
To demonstrate the performance of theDGEN,we also imple-
mented U-net [5], DeeplabV3+ [34] and SegNet [35] models
as comparisons to quantify the improvement. The results
of this comparison are listed in Table 3. For this dataset,
the results of the U-net lack performance and are 20%-35%
lower than all the selected metrics. Therefore, the U-net will
not be discussed in the following detailed analysis of this part.

TABLE 3. The comparison of the OA, F1 score, kappa coefficient (A) and
(B) for the classification of all validation datasets by the DeeplabV3+,
SegNet and DGEN models.

According to Table 3, DeeplabV3+ shows scores
of 86.52% for OA, 83.18% for F1, 80.43% for the kappa
coefficient and 71.86% for the MIoU. The DGEN by all
selected metrics outperforms the DeeplabV3+ model. The
overall PA of DGEN improved 2.79% compared with the
DeeplabV3+model. The mean F1 score improved by 3.43%,
which means that both precision and recall of the DGEN are
better balanced and have less shortage. The kappa coefficient
improved by 4.04%, which means a better classification
consistency. The MIoU improved by 5.22%, which is much
more than the improvement in the OA. This result means that
the improvement in the object-oriented point of view is even
more than the pixel-based point of view.

The results of SegNet show an 88.12% OA, an 85.73% F1,
an 82.65% kappa coefficient and a 75.61% MIoU. The Seg-
Net model exhibits better performance than DeeplabV3+ in
this experiment. However, according to Table 3, our DGEN
model still generally outperforms SegNet in every metric that
we used. Compared to the results of SegNet, the overall PA of
the DGEN improved by 1.19%. The mean F1 score improved
by 0.88%, which means that both the precision and recall of
the DGEN are slightly better balanced and have less shortage.
The kappa coefficient improved by 1.82%, which means
a better classification consistency. The MIoU improved by
1.47%, which means an improvement in the object-oriented
point of view. Overall, although with an approximate perfor-
mance for trees and a shortage for low vegetation, the pro-
posed DGEN proved better performance with respect to the
OA, F1, kappa coefficient and mean IoU than SegNet.

The overall performance improvements of the DGEN from
DeeplabV3+ and SegNet by the selected metrics are shown
in Figure 5.

FIGURE 5. Improvement in the DGEN from DeeplabV3+ and SegNet by
the OA, mean F1, kappa coefficient and mean IoU models.

2) VISUAL INSPECTION
A visual inspection and comparison of the classification
results by DeeplabV3+, SegNet and proposed DGEN are
presented in Figure 6. The columns of pictures are the 5 orig-
inal images, their DeeplabV3+ results, the SegNet results,
the proposed DGEN results and the corresponding ground
truth results.

All 3 models have their gains and losses. Generally,
the DGEN model performs the best, the SegNet follows
and DeeplabV3+ takes the third place, which supports the
statistical results in Table 3.

Specifically, the 3 models all have some misclassified
objects (see Figure 7-8). The visible misclassified areas
are basically the large-flat roofs of buildings. All 3 mod-
els are occasionally misclassified as roofs impervious by
over-segmentation details.

However, despite the closeness of the statistical results
by metrics, the object integrity and boundary quality of the
DGEN is visibly improved.

In Figure 9-10, we can say that DGEN performs best with
respect to object integrity. However, it is worth noting that
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FIGURE 6. The results of the classification from DeeplabV3+, SegNet and
proposed DGEN.

FIGURE 7. Misclassified in the top-left black box area of Figure 5 (a).

although SegNet performs very similarly to DGEN by statis-
tical metrics (less than 2%), the object integrities of SegNet
are hardly applicable. The buildings in Figures 8-9 of SegNet
are nearly completely broken. The shapes and boundaries of
these buildings are basically unrecognizable.

Moreover, the dissociated spots are also visible on SegNet
(see Figure 5 (a, d, e)). Figure 11-12 shows the high-density
regions of the dissociated spots in the SegNet results.

Furthermore, the DGENmodel also significantly improves
the boundary quality. As shown in Figure 13-15, the rough
boundaries of DeeplabV3+ and/or SegNet are restored by
DGEN.

In summary, our DGEN model is proved improvements by
both statistical metrics and visual inspection. In addition to
the improvements in the classification accuracies, the object
integrities and boundary qualities are restored and guaranteed
by our novel DGEN model. Notably, the statistical results do
not always represent the actual classification performance.

FIGURE 8. Misclassified in the bottom red box area of Figure 5 (c).

FIGURE 9. Comparison of the object integrity in the left-top red box area
Figure 5 (e).

FIGURE 10. Comparison of the object integrity in the right red box area of
Figure 5 (e).

For example, in this experiment, the results of SegNet show
high scores but low integrities. Therefore, the visual inspec-
tion of the images and results is still necessary.
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FIGURE 11. Comparison of the dissociated spots in the top-mid red box
of Figure 5 (a).

FIGURE 12. Comparison of the dissociated spots in the bottom-left red
box of Figure 5 (d).

FIGURE 13. Comparison of the boundary quality in the bottom red box of
Figure 5 (a).

V. DISCUSSIONS
A. CONTRIBUTION OF THE DUAL-ATTENTION
MECHANISM
To quantize the improvement in the dual attention mecha-
nisms, we also implement the model without the attention
modules. Both the global attention enhancement module and
local attention fusion module in the model are blocked and

FIGURE 14. Comparison of the boundary quality in the top red box of
Figure 5 (b).

FIGURE 15. Comparison of the boundary quality in the right red box of
Figure 5 (d).

skipped. This process changes the model back to our own
fully convolutional DenseNet (FC-DenseNet). It needs to be
clarified that this model here is only an FC-DenseNet-typed
network but is not the same as any published FC-DenseNet
model. Table 4 and Figure 16 shows the comparison of this
FC-DenseNet without a global attention enhancement mod-
ule and the local attention fusion module.

Compared with the no-attentional model, the average OA
of the DGEN model improved by 0.29%, the mean F1 score
improved by 0.48%, the kappa coefficient improved by
0.45%, and the MIoU improved by 0.54%.

Although these changes are not as significant as the DGEN
compared to DeeplabV3+ or SegNet (improves approxi-
mately 2-6%), the improvements are almost in all subitems.
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TABLE 4. The comparison of the OA, F1, kappa coefficient (a) and MIoU
Scores (b) for classification by the model with or without the ‘‘global
information enhancement module’’ and ‘‘local information fusion
module’’.

FIGURE 16. Improvement contribution of the dual attention mechanism.

All the statistical scores by any metric are increased. The
PA of every single class is improved at the same time. This
finding indicates that by the contribution of the dual atten-
tion mechanism, the performance of the network improves
insignificantly but robustly.

Moreover, visual inspection shows abundant evidence of
visible improvements in the object integrities and bound-
ary qualities. According to the visual comparisons shown
in Figure 17-21, several misclassifications are corrected,
the integrities of a large number of objects are restored and
the qualities of several boundaries are improved.

B. GENERALITY OF THE DGEN
To verify the generality of our DGEN model, we re-
implement the comparison experiment of the U-net,
DeeplabV3+, SegNet and DGEN models with another
dataset. This dataset is a group of images of Vaihingen,
Germany, which also includes the ISPRS 2DSemantic Label-
ing Challenge. The Vaihingen dataset contains 33 images
with 9 cm resolution. 16 images of them have label data.
In this experiment, images of area 11, 28 and 30 are selected

FIGURE 17. Comparison of the object validity and integrity with/without
the dual attention mechanism.

FIGURE 18. Comparison of the boundary quality with/without the dual
attention mechanism (1).

for testing set. The other 13 images are training set. Unlike
the downtown Potsdam data, the landscape of Vaihingen is
a mixture of urban areas and countrysides, which hypotheti-
cally can provide different results from previous experiments.

The results of the OA, mean F1, Kappa coefficient and
mean IoU scores are listed in Table 6.

According to Table 6, the results of the DGEN with dif-
ferent datasets also outperform the other models. The overall
improvements in the DGEN are plotted in Figure 22.
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FIGURE 19. Comparison of the boundary quality with/without the dual
attention mechanism (2).

FIGURE 20. Comparison of the boundary quality with/without the dual
attention mechanism (3).

FIGURE 21. Comparison of the boundary quality with/without the dual
attention mechanism (4).

Compared with U-net, our DGEN by all selected metrics
outperforms in this experiment. The overall PA of the DGEN
improved 3.67% over U-net. The mean F1 score improved

TABLE 5. Image selection Of ISPRS 2D semantic labeling data - vaihingen.

TABLE 6. The comparison of the OA, F1, kappa coefficient (a) and Miou
scores (b) for classification on the vaihingen dataset by U-Net,
DeeplabV3+, SegNet and DGEN.

by 4.22%, which means that both the precision and recall
of the DGEN are better balanced and have less shortage.
The kappa coefficient improved by 4.96%, which indicates a
significant enhancement in the consistency of the classifica-
tion. TheMIoU improved by 5.38%, which means a dramatic
improvement in the object-oriented point of view.

Compared with SegNet, DGEN outperforms generally
with only the impervious surface class surpassed. The overall
PA of the DGEN improved 1.00% from SegNet. The mean
F1 score improved by 1.92%, which indicates a better bal-
ance between the precision and recall. The kappa coefficient
improved by 1.42%. The MIoU improved by 2.36%.

Notably, in the Vaihingen dataset experiment, the results of
the U-net become competitive, but the results of DeeplabV3+
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FIGURE 22. Improvement in the DGEN from U-net and SegNet with
respect to the selected metrics.

FIGURE 23. Comparison of the boundary qualities of trees.

FIGURE 24. Comparison of the object integrities.

are poorer by more than 10% with regard to the selected
metrics. Combining the results of U-net in Table 3, the sta-
bility and generality of U-net and DeeplabV3+ are not as
satisfactory as SegNet and our DGEN.

Moreover, visual inspection also shows improvements in
the object integrities and boundary qualities. According to the
visual comparisons shown in Figure 23-24, the integrities of
several objects are restored, and the quality of the boundaries
is improved.

In summary, the result of the Vaihingen dataset experiment
also shows the leading performance among current state-of-
art models. The highest scores of all selected metrics (OA,
mean F1, kappa coefficient and MIoU) indicate the statisti-
cally best results, and visual comparisons show an improve-
ment in the object integrity and boundary quality. These
results are consistent with the results of the Potsdam dataset
experiment, which proves the generality of our DGENmodel.

VI. CONCLUSION
By embedding an attention mechanism into a densely con-
nected convolutional network (DenseNet), this study presents
a dense-global-entropy network (DGEN) for the semantic
segmentation of VHR remote sensing images. Tests on ISPRS
2D datasets verified the better performance improvement of
the DGEN compared with U-net, DeeplabV3+ and SegNet.
In the comparison experiments of both datasets, the proposed
DGEN model shows good generality stability (while U-net
and DeeplabV3+ can only be competitive in one dataset) and
the highest score in all selected metrics, including the OA,
F1, kappa coefficient and mean IoU. Furthermore, the two
intensely existing shortages of recent deep-learning-based
semantic segmentationmodels, namely, over-segmentation in
low-level features and reduced object integrity, are improved
by the dual attention mechanism.

The DGEN can achieve high accuracy on large-scale real
remote sensing data without any supplemental data and with-
out preprocessing or post-processing. The results produced
in this study are comparable to the results of state-of-the-art
models, and the experiments in this study indicate that by any
selected metrics, the proposed DGENmodel outperforms the
other models.

Although the proposed the DGEN model has been vali-
dated with better performance by experiments, there are still
some misclassifications by the boundaries of objects and
between objects with similar textures. The main reason for
these misclassifications may be the lack of the effective repair
of category pixel localization in the decoders and unbalanced
semantic classes in datasets. Our future studies will focus
on exploring the architecture of the DGEN and improving
network performance.

AUTHOR CONTRIBUTIONS
Lin Li, Hui Yang and Huanjun Hu designed the experi-
ments; Haihong Zhu contributed analysis tools; Zheng Li and
Hui Yang performed the experiments; and Huanjun Hu and
Hui Yangwrote the paper. All authors have read and approved
the final manuscript.

CONFLICTS OF INTEREST
The authors declare no conflict of interest.

VOLUME 8, 2020 14617



H. Hu et al.: Classification of VHR Remote Sensing Imagery Using a FCN With Global and Local Context Information Enhancements

ACKNOWLEDGMENT
The authors would like to thank the ISPRS for making the
Potsdam datasets available and organizing the semantic label-
ing challenge. They would also like to thankMs. X. Zhou and
X. Yao (Anhui University) for providing data preprocessing.

REFERENCES
[1] X. Hu, C. V. Tao, and B. Prenzel, ‘‘Automatic segmentation of high-

resolution satellite imagery by integrating texture, intensity, and color
features,’’Photogramm. Eng. Remote Sens., vol. 71, no. 12, pp. 1399–1406,
Dec. 2005.

[2] D. Marmanis, K. Schindler, J. Wegner, S. Galliani, M. Datcu, and U. Stilla,
‘‘Classification with an edge: Improving semantic image segmentation
with boundary detection,’’ ISPRS J. Photogramm. Remote Sens., vol. 135,
pp. 158–172, Jan. 2018.

[3] E. Binaghi, I. Gallo, and M. Pepe, ‘‘A neural adaptive model for feature
extraction and recognition in high resolution remote sensing imagery,’’ Int.
J. Remote Sens., vol. 24, no. 20, pp. 3947–3959, Jan. 2003.

[4] A. Carleer, O. Debeir, and E. Wolff, ‘‘Comparison of very high spa-
tial resolution satellite image segmentations,’’ Proc. SPIE, vol. 5238,
pp. 532–542, Feb. 2004.

[5] D. Marmanis, J. D. Wegner, S. Galliani, K. Schindler, M. Datcu, and
U. Stilla, ‘‘Semantic segmentation of aerial images with an ensemble of
CNNs,’’ ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., vol. 3,
pp. 473–480, Jun. 2016.

[6] M. Herold, X. Liu, and K. C. Clarke, ‘‘Spatial metrics and image texture
for mapping urban land use,’’ Photogramm. Eng. Remote Sens., vol. 69,
no. 9, pp. 991–1001, Sep. 2003.

[7] Z. Hu, Z.Wu, Q. Zhang, Q. Fan, and J. Xu, ‘‘A spatially-constrained color–
texture model for hierarchical VHR image segmentation,’’ IEEE Geosci.
Remote Sens. Lett., vol. 10, no. 1, pp. 120–124, Jan. 2013.

[8] A. Izadipour, B. Akbari, and B. Mojaradi, ‘‘A feature selection approach
for segmentation of very high-resolution satellite images,’’ Photogramm.
Eng. Remote Sens., vol. 82, no. 3, pp. 213–222, Mar. 2016.

[9] A. Izadipour, B. Akbari, and B.Mojaradi, ‘‘A new feature selection method
for segmentation of VHR satellite image,’’ in Proc. Int. Conf. Commun.,
Signal Process., Appl., Feb. 2015, pp. 1–5.

[10] Z. Lv, P. Zhang, and J. Atli Benediktsson, ‘‘Automatic object-oriented,
spectral-spatial feature extraction driven by Tobler’s first law of geography
for very high resolution aerial imagery classification,’’ Remote Sens.,
vol. 9, no. 3, p. 285, Mar. 2017.

[11] H.Mahi, H. Isabaten, and C. Serief, ‘‘Zernike moments and SVM for shape
classification in very high resolution satellite images,’’ Int. Arab J. Inf.
Technol., vol. 11, pp. 43–51, Jan. 2014.

[12] M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, ‘‘Morpho-
logical attribute profiles for the analysis of very high resolution images,’’
IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3747–3762,
Oct. 2010.

[13] P. Tokarczyk, J. D. Wegner, S. Walk, and K. Schindler, ‘‘Features, color
spaces, and boosting: New insights on semantic classification of remote
sensing images,’’ IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1,
pp. 280–295, Jan. 2015.

[14] L. Bruzzone and L. Carlin, ‘‘Amultilevel context-based system for classifi-
cation of very high spatial resolution images,’’ IEEE Trans. Geosci. Remote
Sens., vol. 44, no. 9, pp. 2587–2600, Sep. 2006.

[15] X. Chen, T. Fang, H. Huo, and D. Li, ‘‘Graph-based feature selection
for object-oriented classification in VHR airborne imagery,’’ IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 1, pp. 353–365, Jan. 2011.

[16] M. Pesaresi and J. Benediktsson, ‘‘A new approach for the morphological
segmentation of high-resolution satellite imagery,’’ IEEE Trans. Geosci.
Remote Sens., vol. 39, no. 2, pp. 309–320, 2001.

[17] D. Tuia, F. Pacifici, M. Kanevski, and W. Emery, ‘‘Classification of very
high spatial resolution imagery using mathematical morphology and sup-
port vector machines,’’ IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11,
pp. 3866–3879, Nov. 2009.

[18] W. Su, J. Li, Y. Chen, Z. Liu, J. Zhang, T. M. Low, I. Suppiah, and
S. A. M. Hashim, ‘‘Textural and local spatial statistics for the object-
oriented classification of urban areas using high resolution imagery,’’ Int.
J. Remote Sens., vol. 29, no. 11, pp. 3105–3117, Jun. 2008.

[19] J. Tian and D. Chen, ‘‘Optimization in multi-scale segmentation of high-
resolution satellite images for artificial feature recognition,’’ Int. J. Remote
Sens., vol. 28, no. 20, pp. 4625–4644, Oct. 2007.

[20] Y. Cheng, ‘‘Mean shift, mode seeking, and clustering,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 17, no. 8, pp. 790–799, 1995.

[21] G. Fu, C. Liu, R. Zhou, T. Sun, and Q. Zhang, ‘‘Classification for high
resolution remote sensing imagery using a fully convolutional network,’’
Remote Sens., vol. 9, no. 5, p. 498, May 2017.

[22] L. Zhang, L. Zhang, and B. Du, ‘‘Deep learning for remote sensing data:
A technical tutorial on the state of the art,’’ IEEE Geosci. Remote Sens.
Mag., vol. 4, no. 2, pp. 22–40, Jun. 2016.

[23] G. E. Hinton, ‘‘Learning multiple layers of representation,’’ Trends Cogn.
Sci., vol. 11, no. 10, pp. 428–434, Oct. 2007.

[24] N. Audebert, B. Le Saux, and S. Lefèvre, ‘‘Semantic segmentation of
earth observation data using multimodal and multi-scale deep networks,’’
in Computer Vision, vol. 10111, S. H. Lai, V. Lepetit, K. Nishino, and Y.
Sato, Eds. Cham, Switzerland: Springer, 2017, pp. 180–196.

[25] X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, ‘‘Vehicle detection in satellite
images by hybrid deep convolutional neural networks,’’ IEEE Geosci.
Remote Sens. Lett., vol. 11, no. 10, pp. 1797–1801, Oct. 2014.

[26] K. Nogueira, O. A. Penatti, and J. A. Dos Santos, ‘‘Towards better exploit-
ing convolutional neural networks for remote sensing scene classification,’’
Pattern Recognit., vol. 61, pp. 539–556, Jan. 2017.

[27] J. Sherrah, ‘‘Fully convolutional networks for dense semantic labelling
of high-resolution aerial imagery,’’ 2016, arXiv:1606.02585. [Online].
Available: https://arxiv.org/abs/1606.02585

[28] M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, ‘‘Semantic segmenta-
tion of small objects and modeling of uncertainty in urban remote sens-
ing images using deep convolutional neural networks,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2016,
pp. 680–688.

[29] M. Längkvist, A. Kiselev, M. Alirezaie, and A. Loutfi, ‘‘Classification
and segmentation of satellite orthoimagery using convolutional neural
networks,’’ Remote Sens., vol. 8, no. 4, p. 329, Apr. 2016.

[30] Y. F. Zhong, F. Fe, and L. P. Zhang, ‘‘Large patch convolutional neural
networks for the scene classification of high spatial resolution imagery,’’
J. Appl. Remote Sens., vol. 10, Apr. 2016, Art. no. 025006.

[31] H. Wang, Y. Wang, Q. Zhang, S. Xiang, and C. Pan, ‘‘Gated convolutional
neural network for semantic segmentation in high-resolution images,’’
Remote Sens., vol. 9, no. 5, p. 446, May 2017.

[32] N. Audebert, B. Le Saux, and S. Lefèvre, ‘‘Beyond RGB: Very high
resolution urban remote sensing with multimodal deep networks,’’ ISPRS
J. Photogramm. Remote Sens., vol. 140, pp. 20–32, Jun. 2018.

[33] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘Semantic image segmentation with deep convolutional nets and fully
connected CRFs,’’ CoRR, vol. abs/1412.7062, pp. 1–14, Dec. 2014.

[34] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, ‘‘Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,’’ presented at the IEEEConf. Comput. Vis. Pattern Recognit. (CVPR),
2018.

[35] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep convolu-
tional encoder-decoder architecture for scene segmentation,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.

[36] Y. Xu, L. Wu, Z. Xie, and Z. Chen, ‘‘Building extraction in very high
resolution remote sensing imagery using deep learning and guided filters,’’
Remote Sens., vol. 10, no. 1, p. 144, Jan. 2018.

[37] X. Yao, H. Yang, Y.Wu, P.Wu, B.Wang, X. Zhou, and S.Wang, ‘‘Land use
classification of the deep convolutional neural network method reducing
the loss of spatial features,’’ Sensors, vol. 19, no. 12, p. 2792, Jun. 2019.

[38] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[39] H. Li, P. Xiong, J. An, and L. Wang, ‘‘Pyramid attention network for
semantic segmentation,’’ presented at the Brit. Mach. Vis. Conf., 2018.

[40] B. L. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, ‘‘Object
detectors emerge in deep scene CNNs,’’ presented at the Int. Conf. Learn.
Represent. (ICLR), San Diego, CA, USA, 2015.

[41] G. L. Huang, Z. V. D. Maaten, L. Weinberger, and Q. Kilian, ‘‘Densely
connected convolutional network,’’ presented at the IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2017.

[42] S. Jegou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, ‘‘The one
hundred layers Tiramisu: Fully convolutional DenseNets for semantic seg-
mentation,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit.Workshops
(CVPRW), Honolulu, HI, USA, Jul. 2017, pp. 1175–1183.

[43] Y. Yang, Z. Zhong, T. Shen, and Z. Lin, ‘‘Convolutional neural networks
with alternately updated clique,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Salt Lake City, UT, USA, Jun. 2018, pp. 2413–2422.

14618 VOLUME 8, 2020



H. Hu et al.: Classification of VHR Remote Sensing Imagery Using a FCN With Global and Local Context Information Enhancements

[44] L. Itti and C. Koch, ‘‘Computational modelling of visual attention,’’Nature
Rev. Neurosci., vol. 2, no. 3, pp. 194–203, Mar. 2001.

[45] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and
X. Tang, ‘‘Residual attention network for image classification,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA,
Jul. 2017, pp. 6450–6458, Jul. 2017.

[46] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao,W. Liu, and T.-S. Chua, ‘‘SCA-
CNN: Spatial and channel-wise attention in convolutional networks for
image captioning,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Honolulu, HI, USA, Jul. 2017.

[47] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, ‘‘Squeeze-and-excitation
networks,’’ IEEE Trans. Pattern Anal. Mach. Intell., to be published.

[48] R. Xu, Y. Tao, Z. Lu, and Y. Zhong, ‘‘Attention-mechanism-containing
neural networks for high-resolution remote sensing image classification,’’
Remote Sens., vol. 10, no. 10, p. 1602, Oct. 2018.

[49] S. Liu, Q. Wang, and X. Li, ‘‘Attention based network for remote sensing
scene classification,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp.
(IGARSS), Jul. 2018, pp. 4740–4743.

[50] Z. Xiong, Y. Yuan, and Q.Wang, ‘‘AI-NET: Attention inception neural net-
works for hyperspectral image classification,’’ in Proc. IEEE Int. Geosci.
Remote Sens. Symp., Jul. 2018, pp. 2647–2650.

[51] Q. Wang, S. Liu, J. Chanussot, and X. Li, ‘‘Scene classification with
recurrent attention of VHR remote sensing images,’’ IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 2, pp. 1155–1167, Feb. 2019.

[52] H.Yang, P.Wu,X.Yao, Y.Wu, B.Wang, andY.Xu, ‘‘Building extraction in
very high resolution imagery by dense-attention networks,’’ Remote Sens.,
vol. 10, no. 11, p. 1768, Nov. 2018.

[53] H. Li, P. Xiong, J. An, and L. Wang, ‘‘Pyramid attention network for
semantic segmentation,’’ CoRR, vol. abs/1805.10180, 2018.

HUANJUN HU received the B.S. degree in sur-
veying from Wuhan University, China, in 2010,
and the M.Sc. degree in geomatics from The
Hong Kong Polytechnic University, in 2012. He is
currently pursuing the Ph.D. degree in cartography
and geographical information engineering with
Wuhan University. His research interests include
remote sensing image classification based on deep
learning, pedestrian evacuation dynamic model-
ing, and geographic information modeling.

ZHENG LI received the B.S. degree in geographic
information system from the Wuhan University
of Technology, China, in 2009, and the M.S.
degree in geographical information engineering
from Wuhan University, China, in 2012. She is
currently with the Hubei Institute of Land Survey-
ing and Mapping. Her research interests include
geographical information mining, remote sensing
image progressing, and artificial intelligence.

LIN LI received the Ph.D. degree from Wuhan
University, China, in 1997. He was a Professor
with the School of Resource and Environmental
Science, Wuhan University. He was with Joseph
Fourier University, France, and The University
of Tokyo, Japan, for over four years. His cur-
rent research interests include 3-D modeling and
visualization, geographical ontology, 3-D cadas-
tre, the integration of ubiquitous location informa-
tion, and feature extraction from point cloud data.

HUI YANG received the B.S. degree in geography
from Anqing Normal University, China, in 2010,
the M.S. degree in surveying from Wuhan Uni-
versity, China, in 2012, and the Ph.D. degree in
cartography and geographical information engi-
neering from the School of Resource and Environ-
ment Sciences, Wuhan University, in 2019. He is
currently a Lecturer with the Institutes of Phys-
ical Science and Information Technology, Anhui
University, China. His research interests include

coastline map gerneralization, remote sensing image semantic segmentation,
artificial intelligence, and geographic information mining.

HAIHONG ZHU received the B.S. and M.S.
degrees in cartography from the Wuhan Technical
University of Surveying and Mapping, Wuhan,
China, in 1986 and 1996, respectively, and the
Ph.D. degree in cartography from Wuhan Univer-
sity, China, in 2013. She is currently a Professor
and the Ph.D. Advisor with the School of Resource
and Environmental Sciences, Wuhan University.
Her research interests include navigation digital
map, map designs, geographical ontology, and the

3-D modeling and visualization of geographical information.

VOLUME 8, 2020 14619


